JPH06135732A - Production of optical fiber preform - Google Patents

Production of optical fiber preform

Info

Publication number
JPH06135732A
JPH06135732A JP29047392A JP29047392A JPH06135732A JP H06135732 A JPH06135732 A JP H06135732A JP 29047392 A JP29047392 A JP 29047392A JP 29047392 A JP29047392 A JP 29047392A JP H06135732 A JPH06135732 A JP H06135732A
Authority
JP
Japan
Prior art keywords
glass rod
powder
optical fiber
silica
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29047392A
Other languages
Japanese (ja)
Inventor
Hiroshi Hihara
弘 日原
Masato Oku
誠人 奥
Tsugio Sato
継男 佐藤
Kazuaki Yoshida
和昭 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP29047392A priority Critical patent/JPH06135732A/en
Publication of JPH06135732A publication Critical patent/JPH06135732A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/0128Manufacture of preforms for drawing fibres or filaments starting from pulverulent glass
    • C03B37/01282Manufacture of preforms for drawing fibres or filaments starting from pulverulent glass by pressing or sintering, e.g. hot-pressing

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To produce an optical fiber preform with reduced eccentricity of a cylindrical glass body in a high yield. CONSTITUTION:Molding tools 2, 3 are filled with powder 4 contg. silica powder as principal starting material and a cylindrical glass body 1 with at least a quartz glass rod la at the center part is inserted into the powder 4 and disposed at the center of the tool 3. The powder 4 in the tools 2, 3 is then compacted and vitrified by sintering.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光通信や光学の分野で
広範に用いられる光ファイバ母材の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an optical fiber preform widely used in the fields of optical communication and optics.

【0002】[0002]

【従来の技術】従来、加圧成形法を用いて光ファイバ母
材を製造する方法としては、特開昭61−256937
号に示されている方法が知られている。この方法は、成
形型内の中心に所定の屈折率を有するガラス棒状体を予
め設置し、次いでこの成形型内のガラス棒状体の周囲に
シリカ粉末を充填し、更にこのシリカ粉末を外部圧力に
よって加圧成形し、その後焼結して光ファイバ母材を製
造する方法である。
2. Description of the Related Art Conventionally, as a method for producing an optical fiber preform by using a pressure molding method, there is disclosed in JP-A-61-256937.
The method shown in the issue is known. In this method, a glass rod having a predetermined refractive index is pre-installed in the center of the molding die, then silica powder is filled around the glass rod in the molding die, and the silica powder is further applied by external pressure. This is a method of manufacturing an optical fiber preform by pressure molding and then sintering.

【0003】[0003]

【発明が解決しようとする課題】ところで、実際に成形
に用いる成形型はプラスチックやゴムなどの伸縮性に富
む材質からできている。このため、上述した従来の方法
を用いて光ファイバ母材の製造を行なう場合、成形型内
にシリカ粉末を充填する間に、該成形型内の中心に予め
配置されたガラス棒状体が動き易い。このような上述し
た従来の方法で実際に光ファイバ母材を製造し、更に光
ファイバ化すると、光ファイバ母材のガラス棒状体の中
心からのずれが光ファイバのコア偏心を引き起こす。
By the way, the molding die actually used for molding is made of a highly elastic material such as plastic or rubber. For this reason, when the optical fiber preform is manufactured by using the above-mentioned conventional method, the glass rod-shaped body previously arranged in the center of the molding die is easily moved while the silica powder is filled in the molding die. . When the optical fiber preform is actually manufactured by such a conventional method as described above and further made into an optical fiber, the deviation of the optical fiber preform from the center of the glass rod causes the eccentricity of the core of the optical fiber.

【0004】また、ガラス棒状体を動かないように保持
する成形型を使用した場合、加圧成形時にガラス棒状体
がしばしば破断する。これは、加圧成形時においてガラ
ス棒状体にシリカ粉末の移動に連動しない無理な力が加
わって該ガラス棒状体が移動し、更に成形型の上下方向
の圧縮によりガラス棒状体に不要な応力が加わることが
原因である。
Further, when a mold for holding the glass rod-shaped body in a stationary state is used, the glass rod-shaped body is often broken during pressure molding. This is because during pressing, an unreasonable force that does not interlock with the movement of the silica powder is applied to the glass rod-like body to move the glass rod-like body, and further undesired stress is applied to the glass rod-like body due to the vertical compression of the forming die. The reason is to join.

【0005】本発明は、かかる事情に鑑みてなされたも
ので、ガラス棒状体の偏心が小さな光ファイバ母材を高
い歩留りで製造し得る方法を提供することを目的とす
る。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method capable of manufacturing an optical fiber preform with a small eccentricity of a glass rod at a high yield.

【0006】[0006]

【課題を解決するための手段】本発明は、成形型内にシ
リカ粉末を主原料とする粉末を充填した後、前記成形型
内の中心に、少なくとも中央部にコア用石英系ガラスロ
ッドを有するガラス棒状体を挿入して設置し、次いで、
前記成形型内の前記粉末を加圧成形し、その後焼結して
ガラス化することを特徴とする光ファイバ母材の製造方
法である。
According to the present invention, a silica-based glass rod for core is provided at the center of at least the center of the molding die after filling the molding die with a powder containing silica powder as a main raw material. Insert and install the glass rod, then
In the method for producing an optical fiber preform, the powder in the molding die is pressure-molded and then sintered to be vitrified.

【0007】以下、本発明の方法をより詳細に説明す
る。
Hereinafter, the method of the present invention will be described in more detail.

【0008】まず、成形型内にシリカ粉末を主原料とす
る粉末を充填する。この際、好ましくは成形型に振動を
与えて粉末が十分に均一な状態になるように充填する。
First, a molding die is filled with a powder containing silica powder as a main raw material. At this time, preferably, the molding die is vibrated to fill the powder so that the powder becomes sufficiently uniform.

【0009】前記シリカ粉末を主原料とする粉末は、シ
リカ粉末のみ、或いはドーパントを含んだシリカ粉末で
あってもよく、また、成形助剤が含有されたものであっ
てもよい。
The powder containing silica powder as a main raw material may be silica powder alone or silica powder containing a dopant, or may contain a molding aid.

【0010】次いで、前記成形型内の中心に、少なくと
も中央部にコア用石英系ガラスロッドを有するガラス棒
状体を挿入して設置する。この際、成形型内の中心にガ
ラス棒状体をより確実に挿入する観点から、テレビカメ
ラ等を用いて成形型の中心となる位置を把握し、その位
置にガラス棒状体が導かれるようにテレビカメラ等でモ
ニターしながら該ガラス棒状体を挿入することが望まし
い。このようにテレビカメラ等でモニターしながらガラ
ス棒状体を挿入すれば、粉末の充填により成形型が若干
変形(主に断面が楕円状となる変形)した場合において
もガラス棒状体の偏心を最小に制御することができる。
また、粉末の充填状態を乱すことなくガラス棒状体を挿
入することを可能とし、粉末の充填密度の不均一性に起
因する加圧成形後のガラス棒状体及び粉末成形体の亀裂
等の発生を防止する観点から、ガラス棒状体を回転さ
せ、かつ振動させながら挿入することが望ましい。
Then, a glass rod-shaped body having a silica glass rod for core in at least the central portion is inserted and installed at the center of the molding die. At this time, from the viewpoint of more surely inserting the glass rod into the center of the forming die, the position of the center of the forming die is grasped using a TV camera or the like, and the TV is guided so that the glass rod is guided to that position. It is desirable to insert the glass rod while monitoring with a camera or the like. By inserting the glass rod while monitoring with a TV camera, etc., the eccentricity of the glass rod can be minimized even if the molding die is slightly deformed due to the powder filling (mainly the cross section becomes elliptical). Can be controlled.
Further, it is possible to insert a glass rod-shaped body without disturbing the powder filling state, and the occurrence of cracks and the like in the glass rod-shaped body and the powder molded body after pressure molding due to the non-uniformity of the powder packing density. From the viewpoint of prevention, it is desirable to insert the glass rod while rotating and vibrating it.

【0011】前記コア用石英系ガラスロッドとしては、
光ファイバのコアになるもの、及び光ファイバのコアと
その周囲のクラッドの一部とになるものを挙げることが
できる。
The quartz glass rod for the core includes
Examples thereof include those that become the core of the optical fiber and those that become a part of the clad around the core of the optical fiber.

【0012】前記ガラス棒状体としては、コア用石英系
ガラスロッドのみからなるもの、及びコア用石英系ガラ
スロッドの両端又は一端に石英系ガラスと同等以上の硬
度を有するガラスロッドを接続したものを挙げることが
できる。前記ガラス棒状体は、成形型内の粉末の均一性
を乱すことなく挿入することを可能とする観点から、挿
入方向の先端が尖塔の形状を有することが望ましい。
The glass rod-shaped body is composed of a silica glass rod for core only, or a silica glass rod for core to which glass rods having hardness equal to or higher than that of silica glass are connected to both ends or one end. Can be mentioned. The glass rod-shaped body preferably has a spire shape at the tip in the insertion direction from the viewpoint of enabling insertion without disturbing the uniformity of the powder in the molding die.

【0013】前記コア用石英系ガラスロッドの両端又は
一端に接続されるガラスロッドとしては、前記粉末とし
て密着性の悪いものを用いても該粉末の成形加圧後の成
形体がガラス棒状体から落下しないようにする観点か
ら、コア用石英系ガラスロッドよりも太いものを用いる
ことが望ましい。
As the glass rod connected to both ends or one end of the silica glass rod for core, even if a powder having poor adhesion is used, the molded body after molding and pressing of the powder is a glass rod-shaped body. From the viewpoint of not falling, it is desirable to use a thicker rod than the silica glass rod for core.

【0014】次いで、前記成形型内の前記粉末を加圧成
形し、その後焼結してガラス化することによって、光フ
ァイバ母材を製造する。
Then, the powder in the molding die is pressure-molded, and then sintered and vitrified to manufacture an optical fiber preform.

【0015】[0015]

【作用】本発明の製造方法によれば、成形型内に粉末を
充填した後に前記成形型内の中心にガラス棒状体を挿入
して設置することによって、従来の方法のように成形型
内に粉末を充填する間に該成形型内の中心に予め配置さ
れたガラス棒状体が動いてしまうことを回避することが
できる。このため、粉末が充填された成形型内の中心に
ガラス棒状体を正確に設置することが容易となり、その
結果、ガラス棒状体の偏心が小さな光ファイバ母材を高
い歩留りで製造することができる。
According to the manufacturing method of the present invention, the glass rod is inserted into the center of the molding die after the powder is filled in the molding die and the glass rod is placed in the molding die. It is possible to avoid the movement of the glass rod pre-arranged in the center of the mold during the filling of the powder. Therefore, it becomes easy to accurately install the glass rod-shaped body in the center of the mold filled with the powder, and as a result, the optical fiber preform having a small eccentricity of the glass rod-shaped body can be manufactured with a high yield. .

【0016】[0016]

【実施例】以下、本発明の実施例を図面を参照して詳細
に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0017】実施例1 まず、図1(a)に示すようなガラス棒状体1を作製し
た。このガラス棒状体1は、直径7.5mm、長さ約1
80mmのコア用石英系ガラスロッド1aと、コア用石
英系ガラスロッド1aの下端に接続され、市販されてい
る直径14mm、長さ20mmの下方に尖塔の形状を有
する石英棒1bと、コア用石英系ガラスロッド2の上端
に接続され、直径15mm、長さ60mmの石英棒1c
とからなる。コア用石英系ガラスロッド1aは、気相法
の一つであるVAD法により作製されたものであり、ク
ラッド/コアが約3倍、比屈折率差が約0.35%であ
る。
Example 1 First, a glass rod 1 as shown in FIG. 1 (a) was produced. This glass rod 1 has a diameter of 7.5 mm and a length of about 1
An 80 mm silica glass rod for core 1a, a silica rod 1b connected to the lower end of the silica glass rod for core 1a, having a diameter of 14 mm and a length of 20 mm and having a steeple below. Quartz rod 1c connected to the upper end of the system glass rod 2 and having a diameter of 15 mm and a length of 60 mm
Consists of. The silica glass rod 1a for core is manufactured by the VAD method which is one of the vapor phase methods, and the clad / core is about 3 times and the relative refractive index difference is about 0.35%.

【0018】次いで、図1(b)に示すように内径50
mmφ、長さ約270mmの円筒状の成形ゴム型2の下
方開口部に下蓋3を嵌合した後、成形ゴム型2内に平均
粒径約150μmのシリカ造粒粉末4を充填した。この
際、成形ゴム型2内にシリカ造粒粉末4が均一に充填さ
れるように成形ゴム型2及び下蓋3に振動を与えた。成
形ゴム型2及び下蓋3の材質はニトリルゴムである。シ
リカ造粒粉末4は、市販されている平均粒径約8μmの
シリカ粉末に成形助剤としてポリビニルアルコール(P
VA)と純水を加えてスラリー濃度が約60重量%のス
ラリーを調製した後、このスラリーから噴霧乾燥機を用
いて造粒したものである。このシリカ造粒粉末4中のポ
リビニルアルコールの含有量はシリカ粉末に対して2重
量%となっている。成形ゴム型2内に充填されたシリカ
粉末は約430gであった。
Then, as shown in FIG.
After fitting the lower lid 3 into the lower opening of a cylindrical molding rubber mold 2 having a diameter of mmφ and a length of about 270 mm, the molding rubber mold 2 was filled with silica granulated powder 4 having an average particle diameter of about 150 μm. At this time, the molding rubber mold 2 and the lower lid 3 were vibrated so that the silica granulation powder 4 was uniformly filled in the molding rubber mold 2. The material of the molding rubber mold 2 and the lower lid 3 is nitrile rubber. The silica granulated powder 4 was obtained by adding polyvinyl alcohol (P
VA) and pure water are added to prepare a slurry having a slurry concentration of about 60% by weight, and then the slurry is granulated using a spray dryer. The content of polyvinyl alcohol in the silica granulated powder 4 is 2% by weight based on the silica powder. The silica powder filled in the molding rubber mold 2 was about 430 g.

【0019】次いで、図1(c)に示すようにガラス棒
状体の挿入装置5の昇降可能な保持治具5aにガラス棒
状体1の石英棒1c上部を固定して石英棒1bを下方に
向け、更にガラス棒状体1に回転動及び振動を与えなが
ら成形ゴム型2内の中心の位置に合わせた状態で、ガラ
ス棒状体1をゆっくりと下降させて成形ゴム型2内のシ
リカ造粒粉末4中に挿入した。この際、図示しないテレ
ビカメラを用いて成形型の中心となる位置を予め設定
し、この設定位置にモニターしながらガラス棒状体1を
挿入した。また、ガラス棒状体1の挿入中は成形ゴム型
2及び下蓋3にも振動を与えた。
Then, as shown in FIG. 1 (c), the upper part of the quartz rod 1c of the glass rod 1 is fixed to a holding jig 5a of the glass rod inserting device 5 and the quartz rod 1b is directed downward. Further, while the glass rod-shaped body 1 is being rotated and vibrated, the glass rod-shaped body 1 is slowly lowered while being aligned with the center position in the molding rubber die 2 to form the silica granulated powder 4 in the molding rubber die 2. Inserted inside. At this time, the center position of the molding die was set in advance using a television camera (not shown), and the glass rod 1 was inserted while monitoring the set position. Further, during the insertion of the glass rod 1, the molded rubber mold 2 and the lower lid 3 were also vibrated.

【0020】次いで、図2(a)に示すように成形ゴム
型2の外側に円筒状の支持筒6を配置し、更にこの支持
筒6を下蓋3と共に挟むように成形ゴム型2の上部開口
部に上蓋7を嵌合した。支持筒6は高圧印加装置内の圧
力媒体を介して圧力を印加した時にその圧力が径方向の
みに印加されるようにするためのものであり、圧力媒体
を通す穴6aを有し、金属等の非弾性材からなる。上蓋
7の材質はニトリルゴムである。これら成形ゴム型2、
下蓋3、支持筒6及び上蓋7により成形型が構成されて
いる。
Next, as shown in FIG. 2A, a cylindrical supporting cylinder 6 is arranged outside the molding rubber mold 2, and the upper part of the molding rubber mold 2 is further sandwiched with the supporting cylinder 6. The upper lid 7 was fitted in the opening. The support cylinder 6 is for allowing the pressure to be applied only in the radial direction when the pressure is applied via the pressure medium in the high-voltage applying device, has a hole 6a for passing the pressure medium, and is made of metal or the like. Made of non-elastic material. The material of the upper lid 7 is nitrile rubber. These molded rubber molds 2,
The lower lid 3, the support cylinder 6 and the upper lid 7 form a molding die.

【0021】次いで、図2(b)に示すように成形型
2,3,6,7、ガラス棒状体1及びシリカ造粒粉末4
を、高圧印加装置8の圧力容器8a内の圧力媒体8b中
に入れた。圧力媒体8bは滑油からなる。つづいて、圧
力容器8a内の圧力を上昇させて圧力1500kg/c
2 を1分間印加して加圧成形した後、約20分間費や
してゆっくりと減圧した。減圧終了後、高圧印加装置8
から成形型2,3,6,7を取り出して該成形型の上蓋
7を取り外し、ガラス棒状体1とシリカ造粒粉末4の成
形体とからなる多孔質ガラス母材を取り出した。こうし
て得られた多孔質ガラス母材は、直径が約40mmであ
り、ガラス棒状体1の割れや成形体の亀裂,割れが皆無
であった。
Then, as shown in FIG. 2 (b), the molding dies 2, 3, 6, 7 and the glass rod 1 and the silica granulated powder 4 are used.
Was placed in the pressure medium 8b in the pressure vessel 8a of the high-voltage applying device 8. The pressure medium 8b is made of lubricating oil. Subsequently, the pressure inside the pressure vessel 8a is increased to 1500 kg / c.
After m 2 was applied for 1 minute for pressure molding, the pressure was slowly reduced for about 20 minutes. After decompression, high voltage application device 8
The molds 2, 3, 6 and 7 were taken out from the above, the upper lid 7 of the mold was removed, and the porous glass preform composed of the glass rod-shaped body 1 and the molded body of the silica granulated powder 4 was taken out. The porous glass preform thus obtained had a diameter of about 40 mm and was free from cracks in the glass rod 1 and molded articles.

【0022】得られた多孔質ガラス母材に対して、成形
体中の成形助剤(ポリビニルアルコール)、更に成形体
中のシリカ粉末の特に表面に付着しているアルカリ金
属、アルカリ土類金属及び遷移金属を取り除くため、次
のような加熱処理(脱脂処理)を施した。酸素ガスと窒
素ガスとが酸素:窒素=1:4の割合で流れる混合雰囲
気中に塩素系ガス(この実験では塩化チオニールを使
用)が酸素ガスの流量の約1/10の割合で流れる加熱
炉を用い、この加熱炉内で多孔質ガラス母材を室温から
2℃/分の昇温速度で500℃まで昇温し、この温度で
約5時間保持することにより、加熱処理を行なった。
With respect to the obtained porous glass base material, a molding aid (polyvinyl alcohol) in the molded body, and further, an alkali metal, an alkaline earth metal and an alkali metal attached to the surface of the silica powder in the molded body, The following heat treatment (degreasing treatment) was performed to remove the transition metal. A heating furnace in which a chlorine-based gas (thionyl chloride is used in this experiment) flows at a ratio of about 1/10 of the flow rate of oxygen gas in a mixed atmosphere in which oxygen gas and nitrogen gas flow at a ratio of oxygen: nitrogen = 1: 4 In this heating furnace, the porous glass base material was heated from room temperature to 500 ° C. at a heating rate of 2 ° C./min, and was held at this temperature for about 5 hours to perform heat treatment.

【0023】こうして加熱処理を終了した多孔質ガラス
母材に対して前記加熱炉とは別の炉を用い、ヘリウムガ
スと塩素ガスとの雰囲気中、温度1200℃下で精製処
理を行ない、更にヘリウムガスの雰囲気中、温度を16
00℃に上げて多孔質ガラス母材の成形体を焼結して透
明ガラス化することにより、光ファイバ母材を製造し
た。
The porous glass base material thus heat-treated is subjected to a refining treatment at a temperature of 1200 ° C. in an atmosphere of helium gas and chlorine gas using a furnace different from the above heating furnace, and then helium. In a gas atmosphere, the temperature is 16
The optical fiber preform was manufactured by raising the temperature to 00 ° C. and sintering the molded body of the porous glass preform to form a transparent glass.

【0024】得られた光ファイバ母材は気泡,亀裂等の
欠陥が皆無であった。その後、この光ファイバ母材を通
常の方法により線引きして直径125μmの光ファイバ
を製造したところ、得られた光ファイバは伝送損失が波
長1.30μmにおいて0.37dB/kmであり、気
相法により製造したシングルモードの光ファイバと同等
の特性を有していた。更に、得られた光ファイバについ
て、コア偏心(コア中心軸のずれの距離)を調べたとこ
ろ0.2μmであり、コア偏心が小さいことが確認され
た。これは、加圧成形時に粉末の中心に正確に設置され
ていたことによるものである。
The obtained optical fiber preform had no defects such as bubbles and cracks. After that, the optical fiber preform was drawn by an ordinary method to manufacture an optical fiber having a diameter of 125 μm. The obtained optical fiber had a transmission loss of 0.37 dB / km at a wavelength of 1.30 μm, which was measured by the vapor phase method. Had the same characteristics as the single mode optical fiber manufactured by. Furthermore, when the core eccentricity (distance of deviation of the core center axis) of the obtained optical fiber was examined, it was 0.2 μm, and it was confirmed that the core eccentricity was small. This is because the powder was correctly placed at the center of the powder at the time of pressure molding.

【0025】比較例1 成形型内の中心にガラス棒状体を設置した後、シリカ造
粒粉末を充填した。これ以外は実施例と同様にして多孔
質ガラス母材を製造したところ、得られた多孔質ガラス
母材はガラス棒状体が破断しており、その後の光ファイ
バ化への処理工程を行なうことができなかった。多孔質
ガラス母材のガラス棒状体が破断した原因は、粉末充填
時にガラス棒状体が中心からずれたため、加圧成形時に
加わる不均一な圧力にガラス棒状体が耐えられなかった
ことによるものである。
Comparative Example 1 A glass rod was placed in the center of a molding die, and then silica granulated powder was filled. Except for this, when a porous glass preform was manufactured in the same manner as in the example, the obtained porous glass preform had the glass rod-shaped body ruptured, and the subsequent process step for forming an optical fiber could be performed. could not. The reason why the glass rod-shaped body of the porous glass base material broke was that the glass rod-shaped body was not able to withstand the non-uniform pressure applied during the pressure molding because the glass rod-shaped body was displaced from the center during powder filling. .

【0026】比較例2 成形型内の中心にガラス棒状体を設置した後、シリカ造
粒粉末を充填した。また、加圧成形時の条件を圧力50
0kg/cm2 にして1分間印加とした。これ以外は実
施例と同様にして多孔質ガラス母材を製造をしたとこ
ろ、ガラス棒状体を破断させることなく多孔質ガラス母
材を得ることができた。その後、実施例1と同様にして
加熱処理(脱脂処理)、精製処理及び焼結による透明ガ
ラス化を行なって光ファイバ母材を製造した。その後、
この光ファイバ母材を通常の方法により線引きして直径
125μmの光ファイバを製造したところ、得られた光
ファイバは伝送損失が波長1.30μmにおいて0.3
7dB/kmであり、実施例の光ファイバと同等の特性
を有していた。更に、得られた光ファイバについて、コ
ア偏心を調べたところ0.8μmであり、実施例の光フ
ァイバと比べてコア偏心が大きいことが確認された。こ
のコア偏心の原因は、粉末充填時にガラス棒状体が中心
からずれたことによるものである。
Comparative Example 2 After a glass rod-shaped body was placed in the center of the molding die, silica granulated powder was filled. Also, the pressure molding condition is 50
The voltage was set to 0 kg / cm 2 and applied for 1 minute. When a porous glass preform was manufactured in the same manner as in the Example except for this, a porous glass preform could be obtained without breaking the glass rod. Then, in the same manner as in Example 1, heat treatment (degreasing treatment), refining treatment, and transparent vitrification by sintering were performed to manufacture an optical fiber preform. afterwards,
An optical fiber having a diameter of 125 μm was manufactured by drawing the optical fiber preform by a usual method. The obtained optical fiber had a transmission loss of 0.3 at a wavelength of 1.30 μm.
It was 7 dB / km, and had characteristics equivalent to those of the optical fiber of the example. Further, when the core eccentricity of the obtained optical fiber was examined, it was 0.8 μm, and it was confirmed that the core eccentricity was larger than that of the optical fiber of the example. The cause of the eccentricity of the core is that the glass rod-shaped body is deviated from the center during powder filling.

【0027】[0027]

【発明の効果】以上詳述した如く、本発明の製造方法に
よれば偏心が小さな光ファイバ母材を高い歩留りで製造
することができ、ひいてはコア偏心の小さな高品質の光
ファイバを高い歩留りで製造することが可能となる。
As described above in detail, according to the manufacturing method of the present invention, it is possible to manufacture an optical fiber preform having a small eccentricity with a high yield, and thus to manufacture a high-quality optical fiber with a small eccentricity with a high yield. It becomes possible to manufacture.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例における光ファイバ母材の製造工程を示
す説明図。
FIG. 1 is an explanatory view showing a manufacturing process of an optical fiber preform in an example.

【図2】実施例における光ファイバ母材の製造工程を示
す説明図。
FIG. 2 is an explanatory view showing a manufacturing process of an optical fiber preform in an example.

【符号の説明】[Explanation of symbols]

1…ガラス棒状体、1a…コア用石英系ガラスロッド、
1b…石英棒、1c…石英棒、2…成形型(成形ゴム
型)、3…成形型(下蓋)、4…シリカ造粒粉末、5…
ガラス棒状体の挿入装置、6…成形型(支持筒)、7…
成形型(上蓋)、8…高圧印加装置。
1 ... Glass rod-like body, 1a ... Quartz glass rod for core,
1b ... Quartz rod, 1c ... Quartz rod, 2 ... Mold (molding rubber mold), 3 ... Mold (lower lid), 4 ... Silica granulated powder, 5 ...
Inserting device for glass rod, 6 ... Mold (supporting cylinder), 7 ...
Mold (upper lid), 8 ... High-voltage applying device.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 和昭 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Kazuaki Yoshida 2-6-1, Marunouchi, Chiyoda-ku, Tokyo Furukawa Electric Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 成形型内にシリカ粉末を主原料とする粉
末を充填した後、前記成形型内の中心に、少なくとも中
央部にコア用石英系ガラスロッドを有するガラス棒状体
を挿入して設置し、次いで、前記成形型内の前記粉末を
加圧成形し、その後焼結してガラス化することを特徴と
する光ファイバ母材の製造方法。
1. A mold is filled with a powder containing silica powder as a main raw material, and then a glass rod-shaped body having a silica glass rod for a core at least in the center is inserted and installed in the center of the mold. Then, the powder in the molding die is pressure-molded, and then sintered and vitrified, which is a method for producing an optical fiber preform.
JP29047392A 1992-10-28 1992-10-28 Production of optical fiber preform Pending JPH06135732A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29047392A JPH06135732A (en) 1992-10-28 1992-10-28 Production of optical fiber preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29047392A JPH06135732A (en) 1992-10-28 1992-10-28 Production of optical fiber preform

Publications (1)

Publication Number Publication Date
JPH06135732A true JPH06135732A (en) 1994-05-17

Family

ID=17756469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29047392A Pending JPH06135732A (en) 1992-10-28 1992-10-28 Production of optical fiber preform

Country Status (1)

Country Link
JP (1) JPH06135732A (en)

Similar Documents

Publication Publication Date Title
US5185020A (en) Method for manufacturing a silica-base material for optical fiber
US5244485A (en) Method of manufacturing a silica glass preform
US4867774A (en) Method of producing an elongated glass body, particularly a preform for optical waveguides
US20070209400A1 (en) Method For Producing An Optical Component
US6446468B1 (en) Process for fabricating optical fiber involving overcladding during sintering
JPH11314925A (en) Production of silica glass by sol-gel process
US6555048B1 (en) Method for manufacturing tube-shaped silica glass product
JPH06135732A (en) Production of optical fiber preform
US20090260400A1 (en) Method for Producing a Tubular Semifinished Product From Fluorine-Doped Quartz Glass
EP1110918A2 (en) Apparatus and method for sintering an over-jacketing sol-gel derived glass tube for an optical fiber preform
JPH09124332A (en) Production of preform for optical fiber
US5429653A (en) Method of partially introverting a multiple layer tube to form an optical fiber preform
JP3177308B2 (en) Manufacturing method of optical fiber preform
US20040099013A1 (en) Optical fibers and methods of fabrication
JPH0680436A (en) Production of porous optical fiber preform
JPH0764574B2 (en) Method for manufacturing rod-shaped quartz glass preform
JPH05208839A (en) Production of silica-based porous glass form
KR100312230B1 (en) Manufacture method of metal doped silica glass
EP1544173A1 (en) Glass preform for an optical fibre and method and apparatus for its manufacture
JPH06247733A (en) Production of constant-polarization optical fiber preform
JPH05170470A (en) Production of quartz glass perform
JPH05294659A (en) Production of quartz-based porous glass body
JP2003054958A (en) Method for manufacturing glass article
JPH0648758A (en) Production of preformed material for optical fiber
JPH0648762A (en) Production of preformed material for optical fiber