JPH0613584A - Gate array system integrated circuit and its forming method - Google Patents

Gate array system integrated circuit and its forming method

Info

Publication number
JPH0613584A
JPH0613584A JP18897992A JP18897992A JPH0613584A JP H0613584 A JPH0613584 A JP H0613584A JP 18897992 A JP18897992 A JP 18897992A JP 18897992 A JP18897992 A JP 18897992A JP H0613584 A JPH0613584 A JP H0613584A
Authority
JP
Japan
Prior art keywords
circuit
resistance
emitter follower
resistance element
gate array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18897992A
Other languages
Japanese (ja)
Inventor
Ryusuke Kawano
龍介 川野
Masao Suzuki
正雄 鈴木
Hitoshi Kitazawa
仁志 北沢
Yuichiro Takei
雄一郎 武井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP18897992A priority Critical patent/JPH0613584A/en
Publication of JPH0613584A publication Critical patent/JPH0613584A/en
Pending legal-status Critical Current

Links

Landscapes

  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

PURPOSE:To minimize power consumption while securing the value of transmission delay time in a specified signal path by a method wherein the value of current, which flows through the ECL circuit of a cell and an emitter follower output circuit, is changed in accordance with the magnitude of a load applied on the emitter follower output circuit of the driving cell. CONSTITUTION:Emitter resistance elements R1-R3 are arranged between the emitter of a transistor Q1 and a power supply Vcc while pull down resistance elements R10-R12 are arranged between the emitter of a transistor Q4 for emitter follower and a power supply Vtt. The resistance elements are connected selectively through wirings so that the ratio of resistance values of respective resistance element groups becomes constant at all times whereby the value of current, which is conducted through an ECL circuit and an emitter follower output circuit, is changed. By this method, power consumption can be minimized while securing the value of delay time of a specified signal path.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ゲートアレイ方式の集
積回路およびその形成方法に関し、特に、ECL回路を
含むゲートアレイ方式の集積回路のセル構成に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gate array type integrated circuit and a method of forming the same, and more particularly to a cell configuration of a gate array type integrated circuit including an ECL circuit.

【0002】[0002]

【従来の技術】従来、トランジスタ,ダイオード,抵抗
素子等からなる基本セルあるいは基本論理回路を規則的
に半導体基板上に配列しておき、目的に応じて基本セル
あるいは基本回路を配線接続して特定品種の集積回路を
得るというゲートアレイ方式の集積回路は、設計および
製造に要する工数と期間とが大幅に節約できること、ま
た配線工程直前までの処理を終えたウエハのストックが
可能なことから多用されている。そして、ECL(Emitt
er Coupled Logic) 回路を含む集積回路においてもゲー
トアレイ方式が利用されている。
2. Description of the Related Art Conventionally, basic cells or basic logic circuits composed of transistors, diodes, resistance elements, etc. are regularly arranged on a semiconductor substrate, and the basic cells or basic circuits are specified by wiring connection according to the purpose. Gate array type integrated circuits, which are used to obtain integrated circuits of various types, are often used because the number of man-hours and periods required for designing and manufacturing can be significantly saved, and it is possible to stock wafers that have been processed just before the wiring process. ing. And ECL (Emitt
The gate array method is also used in integrated circuits including er coupled logic) circuits.

【0003】図6は従来のECL回路を含むゲートアレ
イ方式の集積回路のセルおよびその配置図である。図6
において、a´,b´,c´,d´は同一構成のセルで
ある。セルa´において、トランジスタQ1と抵抗素子
r1による定電流源と、トランジスタQ2,Q3および
抵抗素子r2,r3とによる電流切り替え型論理部とで
ECL回路が構成されており、トランジスタQ2のベー
スは入力端子1に接続されている。Q4はエミッタフォ
ロワ用のトランジスタであり、そのベースはECL回路
の出力端子4に接続され、エミッタはプルダウン抵抗素
子r4に接続され、さらに出力端子2に接続されてエミ
ッタフォロワ出力回路を構成している。
FIG. 6 shows a cell of a gate array type integrated circuit including a conventional ECL circuit and its layout. Figure 6
, A ′, b ′, c ′, d ′ are cells having the same configuration. In the cell a ′, an ECL circuit is composed of a constant current source composed of the transistor Q1 and the resistance element r1, and a current switching type logic part composed of the transistors Q2 and Q3 and the resistance elements r2 and r3. Connected to terminal 1. Q4 is a transistor for an emitter follower, the base of which is connected to the output terminal 4 of the ECL circuit, the emitter of which is connected to the pull-down resistor element r4, and the output terminal 2 which constitutes an emitter follower output circuit. .

【0004】トランジスタQ1のベースに電圧VCS,ト
ランジスタQ3のベースに電圧Vbbが印加される。ま
た、電源Vccは一般的に接地電圧である。電源Vee,V
ttは、例えばそれぞれ−4.5V,−2Vであり、この
電源によってこの回路が動作するための電力が供給され
ている。セルb´,c´,d´も同じ構成の内容を有す
る。このようなセルをいくつか組合せ、配線して所望の
回路を得る。例えば図6に示す回路例では、セルa´の
出力端子2はセルb´,c´,d´各々の入力端子1に
接続され、セルb´,c´,d´を駆動している。
The voltage V CS is applied to the base of the transistor Q1 and the voltage V bb is applied to the base of the transistor Q3. Further, the power supply Vcc is generally a ground voltage. Power supply V ee , V
tt is, for example, −4.5V and −2V, respectively, and power for operating this circuit is supplied by this power supply. The cells b ', c', and d'also have the same configuration contents. Several such cells are combined and wired to obtain a desired circuit. For example, in the circuit example shown in FIG. 6, the output terminal 2 of the cell a'is connected to the input terminals 1 of the cells b ', c', d ', and drives the cells b', c ', d'.

【0005】[0005]

【発明が解決しようとする課題】しかし、回路構成によ
ってはセルa´の出力でセルb´のみを駆動する場合
や、セルa´の出力でセルb´〜セルd´を駆動しなけ
ればならない場合もでてくる。さらには、セルb´〜d
´以外に第4,第5のセルを駆動する場合も考えられ
る。これらの場合でもセルa´を構成するトランジスタ
および抵抗素子は同一であるため、電流切り替え型論理
部を流れる電流Icsおよびエミッタフォロワ出力回路を
流れる電流Iefの値も不変である。したがって、セルa
´の電流値あるいはパワーに対してセルb´〜セルd´
を負荷とみたとき、この負荷数が駆動ゲートのパワーに
比べて大きいときには速度が遅くなり、またこの負荷が
小さい場合には必要以上の電流が流れ、パワーの損失に
なるという欠点があった。
However, depending on the circuit configuration, it is necessary to drive only the cell b'with the output of the cell a ', or to drive the cells b'-d' with the output of the cell a '. It will come out in some cases. Furthermore, cells b ′ to d
It is also possible to drive the fourth and fifth cells other than '. Even in these cases, since the transistor and the resistance element forming the cell a ′ are the same, the values of the current I cs flowing through the current switching type logic unit and the current I ef flowing through the emitter follower output circuit are also unchanged. Therefore, cell a
Cell b'to cell d'for the current value or power of '
As a load, there is a drawback that the speed becomes slower when the number of loads is larger than the power of the drive gate, and an excessive current flows when the load is small, resulting in power loss.

【0006】本発明の目的は、セルa´のECL回路の
出力側の負荷の変化などに対応して、電流IcsおよびI
efを変化させることによって、特定の信号パスにおいて
必要とされる伝搬遅延時間の値を確保しつつ、消費電力
を最小に抑えたゲートアレイ方式の集積回路およびその
形成方法を提供することにある。
An object of the present invention is to respond to changes in the load on the output side of the ECL circuit of the cell a ', the currents I cs and I cs.
An object of the present invention is to provide a gate array type integrated circuit in which power consumption is suppressed to a minimum while securing a value of a propagation delay time required in a specific signal path by changing ef , and a method of forming the same.

【0007】[0007]

【課題を解決するための手段】本発明にかかるゲートア
レイ方式の集積回路は、ECL回路と、このECL回路
の出力が入力されるエミッタフォロワ出力回路とを有す
るセルを複数個含み、前記ECL回路および前記エミッ
タフォロワ出力回路の電流値を少なくとも2通りに変え
るため選択的に配線接続される複数個の抵抗素子を具備
したものである。
A gate array type integrated circuit according to the present invention includes a plurality of cells each having an ECL circuit and an emitter follower output circuit to which an output of the ECL circuit is input. And a plurality of resistance elements selectively wire-connected to change the current value of the emitter follower output circuit into at least two ways.

【0008】ここで、前記ECL回路および前記エミッ
タフォロワ出力回路を構成する各抵抗素子は、抵抗素子
群としてあらかじめ少なくとも2個以上で構成してお
き、基本セルに付く出力負荷の大きさあるいは要求され
るスピードに応じて抵抗素子群内で抵抗素子を選択的に
配線接続可能としたものである。
Here, each of the resistance elements forming the ECL circuit and the emitter follower output circuit is made up of at least two resistance elements in advance as a resistance element group, and the size or demand of the output load attached to the basic cell is required. The resistance elements can be selectively connected by wiring in the resistance element group according to the speed.

【0009】また、本発明にかかるゲートアレイ方式の
集積回路の形成方法は、前記抵抗素子群をそれぞれ抵抗
比1:2:4の少なくとも3個の抵抗素子で構成し、こ
れらの抵抗素子の接続方法により各抵抗素子群内で抵抗
比が1:2:3:4:5:6:7の少なくとも7種類の
抵抗値を実現し、前記ECL回路および前記エミッタフ
ォロワ出力回路を構成する各抵抗素子群の抵抗値の比は
常に一定になるように抵抗素子を選択的に配線接続し、
前記ECL回路および前記エミッタフォロワ出力回路に
流れる電流値を少なくとも7種類可変にし、セル間の伝
搬遅延時間と各抵抗素子群の抵抗値との関係をあらかじ
め見積が可能にしておき、前記見積を参照して、前記E
CL回路および前記エミッタフォロワ出力回路の電流値
の大きさに対応する抵抗素子の接続を選択するものであ
る。
Further, in the method for forming a gate array type integrated circuit according to the present invention, the resistance element group is constituted by at least three resistance elements each having a resistance ratio of 1: 2: 4, and these resistance elements are connected. Each resistance element constituting the ECL circuit and the emitter follower output circuit by realizing at least seven kinds of resistance values having a resistance ratio of 1: 2: 3: 4: 5: 6: 7 in each resistance element group by the method. Selectively wire-connect the resistance elements so that the ratio of the resistance values of the group is always constant,
At least seven kinds of current values flowing in the ECL circuit and the emitter follower output circuit are made variable so that the relationship between the propagation delay time between cells and the resistance value of each resistance element group can be estimated in advance. Then, the E
The connection of the resistance element corresponding to the magnitude of the current value of the CL circuit and the emitter follower output circuit is selected.

【0010】[0010]

【作用】本発明のゲートアレイ方式の集積回路において
は、駆動セルのエミッタフォロワ出力回路に付く負荷の
大きさに応じて、複数の抵抗素子の接続方法によってこ
のセルのECL回路およびエミッタフォロワ出力回路を
流れる電流値を変化させ、特定の信号パスの伝搬遅延時
間の値を確保しつつ、消費電力を最小に抑えることがで
きる。
In the gate array type integrated circuit of the present invention, the ECL circuit and the emitter follower output circuit of this cell are connected by a method of connecting a plurality of resistance elements according to the size of the load applied to the emitter follower output circuit of the driving cell. It is possible to minimize the power consumption while changing the value of the current flowing through to secure the value of the propagation delay time of the specific signal path.

【0011】[0011]

【実施例】次に、本発明の実施例について図面を参照し
て説明する。図1は本発明のゲートアレイ方式の集積回
路のセル配置の一実施例であり、図6と同一符号は同一
部分を示す。トランジスタQ1のエミッタと電源Vee
の間,トランジスタQ2,Q3のコレクタと電源Vcc
間,トランジスタQ4のエミッタと電源Vttとの間に配
置される各抵抗素子群がそれぞれ抵抗比1:2:4の3
個の抵抗素子で構成される場合の例である。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 shows an embodiment of a cell arrangement of a gate array type integrated circuit of the present invention, and the same symbols as those in FIG. 6 indicate the same parts. Resistance element groups arranged between the emitter of the transistor Q1 and the power source V ee , between the collectors of the transistors Q2 and Q3 and the power source V cc , and between the emitter of the transistor Q4 and the power source V tt have a resistance ratio of 1: respectively. 2: 4 of 3
This is an example in the case of being composed of individual resistance elements.

【0012】定電流源となるトランジスタQ1のエミッ
タと電源Veeとの間にエミッタ抵抗素子R1〜R3(R
1=Rd,R2=2Rd,R3=4Rd)を配置し、電
流切り替え型論理部となるトランジスタQ2,Q3のコ
レクタと電源Vccとの間にそれぞれコレクタ抵抗素子R
4〜R6(R4=Ra,R5=2Ra,R6=4Ra)
およびR7〜R9(R7=Rb,R8=2Rb,R9=
4Rb)を配置し、エミッタフォロワ用のトランジスタ
Q4のエミッタと電源Vttとの間にプルダウン抵抗素子
R10〜R12(R10=Rc,R11=2Rc,R1
2=4Rc)を配置する。これらの各抵抗素子R1〜R
12は出力端子2に接続される負荷に応じて適当な電流
が流れるように、抵抗素子R1〜R12が選択的に配線
接続される。セルは以上のように構成される。ここで、
Ra〜Rdは任意であり、当然Ra=Rb=Rc=Rb
の場合もある。
[0012] emitter resistor element R1-R3 (R between the emitter and the power supply V ee of the constant current source comprising transistor Q1
1 = Rd, R2 = 2Rd, R3 = 4Rd), and collector resistance elements R are respectively provided between the collectors of the transistors Q2 and Q3 which are current switching type logic units and the power supply Vcc.
4 to R6 (R4 = Ra, R5 = 2Ra, R6 = 4Ra)
And R7 to R9 (R7 = Rb, R8 = 2Rb, R9 =
4Rb), and pull-down resistance elements R10 to R12 (R10 = Rc, R11 = 2Rc, R1) between the emitter of the transistor Q4 for emitter follower and the power supply V tt.
2 = 4Rc) is arranged. Each of these resistance elements R1 to R
The resistor elements R1 to R12 are selectively wired and connected so that an appropriate current flows according to a load connected to the output terminal 2. The cell is configured as described above. here,
Ra to Rd are arbitrary, and of course Ra = Rb = Rc = Rb.
In some cases.

【0013】抵抗素子群がそれぞれ抵抗比1:2:4の
3個の抵抗素子で構成される場合は、抵抗素子の接続方
法により各抵抗素子群内で抵抗比が1:2:3:4:
5:6:7の7種類の抵抗値を実現でき、ECL回路お
よびエミッタフォロワ出力回路を構成する各抵抗素子群
の抵抗値の比は常に一定になるように抵抗素子を選択的
に配線接続し、ECL回路およびエミッタフォロワ出力
回路に流れる電流値を7種類まで可変にし、図2に示す
ようにエミッタフォロワ付きECL回路の伝搬遅延時間
と各抵抗素子群の抵抗値との関係をあらかじめ見積るこ
とが可能である。そして、前記見積を参照してエミッタ
フォロワ付きECL回路の全電流の大きさを調節するこ
とができる。以下にその例を示す。
When the resistance element group is composed of three resistance elements each having a resistance ratio of 1: 2: 4, the resistance ratio in each resistance element group is 1: 2: 3: 4 depending on the connection method of the resistance elements. :
7 types of resistance values of 5: 6: 7 can be realized, and the resistance elements are selectively wired and connected so that the resistance value ratio of each resistance element group forming the ECL circuit and the emitter follower output circuit is always constant. , The current value flowing in the ECL circuit and the emitter follower output circuit can be varied up to 7 types, and the relationship between the propagation delay time of the ECL circuit with the emitter follower and the resistance value of each resistance element group can be estimated in advance as shown in FIG. It is possible. Then, the magnitude of the total current of the ECL circuit with the emitter follower can be adjusted with reference to the estimation. An example is shown below.

【0014】図3はセルを2つ配置した場合の第2の実
施例を示す回路図である。この実施例では2つのセル
a,bを有し、セルaの出力端子2の負荷はセルbのみ
であるからセルaのパワーは少なくてよく、抵抗素子R
1〜R3,R4〜R6,R7〜R9,R10〜R12を
それぞれ3個とも直列接続して使用している。この場合
は図2では抵抗値は7Rのところに相当する。
FIG. 3 is a circuit diagram showing a second embodiment in which two cells are arranged. In this embodiment, there are two cells a and b, and the load of the output terminal 2 of the cell a is only the cell b. Therefore, the power of the cell a may be small and the resistance element R
All of 1 to R3, R4 to R6, R7 to R9, and R10 to R12 are connected in series and used. In this case, the resistance value corresponds to 7R in FIG.

【0015】図4は本発明の第3の実施例の回路図であ
る。この実施例はセルが4個で、セルaの負荷となるセ
ルが3個の場合である。セルa〜セルdの内容は第1の
実施例と同じである。第3の実施例においてはセルaの
負荷としてセルb,c,dが接続されており、第2の実
施例と比較して出力端子2の負荷が重くなっている。
FIG. 4 is a circuit diagram of the third embodiment of the present invention. In this embodiment, the number of cells is four and the load of the cell a is three. The contents of cells a to d are the same as in the first embodiment. In the third embodiment, cells b, c and d are connected as the load of the cell a, and the load of the output terminal 2 is heavier than that of the second embodiment.

【0016】そこで、この出力負荷の増大に対応して駆
動セルであるセルaにおいては抵抗素子R3,R6,R
9,R12のみを使用する。このような接続にすること
によりセルaは大きな駆動能力をもち、全ての負荷を十
分に速いスピードで駆動することができる。この場合
は、図2では抵抗値が4Rのところに相当する。
Therefore, in response to the increase in the output load, the resistance elements R3, R6, R are provided in the cell a, which is a driving cell.
Only 9 and R12 are used. With such a connection, the cell a has a large driving capability and can drive all loads at a sufficiently high speed. In this case, the resistance value corresponds to 4R in FIG.

【0017】図5は本発明の第4の実施例の回路図であ
る。この実施例はセルが4つであり、第3の実施例の場
合と同じである。第4の実施例は第3の実施例と比較し
てセルaからセルbまでの信号の伝搬送遅延時間を短く
する必要がある場合である。そこで、駆動セルであるセ
ルaにおいては抵抗素子R1,R4,R7,R10を使
用する。このように抵抗素子を接続することにより第3
の実施例と比較してセルaは大きな駆動能力を持ち、第
3の実施例と比べてセルaからセルbまでの信号の伝搬
遅延時間を短くすることができる。これは図2では抵抗
値がRのところに相当する。
FIG. 5 is a circuit diagram of the fourth embodiment of the present invention. This embodiment has four cells and is the same as the case of the third embodiment. The fourth embodiment is a case where the signal transmission delay time from the cell a to the cell b needs to be shortened as compared with the third embodiment. Therefore, the resistance elements R1, R4, R7, and R10 are used in the cell a, which is a driving cell. By connecting the resistance element in this way, the third
The cell a has a large driving capability as compared with the third embodiment, and the propagation delay time of the signal from the cell a to the cell b can be shortened as compared with the third embodiment. This corresponds to where the resistance value is R in FIG.

【0018】以上の実施例2〜4では各抵抗素子群R1
〜R3,R4〜R6,R7〜R9,R10〜R12の接
続方法として3例を示したが、他の接続方法が可能なこ
と、この抵抗素子群を構成する抵抗素子の数が3個以上
でも同様の考えが適用されるということは言うまでもな
い。また、ここではトランジスタの特性をすべて同じと
したが、トランジスタの特性が変った場合にはそれに応
じて抵抗素子を選択すればよい。
In Embodiments 2 to 4 described above, each resistance element group R1
.About.R3, R4 to R6, R7 to R9, and R10 to R12 are shown as three connection methods, other connection methods are possible and even if the number of resistance elements forming this resistance element group is three or more. It goes without saying that the same idea applies. Further, although the characteristics of the transistors are all the same here, if the characteristics of the transistor change, the resistance element may be selected according to the change.

【0019】以上の説明において、ゲートアレイをEC
L回路で構成した場合を記述したが、本発明はNTL(N
on Threshold Logic) 回路などの基本セルを含むゲート
アレイ方式の集積回路に適用できることは言うまでもな
い。
In the above description, the gate array is EC
Although the case where it is configured by the L circuit has been described, the present invention is NTL (N
It goes without saying that the invention can be applied to a gate array type integrated circuit including a basic cell such as an on threshold logic circuit.

【0020】[0020]

【発明の効果】本発明は以上説明したように、ECL回
路と、このECL回路の出力が入力されるエミッタフォ
ロワ出力回路とを有するセルを複数個含み、ECL回路
およびエミッタフォロワ出力回路の電流値を少なくとも
2通りに変えるため選択的に配線接続される複数個の抵
抗素子を具備したので、ECL回路およびエミッタフォ
ロワ出力回路を流れる電流値を複数の抵抗素子の接続方
法によって出力負荷の大きさや要求される信号の伝搬遅
延時間に対応させて変化させ、特定の信号パスの遅延時
間の値を確保しつつ、消費電力を最小に抑えることがで
きるという効果がある。
As described above, the present invention includes a plurality of cells each having an ECL circuit and an emitter follower output circuit to which the output of the ECL circuit is input, and the current values of the ECL circuit and the emitter follower output circuit are included. Since a plurality of resistance elements that are selectively wire-connected in order to change at least two ways are provided, the value of the current flowing through the ECL circuit and the emitter follower output circuit depends on the connection method of the plurality of resistance elements and the size and demand of the output load. There is an effect that the power consumption can be minimized while the value of the delay time of the specific signal path is ensured by changing the signal according to the propagation delay time of the signal.

【0021】また、抵抗比1:2:4の少なくとも3個
の抵抗素子で構成したものは、この接続の仕方によって
抵抗比1:2:3:4:5:6:7の少なくとも7種類
の抵抗値を実現することができる。
In addition, the one composed of at least three resistance elements having a resistance ratio of 1: 2: 4 has at least seven kinds of resistance ratios of 1: 2: 3: 4: 5: 6: 7 depending on the connection method. A resistance value can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のゲートアレイ方式の集積回路の一実施
例のセルの構成を示す回路図である。
FIG. 1 is a circuit diagram showing a cell configuration of an embodiment of a gate array type integrated circuit of the present invention.

【図2】ECL回路およびエミッタフォロワ出力回路を
構成する抵抗素子の抵抗値と伝搬遅延時間との関係を示
す図である。
FIG. 2 is a diagram showing a relationship between a resistance value of a resistance element forming an ECL circuit and an emitter follower output circuit and a propagation delay time.

【図3】本発明の第2の実施例の構成を示す回路図であ
る。
FIG. 3 is a circuit diagram showing a configuration of a second exemplary embodiment of the present invention.

【図4】本発明の第3の実施例の構成を示す回路図であ
る。
FIG. 4 is a circuit diagram showing a configuration of a third exemplary embodiment of the present invention.

【図5】本発明の第4の実施例の構成を示す回路図であ
る。
FIG. 5 is a circuit diagram showing a configuration of a fourth exemplary embodiment of the present invention.

【図6】従来のゲートアレイ方式の集積回路の一例の構
成を示す回路図である。
FIG. 6 is a circuit diagram showing a configuration of an example of a conventional gate array type integrated circuit.

【符号の説明】[Explanation of symbols]

1 入力端子 2 出力端子 a セル b セル c セル d セル Q1 トランジスタ Q2 トランジスタ Q3 トランジスタ Q4 トランジスタ R1 エミッタ抵抗素子 R2 エミッタ抵抗素子 R3 エミッタ抵抗素子 R4 コレクタ抵抗素子 R5 コレクタ抵抗素子 R6 コレクタ抵抗素子 R7 コレクタ抵抗素子 R8 コレクタ抵抗素子 R9 コレクタ抵抗素子 R10 プルダウン抵抗素子 R11 プルダウン抵抗素子 R12 プルダウン抵抗素子 1 input terminal 2 output terminal a cell b cell c cell d cell Q1 transistor Q2 transistor Q3 transistor Q4 transistor R1 emitter resistance element R2 emitter resistance element R3 emitter resistance element R4 collector resistance element R5 collector resistance element R6 collector resistance element R7 collector resistance element R8 collector resistance element R9 collector resistance element R10 pull-down resistance element R11 pull-down resistance element R12 pull-down resistance element

───────────────────────────────────────────────────── フロントページの続き (72)発明者 武井 雄一郎 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Yuichiro Takei 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ECL回路と、このECL回路の出力が
入力されるエミッタフォロワ出力回路とを有するセルを
複数個含み、前記ECL回路および前記エミッタフォロ
ワ出力回路の電流値を少なくとも2通りに変えるため選
択的に配線接続される複数個の抵抗素子を具備したこと
を特徴とするゲートアレイ方式の集積回路。
1. A plurality of cells each having an ECL circuit and an emitter follower output circuit to which the output of the ECL circuit is inputted, for changing the current values of the ECL circuit and the emitter follower output circuit into at least two ways. A gate array type integrated circuit comprising a plurality of resistance elements selectively connected by wiring.
【請求項2】 請求項1記載のゲートアレイ方式の集積
回路において、ECL回路およびエミッタフォロワ出力
回路中の各抵抗素子を抵抗素子群として、あらかじめ少
なくとも2個以上で構成しておき、セルに付く出力負荷
の大きさ、あるいは要求されるスピードに応じて前記抵
抗素子群内で抵抗素子を選択的に配線接続を可能とした
ことを特徴とするゲートアレイ方式の集積回路。
2. The gate array type integrated circuit according to claim 1, wherein each resistance element in the ECL circuit and the emitter follower output circuit is made up of at least two resistance elements in advance, and is attached to the cell. A gate array type integrated circuit characterized in that the resistance elements can be selectively connected in wiring within the resistance element group according to the size of the output load or the required speed.
【請求項3】 請求項2記載のゲートアレイ方式の集積
回路の形成方法であって、抵抗素子群をそれぞれ抵抗比
1:2:4の少なくとも3個の抵抗素子で構成し、これ
らの抵抗素子の接続方法により各抵抗素子群内で抵抗比
が1:2:3:4:5:6:7の少なくとも7種類の抵
抗値を実現し、ECL回路およびエミッタフォロワ出力
回路を構成する各抵抗素子群の抵抗値の比は常に一定に
なるように抵抗素子を選択的に配線接続し、前記ECL
回路および前記エミッタフォロワ出力回路に流れる電流
値を少なくとも7種類可変にし、セル間の伝搬遅延時間
と各抵抗素子群の抵抗値との関係をあらかじめ見積が可
能にしておき、前記見積を参照して、前記ECL回路お
よび前記エミッタフォロワ出力回路の電流値の大きさに
対応する抵抗素子の接続を選択することを特徴とするゲ
ートアレイ方式の集積回路の形成方法。
3. The method of forming a gate array integrated circuit according to claim 2, wherein the resistance element group is composed of at least three resistance elements each having a resistance ratio of 1: 2: 4. Each resistance element that realizes at least seven types of resistance values having a resistance ratio of 1: 2: 3: 4: 5: 6: 7 in each resistance element group by the connection method of 1 and constitutes an ECL circuit and an emitter follower output circuit. The resistance elements are selectively wired and connected so that the ratio of the resistance values of the groups is always constant,
At least seven kinds of current values flowing in the circuit and the emitter follower output circuit are made variable, and the relationship between the propagation delay time between cells and the resistance value of each resistance element group can be estimated in advance. A method of forming a gate array type integrated circuit, characterized in that a connection of a resistance element corresponding to a magnitude of a current value of the ECL circuit and the emitter follower output circuit is selected.
JP18897992A 1992-06-24 1992-06-24 Gate array system integrated circuit and its forming method Pending JPH0613584A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18897992A JPH0613584A (en) 1992-06-24 1992-06-24 Gate array system integrated circuit and its forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18897992A JPH0613584A (en) 1992-06-24 1992-06-24 Gate array system integrated circuit and its forming method

Publications (1)

Publication Number Publication Date
JPH0613584A true JPH0613584A (en) 1994-01-21

Family

ID=16233274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18897992A Pending JPH0613584A (en) 1992-06-24 1992-06-24 Gate array system integrated circuit and its forming method

Country Status (1)

Country Link
JP (1) JPH0613584A (en)

Similar Documents

Publication Publication Date Title
US5406133A (en) BICMOS reprogrammable logic
US4628216A (en) Merging of logic function circuits to ECL latch or flip-flop circuit
JP3436548B2 (en) Low voltage swing output MOS circuit for driving ECL circuit
KR920010208B1 (en) Clock supply circuit
US6239646B1 (en) High-speed, multiple-input multiplexer scheme
KR900008052B1 (en) Semiconductor ic device
JPH055407B2 (en)
US4737663A (en) Current source arrangement for three-level emitter-coupled logic and four-level current mode logic
US4112314A (en) Logical current switch
US4593205A (en) Macrocell array having an on-chip clock generator
US4551638A (en) ECL Gate with switched load current source
JPS62131A (en) Source follower current mode logical cell
EP0183464B1 (en) Emitter-coupled logic (ecl) circuits
US3523194A (en) Current mode circuit
JPH0613584A (en) Gate array system integrated circuit and its forming method
US4749885A (en) Nonsaturating bipolar logic gate having a low number of components and low power dissipation
US5029280A (en) ECL circuit for resistance and temperature bus drop compensation
US4866306A (en) ECL mux latch
US5093587A (en) ECL bidirectional bus for use in a network with modules which employs high resistance interconnect technology between module
US3504192A (en) Emitter-coupled logic circuit
JPH0398315A (en) Wired or logic circuit
JP2876687B2 (en) Master slice type integrated circuit device
JPS6016022A (en) Complementary logic circuit
JPS6351380B2 (en)
JPS6126252B2 (en)