JPH06136458A - Method for recovering resources from waste - Google Patents

Method for recovering resources from waste

Info

Publication number
JPH06136458A
JPH06136458A JP29009692A JP29009692A JPH06136458A JP H06136458 A JPH06136458 A JP H06136458A JP 29009692 A JP29009692 A JP 29009692A JP 29009692 A JP29009692 A JP 29009692A JP H06136458 A JPH06136458 A JP H06136458A
Authority
JP
Japan
Prior art keywords
oxide
melting point
point metal
zinc
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP29009692A
Other languages
Japanese (ja)
Inventor
Satohisa Gouda
聡央 郷田
Satoshi Okuno
敏 奥野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP29009692A priority Critical patent/JPH06136458A/en
Publication of JPH06136458A publication Critical patent/JPH06136458A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE:To efficiently separate and recover Fe and Zn as the chlorides at a low temp. and at a high reaction rate by treating a blast furnace dust contg. the oxide grains of Fe, Zn, etc., with a Cl-CO base gas. CONSTITUTION:A blast furnace dust 1 contg. the powders of iron oxides, zinc oxide, etc., is charged into a circulation-type fluidized furnace 3 along with a spent plastics contg. Cl and if necessary, CaCl2 and heated to a relatively low temp. of 800-850 deg.C. The gaseous Cl, CO, etc., generated by the thermal decomposition of the spent plastics 2 are allowed to react with the grains of the iron oxide and zinc oxide to convert the Fe and Zn to their chlorides. The ZnCl2 having a low b.p. is gasified and introduced into a cyclone 4 along with the solid FeCl2. The gaseous ZnCl2 is separated from FeCl2, introduced into a cooling chamber 5, rapidly cooled to 300-350 deg.C, solidified and recovered by a bag filter as the ZnCl2 grain which is used as the material for Zn. The FeCl2 grain is hydrolyzed in the cyclone 4 by the moisture in the atmosphere to form Fe2O3 which is returned to the furnace 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、製鉄所で発生する高炉
ダスト等の鉄などの高融点金属の酸化物及び亜鉛、鉛な
どの低融点金属酸化物を含む廃棄物から、低融点金属成
分を分離回収する方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a low melting point metal component from a waste containing an oxide of a high melting point metal such as iron and a low melting point metal oxide such as zinc and lead generated in a blast furnace dust. The present invention relates to a method for separating and recovering.

【0002】[0002]

【従来の技術】図2は、製鉄所から発生する高炉ダスト
から鉄・酸化鉄と亜鉛を分離する従来法のフローを示し
た図である。高炉ダスト1と高炉チャー又はコークス1
2を、還元性雰囲気で約1000℃に保持された循環流
動炉3内に供給し、酸化亜鉛を還元し、亜鉛を生成す
る。亜鉛の沸点は約900℃であるため、ガス状となり
排ガスとともにサイクロン4に送られ、未だ還元されて
いない酸化亜鉛や酸化鉄などの固体粒子を分離し、ガス
成分はガス冷却室5に送られて冷却水7で約300℃程
度まで急冷され、固化した亜鉛及び一部の酸化亜鉛8は
バグフィルタ6で排ガス11と分離され、回収される。
サイクロン4で分離された固体粒子は循環ライン10を
経て循環流動炉3に戻される。このように回収された亜
鉛及び一部の酸化亜鉛は、亜鉛製造の原料となる。
2. Description of the Related Art FIG. 2 is a diagram showing a flow of a conventional method for separating iron / iron oxide and zinc from blast furnace dust generated from an iron mill. Blast furnace dust 1 and blast furnace char or coke 1
2 is supplied into the circulating fluidized furnace 3 maintained at about 1000 ° C. in a reducing atmosphere to reduce zinc oxide and produce zinc. Since the boiling point of zinc is about 900 ° C, it becomes gaseous and is sent to the cyclone 4 together with the exhaust gas, separating the solid particles such as zinc oxide and iron oxide that have not been reduced yet, and the gas component is sent to the gas cooling chamber 5. Then, the zinc and a part of zinc oxide 8 which have been rapidly cooled to about 300 ° C. with the cooling water 7 are separated from the exhaust gas 11 by the bag filter 6 and collected.
The solid particles separated by the cyclone 4 are returned to the circulating fluidized furnace 3 via the circulation line 10. The zinc and a part of zinc oxide thus recovered are raw materials for zinc production.

【0003】酸化鉄は、循環流動炉3内で一部還元され
るが、上記の温度では鉄及び酸化鉄は固体で存在してお
り、排ガスに同伴されてもサイクロン4で捕捉されて循
環ライン10を経て循環流動炉3に戻される。循環流動
炉3の底部又は循環ライン10から固体で回収された鉄
又は酸化鉄含有量の高いダストは、焼結用原料として利
用することができる。
Iron oxide is partially reduced in the circulating fluidized furnace 3. At the above temperature, iron and iron oxide exist as solids, and even if they are entrained in the exhaust gas, they are captured by the cyclone 4 and are circulated. It is returned to the circulating fluidized furnace 3 via 10. The dust having a high iron or iron oxide content, which is recovered as a solid from the bottom of the circulating fluidized furnace 3 or the circulation line 10, can be used as a raw material for sintering.

【0004】[0004]

【発明が解決しようとする課題】上記の方法では、酸化
亜鉛を亜鉛に還元して気化するため、循環流動炉内を亜
鉛の沸点である930℃以上に保持する必要があり、循
環流動炉、サイクロン、循環ラインなどの設備を100
0℃程度に保持するための多量の補助エネルギーが必要
となる。また、酸化亜鉛の還元は、固体の炭素と一酸化
炭素による反応であり、この中で酸化亜鉛と固体炭素の
反応が固体─固体反応であるため、反応時間が長くな
り、反応炉内の滞留時間を確保するために、炉を高くす
る必要があった。
In the above method, since zinc oxide is reduced to zinc and vaporized, it is necessary to maintain the inside of the circulating fluidized furnace at 930 ° C. or higher, which is the boiling point of zinc. 100 facilities such as cyclone and circulation line
A large amount of auxiliary energy is required to maintain the temperature at about 0 ° C. Further, reduction of zinc oxide is a reaction between solid carbon and carbon monoxide. Since the reaction between zinc oxide and solid carbon is a solid-solid reaction, the reaction time becomes longer and The furnace needed to be raised to save time.

【0005】そこで、本発明は、上記の問題点を解消
し、廃棄物中の低融点金属化合物を低温で容易に気化す
る物質に変換し、高融点金属酸化物などの固体と分離し
て資源を効率的に回収する方法を提供しようとするもの
である。
Therefore, the present invention solves the above problems and converts the low melting point metal compound in the waste into a substance that is easily vaporized at a low temperature, and separates it from a solid such as a high melting point metal oxide to make it a resource. The present invention aims to provide a method for efficiently recovering.

【0006】[0006]

【課題を解決するための手段】本発明は、多量の高融点
金属酸化物と少量の低融点金属酸化物を含む廃棄物か
ら、高融点金属成分と低融点金属成分に分離して回収す
る方法において、上記廃棄物に、塩素を含む廃プラスチ
ック及び又は塩化カルシウムを添加して還元性雰囲気の
下で反応させ、低融点金属を塩化物ガスにして分離し、
冷却して回収することを特徴とする廃棄物から資源の回
収方法である。
The present invention is a method for separating and recovering a high melting point metal component and a low melting point metal component from a waste containing a large amount of a high melting point metal oxide and a small amount of a low melting point metal oxide. In the above, in the above waste, waste plastic containing chlorine and or calcium chloride is added and reacted under a reducing atmosphere, and the low melting point metal is separated into chloride gas,
It is a method of recovering resources from waste, which is characterized by cooling and recovering.

【0007】[0007]

【作用】本発明は、循環流動炉等の反応炉内で、塩化ビ
ニル等の塩素を含む廃プラスチックの熱分解などにより
発生する塩素、一酸化炭素等の還元性ガスで、廃棄物中
の低融点金属酸化物を塩化物ガスにして分離し、冷却し
て回収するものであり、従来の低融点金属の蒸気として
分離する方法と比べて、低融点金属成分を低温で効率良
く分離回収することができる。
The present invention is a reducing gas such as chlorine and carbon monoxide generated by thermal decomposition of waste plastic containing chlorine such as vinyl chloride in a reaction furnace such as a circulating fluidized furnace, which is low in the waste. It separates the melting point metal oxide into chloride gas, cools it, and collects it. Compared with the conventional method that separates it as vapor of low melting point metal, it separates and collects the low melting point metal component efficiently at low temperature. You can

【0008】酸化亜鉛と酸化鉄を含む高炉ダストを例に
すると、塩化亜鉛の沸点が730℃であるに対し、亜
鉛の沸点は930℃であり、本発明の方法では反応炉の
温度を相当に下げることができる。酸化亜鉛を塩化亜
鉛に反応させる形態は、主に固体─気体反応であるのに
対し、酸化亜鉛の還元反応が固体─固体反応と一部固体
─気体反応であるため、本発明の方が反応時間を速くす
ることができる。鉄成分は、塩素と反応して塩化鉄に
なるが、反応ガス中に含まれる水分によって加水分解さ
れて、酸化鉄と塩化水素になるため、塩化亜鉛のように
ガス側に移行することはない。
Taking blast furnace dust containing zinc oxide and iron oxide as an example, zinc chloride has a boiling point of 730 ° C., whereas zinc has a boiling point of 930 ° C. In the method of the present invention, the temperature of the reaction furnace is considerably increased. Can be lowered. The form in which zinc oxide is reacted with zinc chloride is mainly a solid-gas reaction, whereas the reduction reaction of zinc oxide is a solid-solid reaction and a part solid-gas reaction. You can speed up the time. The iron component reacts with chlorine to form iron chloride, but it is not hydrolyzed by the water contained in the reaction gas to iron oxide and hydrogen chloride, so it does not move to the gas side like zinc chloride. .

【0009】[0009]

【実施例】図1は、本発明の1実施例である、廃棄物か
ら資源を回収するプロセスのフローを示した図である。
低融点金属として亜鉛、高融点金属として鉄を主に含有
する高炉ダスト1と、塩素含有廃プラスチック2、必要
に応じて塩化カルシウムを、塩素の割合が当量比×(2
〜3)となるように調整して循環流動炉3に投入する。
該炉3内は常圧下で約800〜850℃、粒子の速度が
4〜6m/secで還元性雰囲気(空気比0.6〜0.
8)が確保されており、投入と同時に高炉ダストからの
水分の蒸発と上記の廃プラスチック2の熱分解が起き
る。この熱分解で発生する塩素、一酸化炭素等の還元性
ガスと反応して、塩化亜鉛となって気化する。塩化亜鉛
ガスは排ガスとともにサイクロン4等の高温用捕集装置
に導入され、固体粒子を分離した後、ガス冷却室5に導
かれ、冷却水7で約300〜350℃まで急冷され、固
化した塩化亜鉛はバグフィルタ6等の捕集装置で回収さ
れる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram showing a flow of a process for recovering resources from waste, which is an embodiment of the present invention.
Blast furnace dust 1 which mainly contains zinc as a low melting point metal and iron as a high melting point metal, chlorine-containing waste plastic 2, calcium chloride as needed, and the proportion of chlorine are equivalent ratio x (2
~ 3) is adjusted and charged into the circulating fluidized furnace 3.
The inside of the furnace 3 is about 800 to 850 ° C. under normal pressure, the velocity of particles is 4 to 6 m / sec, and a reducing atmosphere (air ratio of 0.6 to 0.
8) is secured, and at the same time as the charging, the evaporation of water from the blast furnace dust and the thermal decomposition of the waste plastic 2 occur. By reacting with a reducing gas such as chlorine or carbon monoxide generated by this thermal decomposition, zinc chloride is vaporized. Zinc chloride gas is introduced into a high temperature collector such as a cyclone 4 together with the exhaust gas, and after separating solid particles, it is guided to a gas cooling chamber 5 and rapidly cooled to about 300 to 350 ° C. with cooling water 7 and solidified chlorination. Zinc is collected by a trapping device such as a bag filter 6.

【0010】高炉ダスト1中の鉄は、循環流動炉3内で
一旦塩化物になっても、排ガス中の水分によって加水分
解されて酸化物となり、サイクロン4で捕捉されて循環
ライン10を経て再度循環流動炉3に戻される。また、
酸化亜鉛で塩化物に転換しなかったものは、酸化亜鉛の
常圧下の昇華温度が1720℃であるため、排ガスに同
伴されても、固体のままサイクロン4で捕捉され、酸化
鉄と同様に循環流動炉3に戻される。このような反応が
循環流動炉3内で繰り返されるため、炉下部より抜き出
される酸化鉄ダスト9中に含まれる亜鉛化合物の量は1
0%以下に低下させることができる。バグフィルタ6か
ら排気される排ガス11は、未燃ガスを含むため、再燃
焼した後、排ガス処理して大気に放出される。
The iron in the blast furnace dust 1 is hydrolyzed by the water in the exhaust gas into an oxide even if it becomes a chloride in the circulating fluidized furnace 3 and is captured by the cyclone 4 and passed through the circulation line 10 again. It is returned to the circulating fluidized furnace 3. Also,
The zinc oxide that has not been converted to chloride has a sublimation temperature of 1720 ° C under normal pressure of zinc oxide, so even if it is entrained in the exhaust gas, it is captured by the cyclone 4 as a solid and circulates like iron oxide. It is returned to the flow furnace 3. Since such a reaction is repeated in the circulating flow furnace 3, the amount of zinc compound contained in the iron oxide dust 9 extracted from the lower part of the furnace is 1
It can be reduced to 0% or less. Since the exhaust gas 11 exhausted from the bag filter 6 contains unburned gas, it is recombusted, treated with exhaust gas, and then released to the atmosphere.

【0011】[0011]

【発明の効果】本発明は、上記の構成を採用することに
より、低融点金属を塩化物ガスとして分離するため、従
来の低融点金属蒸気として分離する場合に比べて循環流
動炉内の温度を大幅に低下させることができ、省エネル
ギー化することができる。また、従来の高炉ダストと高
炉チャー、一次反応後の一酸化炭素を利用する固体─固
体反応及び固体─気体反応に比べて、本発明の場合は固
体─気体反応が主体になるので、酸化亜鉛等の分離効率
を高めることができる。
According to the present invention, since the low melting point metal is separated as chloride gas by adopting the above configuration, the temperature in the circulating fluidized furnace is higher than that in the conventional case where it is separated as low melting point metal vapor. It can be greatly reduced and energy can be saved. Further, in the case of the present invention, the solid-gas reaction is the main component, compared to the conventional blast furnace dust and blast furnace char, and the solid-solid reaction and solid-gas reaction utilizing carbon monoxide after the primary reaction. It is possible to increase the separation efficiency of the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の1実施例である、廃棄物からの資源回
収プロセスのフローを示した図である。
FIG. 1 is a diagram showing a flow of a resource recovery process from waste, which is an embodiment of the present invention.

【図2】従来の、廃棄物からの資源回収プロセスのフロ
ーを示した図である。
FIG. 2 is a diagram showing a flow of a conventional resource recovery process from waste.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 多量の高融点金属酸化物と少量の低融点
金属酸化物を含む廃棄物から、高融点金属成分と低融点
金属成分に分離して回収する方法において、上記廃棄物
に、塩素を含む廃プラスチック及び又は塩化カルシウム
を添加して還元性雰囲気の下で反応させ、低融点金属を
塩化物ガスにして分離し、冷却して回収することを特徴
とする廃棄物から資源の回収方法。
1. A method for separating and recovering a high melting point metal component and a low melting point metal component from a waste containing a large amount of a high melting point metal oxide and a small amount of a low melting point metal oxide. A method for recovering resources from wastes, characterized in that waste plastics containing and / or calcium chloride are added and reacted under a reducing atmosphere to separate the low melting point metal into chloride gas, which is then cooled and recovered. .
JP29009692A 1992-10-28 1992-10-28 Method for recovering resources from waste Withdrawn JPH06136458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29009692A JPH06136458A (en) 1992-10-28 1992-10-28 Method for recovering resources from waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29009692A JPH06136458A (en) 1992-10-28 1992-10-28 Method for recovering resources from waste

Publications (1)

Publication Number Publication Date
JPH06136458A true JPH06136458A (en) 1994-05-17

Family

ID=17751750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29009692A Withdrawn JPH06136458A (en) 1992-10-28 1992-10-28 Method for recovering resources from waste

Country Status (1)

Country Link
JP (1) JPH06136458A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008224154A (en) * 2007-03-14 2008-09-25 Ihi Corp Metal recovery method for combustion facility
JP2008223070A (en) * 2007-03-12 2008-09-25 Ihi Corp Valuable metal recovery method and apparatus for raw material treatment apparatus
KR101494256B1 (en) * 2013-03-22 2015-02-17 고등기술연구원연구조합 System for Recovering Valuable Metal
CN110157901A (en) * 2019-05-24 2019-08-23 班友合 A kind of process of sintering separation solid waste potassium sodium zinc

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008223070A (en) * 2007-03-12 2008-09-25 Ihi Corp Valuable metal recovery method and apparatus for raw material treatment apparatus
JP2008224154A (en) * 2007-03-14 2008-09-25 Ihi Corp Metal recovery method for combustion facility
KR101494256B1 (en) * 2013-03-22 2015-02-17 고등기술연구원연구조합 System for Recovering Valuable Metal
CN110157901A (en) * 2019-05-24 2019-08-23 班友合 A kind of process of sintering separation solid waste potassium sodium zinc

Similar Documents

Publication Publication Date Title
US4113832A (en) Process for the utilization of waste materials from electrolytic aluminum reduction systems
US3466169A (en) Process for the production of metallic chlorides from substances containing metallic oxides
JPS63205191A (en) Method of recovering furnace dust
JPS5830249B2 (en) Thermal hydrolysis method for recovering fluorine, aluminum and sodium from consumable and waste materials generated in electrolytic aluminum reduction equipment
US2657976A (en) Process for producing iron oxide and titanium tetrachloride from titaniferous iron ores
CA1138649A (en) Process for recovering aluminum and other metals from fly ash
US3244509A (en) Halide process for extraction of iron from iron-oxide-bearing materials
JPH06136458A (en) Method for recovering resources from waste
JP3727232B2 (en) Zinc recovery method
US4055621A (en) Process for obtaining titanium tetrachloride, chlorine and iron oxide from ilmenite
KR100791513B1 (en) Recovery method of zinc(zn) from dust generated by electric arc furnace steelmaking
US6932853B2 (en) Mechanical separation of volatile metals at high temperatures
US5855645A (en) Production of more concentrated iron product from industrial waste materials streams
JPS603004B2 (en) Method for producing anhydrous magnesium chloride
Yur'ev et al. Process Development for Integrated Use of Metallurgical Production Wastes
CN113073198A (en) Method for efficiently treating zinc-containing dust and mud
US2877110A (en) Recovery of manganese from metallurgical slags, dusts and ores
JPS63259036A (en) Method for recovering zn from material containing by-product zn
US4428912A (en) Regeneration of chloridizing agent from chlorination residue
US4288414A (en) Process for chlorinating clays and bauxite
JPH08134557A (en) Operation of dust treatment by vacuum reaction furnace
US5667555A (en) Method for the removal of calcium by products during the production of an iron feedstock
JPS5928618B2 (en) Method for recovering valuable metals from steelmaking furnace dust, etc.
CN218372439U (en) Iron-zinc solid waste recycling treatment system
JPH0625724A (en) Treatment of blast furnace dust

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000104