JPH06135204A - Pneumatic tire - Google Patents
Pneumatic tireInfo
- Publication number
- JPH06135204A JPH06135204A JP4309547A JP30954792A JPH06135204A JP H06135204 A JPH06135204 A JP H06135204A JP 4309547 A JP4309547 A JP 4309547A JP 30954792 A JP30954792 A JP 30954792A JP H06135204 A JPH06135204 A JP H06135204A
- Authority
- JP
- Japan
- Prior art keywords
- tire
- tread
- radial direction
- maximum width
- width position
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/0083—Tyre tread bands; Tread patterns; Anti-skid inserts characterised by the curvature of the tyre tread
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C3/00—Tyres characterised by the transverse section
- B60C3/06—Tyres characterised by the transverse section asymmetric
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Tires In General (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、タイヤ最大幅位置を
半径方向にずらすことにより操縦安定性とロードノイズ
性とを共に向上させるようにした空気入りタイヤに関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pneumatic tire in which the maximum tire width position is displaced in the radial direction to improve both steering stability and road noise.
【0002】[0002]
【従来の技術】近年、高速道路の整備にともなって高速
走行が日常的になったが、このような高速走行時にはタ
イヤに大きな外力が作用するため、従来より高い操縦安
定性が要求されるようになり、また、快適な居住空間を
得る観点からロードノイズ(路面の凹凸が原因となって
タイヤ、車体を通じて車内に伝達される騒音)をさらに
低減させることが要求されてきた。2. Description of the Related Art In recent years, high-speed driving has become routine due to the maintenance of highways. However, since a large external force acts on the tire during such high-speed driving, higher steering stability than ever before is required. Further, from the viewpoint of obtaining a comfortable living space, it has been required to further reduce road noise (noise that is transmitted to the inside of the vehicle through the tires and the vehicle body due to the unevenness of the road surface).
【0003】[0003]
【発明が解決しようとする課題】ここで、前述の操縦安
定性とロードノイズ性とは、一般に二律背反であると言
われているが、従来のタイヤの子午線断面形状はタイヤ
赤道面を中心として装着内側と装着外側とで対称となっ
ているため、これら操縦安定性とロードノイズ性とは両
性能がバランスしたところで妥協せざるを得ず、この結
果、いずれの性能も充分とはいえなかった。Here, it is generally said that the above-mentioned steering stability and road noise characteristics are trade-offs. However, the conventional tire has a meridian cross-sectional shape centered on the tire equatorial plane. Since the inner side and the outer side are symmetrical, there was no choice but to compromise between the steering stability and the road noise when the two performances were balanced, and as a result, neither performance was satisfactory.
【0004】[0004]
【課題を解決するための手段】このため、本発明者は、
これら操縦安定性とロードノイズ性とを共に向上させる
ことができる空気入りタイヤを提案できないかと種々模
索し、最初に、この操縦安定性、ロードノイズ性がどの
ような要因の影響を大きく受けているかを研究した。そ
の結果、操縦安定性に関しては、第1に、旋回時、装着
外側のタイヤには外部から大きな横力が作用するため、
該装着外側のサイドウォール部の曲げ剛性が高い場合に
は操縦安定性が高くなるが、装着内側のタイヤには小さ
な横力しか作用しないので、該装着内側のサイドウォー
ル部の曲げ剛性が変化しても操縦安定性にはあまり影響
がないこと、第2に、サイドウォール部はタイヤ最大幅
位置において変形が最も容易であるが、このタイヤ最大
幅位置近傍に大きな内部歪が残留していると、このタイ
ヤ最大幅位置近傍の変形が拘束されてサイドウォール部
の曲げ剛性が高くなること、第3に、タイヤが縦荷重に
よって押し潰されると、サイドウォール部、特にタイヤ
最大幅位置近傍には大きな内部歪が発生するが、この内
部歪は、旋回時に装着外側のサイドウォール部がタイヤ
赤道面側に大きく倒れ込み、タイヤ最大幅位置近傍の曲
率半径が大きくなることで減少すること、を知見した。
一方、ロードノイズ性に関しては、第1に、タイヤが荷
重によって路面に押し付けられると、トレッド端近傍に
大きな内部歪が生じること、第2に、このような内部歪
が大きくなるほど、ロードノイズ性が悪化すること、を
知見した。Therefore, the present inventor has
We sought variously to propose a pneumatic tire that can improve both steering stability and road noise, and firstly what factors greatly influence the steering stability and road noise. Was studied. As a result, with regard to steering stability, first, when turning, a large lateral force acts from the outside on the tire on the outside of the mounting,
When the sidewall rigidity on the outer side of the mounting is high, the steering stability is high, but since a small lateral force acts on the tire on the inner side of the mounting, the bending rigidity of the sidewall on the inner side of the mounting changes. However, the steering stability is not so affected. Secondly, the sidewall portion is most easily deformed at the tire maximum width position, but a large internal strain remains near the tire maximum width position. The deformation of the tire in the vicinity of the maximum width position is constrained to increase the bending rigidity of the sidewall portion. Thirdly, when the tire is crushed by the vertical load, the sidewall portion, particularly the vicinity of the tire maximum width position, is A large internal strain occurs, but this internal strain causes the sidewall part on the outer side of the tire to fall greatly toward the equatorial plane of the tire during turning, resulting in a large radius of curvature near the tire maximum width position. Be reduced by, it was finding a.
On the other hand, regarding the road noise property, firstly, when the tire is pressed against the road surface by a load, a large internal strain is generated in the vicinity of the tread edge. Secondly, the larger the internal strain is, the more the road noise property becomes. It was found that it would worsen.
【0005】上記のことから操縦安定性を向上させるに
は、装着外側のサイドウォール部におけるタイヤ最大幅
位置近傍の変形を困難と(横剛性を高く)すればよいこ
とは簡単に理解できるが、どのようにすれば他のタイヤ
性能を低下させることなくタイヤ最大幅位置近傍の横剛
性を高くすることができるか、というテーマで再び研究
を開始した。その結果、装着外側のタイヤ最大幅位置を
従来位置(ビードベースラインからタイヤ高さの 0.5倍
だけ半径方向外側に離れた位置)よりビード部側にずら
せば、横剛性のきわめて高いビード部の影響を受けてタ
イヤ最大幅位置近傍の横剛性が高くなり、しかも、この
ようにタイヤ最大幅位置近傍の横剛性が高くなると、旋
回時にサイドウォール部が倒れ込んでも、タイヤ最大幅
位置の曲率半径はあまり大きくならず、これにより、タ
イヤ最大幅位置近傍には大きな内部歪が残留して、タイ
ヤ最大幅位置近傍における横剛性がさらに高くなること
を見い出したのである。また、ロードノイズを低減する
には、トレッド端近傍における内部歪を低減させればよ
いが、どのようにすれば他のタイヤ性能を低下させるこ
となくトレッド端近傍における内部歪を低減させること
ができるか、というテーマでも、再び研究を開始した。
その結果、変形が最も容易なサイドウォール部のタイヤ
最大幅位置を従来位置よりトレッド端側にずらしてトレ
ッド端に接近させれば、タイヤ最大幅位置近傍が変形し
たとき、この変形がトレッド端近傍の内部歪の一部を吸
収するため、内部歪が小さくなってロードノイズ性が向
上することを見い出したのである。ここで、サイドウォ
ール部のタイヤ最大幅位置をビード部側へずらすことと
トレッド端側にずらすことは、全く正反対のことであっ
て同時に満足させることはできず、このため、これら両
知見を具体化するにはどうすればよいかと、さらに思索
を重ねたのである。From the above, it can be easily understood that in order to improve the steering stability, it is necessary to make it difficult to deform (the lateral rigidity is high) in the vicinity of the tire maximum width position in the sidewall portion on the outside of the mounting, I started the research again with the theme of how to increase the lateral rigidity near the maximum tire width position without degrading the performance of other tires. As a result, if the maximum width position of the tire on the outer side of mounting is shifted to the bead side from the conventional position (position radially outward from the bead baseline by 0.5 times the tire height), the effect of the bead part, which has extremely high lateral rigidity, will be affected. In response to this, the lateral rigidity near the tire maximum width position increases, and when the lateral rigidity near the tire maximum width position increases in this way, the curvature radius at the tire maximum width position is not so great even if the sidewall part falls down during turning. It has been found that this does not increase, and as a result, a large internal strain remains near the tire maximum width position and the lateral rigidity near the tire maximum width position becomes even higher. Further, in order to reduce the road noise, it is sufficient to reduce the internal strain near the tread edge, but how can reduce the internal strain near the tread edge without degrading the performance of other tires. I started researching again under the theme of “ka”.
As a result, if the tire maximum width position of the sidewall portion that is most easily deformed is moved closer to the tread end by shifting the tire maximum width position from the conventional position, when the tire maximum width position vicinity is deformed, this deformation will occur near the tread end. It was found that the internal distortion is reduced and the road noise characteristic is improved because a part of the internal distortion is absorbed. Here, shifting the tire maximum width position of the sidewall portion to the bead portion side and the tread end side are the exact opposite and cannot be satisfied at the same time. He further pondered what to do to realize it.
【0006】この結果、本発明者は、タイヤ赤道面より
装着外側と装着内側とで機能を分担させれば、即ち、装
着外側のタイヤに操縦安定性を分担させ、装着内側のタ
イヤにロードノイズの低減を分担させれば、操縦安定性
とロードノイズ性との双方を向上させることができると
いう着想を得たのである。As a result, the inventor of the present invention shares the function between the outer side and the inner side of the tire from the equatorial plane of the tire, that is, the tire on the outer side is responsible for the steering stability, and the tire on the inner side is loaded with road noise. The idea was that it would be possible to improve both steering stability and road noise characteristics by sharing the reduction of
【0007】このようなことから、本発明は、一対のビ
ード部と、これらビード部からそれぞれ略半径方向外側
に向かって延びるサイドウォール部と、これらサイドウ
ォール部の半径方向外端同士を連ねる略円筒状のトレッ
ド部とを備えた空気入りタイヤにおいて、該空気入りタ
イヤを正規リムに装着するとともに規定内圧を充填した
ときに、ビードベースラインからタイヤ高さの 0.5倍だ
け半径方向外側に離れた位置をKとすると、装着外側の
タイヤ最大幅位置Qは前記位置Kより半径方向内側に配
置され、装着内側のタイヤ最大幅位置Rは前記位置Kよ
り半径方向外側に配置されている空気入りタイヤであ
る。In view of the above, according to the present invention, a pair of bead portions, sidewall portions extending outward from the bead portions in a substantially radial direction, and radial outer ends of the sidewall portions are connected to each other. In a pneumatic tire having a cylindrical tread portion, when the pneumatic tire was mounted on a regular rim and was filled with a specified internal pressure, it was separated from the bead baseline by 0.5 times the tire height outward in the radial direction. Letting the position be K, the tire maximum width position Q on the outer side of the mounting is arranged radially inward of the position K, and the maximum tire width position R on the inner side of the mounting is arranged radially outside of the position K. Is.
【0008】そして、前述のように両サイドウォール部
のタイヤ最大幅位置を逆方向にずらすと、トレッド部の
トレッド半径、即ちトレッド部の子午線断面形状におけ
る外表面の曲率半径が影響を受け、タイヤ赤道面の両側
で異なった値となることもある。そこで、本発明者はタ
イヤ赤道面の両側でトレッド半径の値が異なったとき、
操縦安定性、ロードノイズ性にどのような影響を与える
か、さらに研究を重ねた。その結果、以下のような知見
を得た。即ち、第1の知見は、トレッド半径が小さくな
ると、接地形状が丸くなる(矩形率が低下する)ため、
接地面内での接地圧分布が均一となり、しかも、内圧充
填時におけるトレッド端近傍での半径方向外側への径成
長量が大きくなるため、該トレッド端近傍に発生する張
力が高くなって横剛性が高くなり、操縦安定性が向上す
るという知見である。第2の知見は、トレッド半径が大
きくなると、接地形状が四角くなる(矩形率が上昇す
る)ため、トレッド端近傍における接地圧がタイヤ赤道
面近傍における接地圧より高くなる。この結果、振動の
伝達に大きな寄与をしているベルト端部が押し付けられ
て動きが規制され、伝達される振動のレベルが低下しロ
ードノイズ性が向上するのである。しかも、トレッド半
径が大きくなると、内圧充填時におけるトレッド端近傍
での半径方向外側への径成長量が小さく(場合によって
は符号が負となって半径方向内側に向かって変形する)
なるため、該トレッド端部近傍に発生する張力が低くな
り、この結果、ベルト層はこの影響を受けて張力が高く
なる。そして、このようにベルト層の張力が高くなる
と、路面の凹凸に基づくベルト層の変形量が小さくな
り、ロードノイズ性が向上するという知見である。ここ
で、旋回時、装着外側のタイヤには外部から大きな横力
が作用するため、装着外側のトレッド半径を小さくして
操縦安定性を向上させ、残りの側、即ち装着内側のトレ
ッド半径を大きくして、ロードノイズ性を向上させれ
ば、タイヤ赤道面の両側で機能を分担し、両性能を共に
向上させることができるのである。When the tire maximum width positions of both sidewall portions are displaced in the opposite directions as described above, the tread radius of the tread portion, that is, the radius of curvature of the outer surface in the meridian cross-sectional shape of the tread portion is affected, and the tire is affected. The values may be different on both sides of the equatorial plane. Therefore, when the inventor has different tread radius values on both sides of the tire equatorial plane,
Further research was conducted to see how it affects steering stability and road noise. As a result, the following findings were obtained. That is, the first finding is that when the tread radius becomes smaller, the ground contact shape becomes round (the rectangular ratio decreases),
The distribution of the contact pressure within the contact surface is uniform, and the amount of radial growth toward the outside in the radial direction near the tread edge during internal pressure filling is large, so the tension generated near the tread edge increases and the lateral rigidity increases. It is a finding that the driving force becomes higher and the steering stability is improved. The second finding is that as the tread radius increases, the ground contact shape becomes square (the rectangular ratio increases), so the ground contact pressure near the tread edge becomes higher than the ground contact pressure near the tire equatorial plane. As a result, the end portion of the belt, which greatly contributes to the transmission of the vibration, is pressed and the movement is restricted, the level of the transmitted vibration is lowered, and the road noise property is improved. Moreover, as the tread radius increases, the amount of radial growth toward the outside in the radial direction near the tread end during internal pressure filling decreases (in some cases, the sign becomes negative and deforms toward the inside in the radial direction).
Therefore, the tension generated near the end portion of the tread becomes low, and as a result, the belt layer is affected by this and the tension becomes high. Further, it is a finding that the higher the tension of the belt layer is, the smaller the deformation amount of the belt layer due to the unevenness of the road surface becomes, and the road noise property is improved. Here, when turning, a large lateral force acts on the tire on the outside of the mounting from the outside, so the tread radius on the outside of the mounting is reduced to improve steering stability, and the tread radius on the remaining side, that is, the inside of the mounting is increased. Then, if the road noise characteristic is improved, the functions can be shared by both sides of the tire equatorial plane, and both performances can be improved.
【0009】このようなことから、請求項2に記載の発
明は、正規リムに装着するとともに0.1kg/cm2の内圧を
充填したとき、タイヤ赤道面より装着外側のトレッド部
の子午線断面形状における外表面の曲率半径R1を、タイ
ヤ赤道面より装着内側のトレッド部の子午線断面形状に
おける外表面の曲率半径R2より小とした空気入りタイヤ
である。In view of the above, according to the second aspect of the invention, when the tire is mounted on the regular rim and is filled with an internal pressure of 0.1 kg / cm 2 , the tread portion on the outer side of the tire equatorial plane in the meridian cross-sectional shape is mounted. A pneumatic tire in which the radius of curvature R1 of the outer surface is smaller than the radius of curvature R2 of the outer surface in the meridional section shape of the tread portion on the inner side of the tire equatorial plane.
【0010】[0010]
【作用】今、前述したような空気入りタイヤが装着され
た車両が旋回走行しているとする。このとき、このタイ
ヤの装着外側、特に旋回外側に装着されているタイヤの
装着外側には大きな横力が作用するが、このタイヤにお
いては、前述のように装着外側のタイヤ最大幅位置Q
を、従来タイヤにおけるタイヤ最大幅位置Kより半径方
向内側に配置してビード部に接近させたため、横剛性の
極めて高いビード部の影響を受けて該タイヤ最大幅位置
Q近傍の横剛性が高くなり、しかも、タイヤ最大幅位置
Q近傍に撓みによって発生した大きな内部歪は、前記の
ようにタイヤ最大幅位置Q近傍の横剛性が高くなること
であまり減少せず、これにより、空気入りタイヤの操縦
安定性が向上するのである。一方、装着内側について
は、横剛性が変化しても操縦安定性にあまり影響を与え
ないため、装着内側のタイヤにはロードノイズの低減の
機能を分担させるようにした。即ち、変形が最も容易な
サイドウォール部のタイヤ最大幅位置Rを従来位置Kよ
りトレッド端側にずらしてトレッド端に接近させ、これ
により、ロードノイズの大きさに影響のあるトレッド端
近傍の内部歪をタイヤ最大幅位置R近傍の変形によって
その一部を吸収し、ロードノイズ性を向上させたのであ
る。このようにタイヤの装着外側により操縦安定性とい
う機能を、装着内側によりロードノイズ性という機能を
それぞれ分担させるようにしたので、操縦安定性、ロー
ドノイズ性を共に向上させることができるのである。Now, assume that the vehicle equipped with the pneumatic tire as described above is turning. At this time, a large lateral force acts on the mounting outer side of the tire, particularly on the mounting outer side of the tire mounted on the turning outer side. In this tire, as described above, the maximum tire width position Q on the mounting outer side is set.
Was placed radially inward of the tire maximum width position K in the conventional tire to approach the bead portion, so that the lateral rigidity near the tire maximum width position Q becomes high due to the influence of the bead portion having extremely high lateral rigidity. Moreover, the large internal strain generated by the deflection near the tire maximum width position Q does not decrease so much because the lateral rigidity near the tire maximum width position Q becomes high as described above, and thus the pneumatic tire steering The stability is improved. On the other hand, regarding the inner side of the mounting, even if the lateral rigidity changes, it does not affect the steering stability so much, so the tires on the inner side of the mounting share the function of reducing road noise. That is, the tire maximum width position R of the sidewall portion, which is the easiest to be deformed, is moved closer to the tread end by shifting it from the conventional position K to the tread end side, whereby the inside of the tread end near the tread end that affects the magnitude of road noise is affected. A part of the strain is absorbed by the deformation in the vicinity of the tire maximum width position R, and the road noise property is improved. In this way, since the function of steering stability is assigned to the outside of the tire and the function of road noise is assigned to the inside of the tire, both steering stability and road noise can be improved.
【0011】また、請求項2に記載のように構成すれ
ば、さらにタイヤの操縦安定性、ロードノイズ性が向上
する。According to the second aspect of the invention, the steering stability and road noise of the tire are further improved.
【0012】[0012]
【実施例】以下、この発明の一実施例を図面に基づいて
説明する。図1において、11は高速走行に用いられる偏
平率が60%以下の空気入りタイヤであり、このタイヤ11
は一対のビード部12、13と、これらビード部12、13から
それぞれ略半径方向外側に向かって延びるサイドウォー
ル部14、15と、これら両サイドウォール部14、15の半径
方向外端同士を連ねる略円筒状のトレッド部16とを有し
ている。そして、このタイヤ11は、一方のビード部12か
ら他方のビード部13に亘って延びる略トロイダル状をし
たカーカス層17によって補強されており、このカーカス
層17の幅方向両側部はビード部12、13にそれぞれ埋設さ
れたビード18、19の廻りに軸方向内側から軸方向外側に
向かって折り返されている。このカーカス層17は少なく
とも1枚のカーカスプライ、ここでは1枚のカーカスプ
ライ20から構成され、このカーカスプライ20内にはほぼ
ラジアル方向に延びる、即ちタイヤ赤道面Eに対してほ
ぼ90度で交差するスチールコードが多数本埋設されてい
る。前記カーカス層17の半径方向外側のトレッド部16に
はベルト層24が設けられ、このベルト層24は内部に多数
本のスチールコードが埋設された少なくとも2枚、ここ
では2枚のベルトプライ25、26を積層することにより構
成している。そして、これらベルトプライ25、26にそれ
ぞれ埋設されたスチールコードは、タイヤ赤道面Eに対
して15度から35度の角度で交差するよう傾斜するととも
に、これらベルトプライ25、26において逆方向に傾斜し
互いに交差している。27は前記ベルト層24を全幅に亘っ
て半径方向外側から覆う補強層であり、この補強層27は
内部にナイロン等からなるコードが埋設された少なくと
も1枚、この実施例では1枚の補強プライ28から構成さ
れ、これらのコードはタイヤ赤道面Eに対し実質上平行
に配列されている。前記ベルト層24および補強層27の半
径方向外側のトレッド部16には主溝、横溝等の広幅の溝
32が形成されたトレッド33が配置されている。そして、
このタイヤ11はビード部12、13がビードシート部38、39
に着座された状態で正規リム40に装着されている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, 11 is a pneumatic tire having a flatness of 60% or less, which is used for high-speed running.
Is a pair of bead portions 12 and 13, a sidewall portion 14 and 15 extending from the bead portions 12 and 13 toward the outer side in the substantially radial direction, respectively, and the radial outer ends of these sidewall portions 14 and 15 are connected to each other. It has a substantially cylindrical tread portion 16. The tire 11 is reinforced by a substantially toroidal carcass layer 17 extending from the one bead portion 12 to the other bead portion 13, and both side portions in the width direction of the carcass layer 17 are the bead portion 12, The beads 18 and 19 embedded in 13 are respectively folded back from the inner side in the axial direction to the outer side in the axial direction. The carcass layer 17 is composed of at least one carcass ply, here one carcass ply 20, and extends in the carcass ply 20 in a substantially radial direction, that is, intersects with the tire equatorial plane E at about 90 degrees. Many steel cords are buried. A belt layer 24 is provided on the tread portion 16 on the outer side in the radial direction of the carcass layer 17, and the belt layer 24 has at least two belt plies 25 in which a large number of steel cords are embedded, It is configured by stacking 26. The steel cords respectively embedded in the belt plies 25 and 26 are inclined so as to intersect the tire equatorial plane E at an angle of 15 to 35 degrees, and the belt cords 25 and 26 are inclined in opposite directions. And cross each other. Reference numeral 27 denotes a reinforcing layer that covers the belt layer 24 from the outer side in the radial direction over the entire width, and the reinforcing layer 27 has at least one, and in this embodiment, one reinforcing ply in which a cord made of nylon or the like is embedded. 28, and these cords are arranged substantially parallel to the tire equatorial plane E. The tread portion 16 on the outer side in the radial direction of the belt layer 24 and the reinforcing layer 27 has a wide groove such as a main groove or a lateral groove.
A tread 33 having 32 formed therein is arranged. And
In this tire 11, the bead portions 12 and 13 have bead seat portions 38 and 39.
It is attached to the regular rim 40 while being seated on.
【0013】ここで、正規リムに空気入りタイヤを装着
した状態で規定内圧を充填したとき、従来の空気入りタ
イヤでは、両サイドウォール部に位置するタイヤ最大幅
位置は共にビードベースラインLからタイヤ高さHの
0.5倍だけ半径方向外側に離れた位置Kに位置していた
が、この実施例のタイヤ11では、装着外側(ここではタ
イヤ赤道面Eより右側)のサイドウォール部15に位置す
るタイヤ最大幅位置Qを前記位置Kより半径方向内側に
配置し、一方、装着内側(ここではタイヤ赤道面Eより
左側)のサイドウォール部14に位置するタイヤ最大幅位
置Rを前記位置Kより半径方向外側に配置したのであ
る。Here, when the specified internal pressure is filled with the pneumatic tire mounted on the regular rim, in the conventional pneumatic tire, the maximum tire width positions located on both sidewall portions are both from the bead base line L to the tire. Of height H
Although located at a position K radially outwardly separated by 0.5 times, in the tire 11 of this embodiment, the tire maximum width position located in the sidewall portion 15 on the outer side of mounting (here, to the right of the tire equatorial plane E). Q is arranged radially inward of the position K, while the tire maximum width position R located in the sidewall portion 14 on the inner side of the mounting (here, left side of the tire equatorial plane E) is arranged radially outside of the position K. I did.
【0014】そして、前述のように装着外側のサイドウ
ォール部15に位置するタイヤ最大幅位置Qを前記位置K
より半径方向内側に配置すると、空気入りタイヤ11は以
下に説明するように操縦安定性が向上するのである。即
ち、このようなタイヤ11が装着された車両が旋回する
と、このタイヤ11の装着外側に大きな横力が作用、特に
旋回外側に装着されているタイヤ11の装着外側には大き
な横力が作用するが、この大きな横力が作用する装着外
側のタイヤ最大幅位置Qを前述のように位置Kより半径
方向内側に配置してビード部13に接近させたため、横剛
性の極めて高いビード部13の影響を受けて該タイヤ最大
幅位置Q近傍の横剛性も高くなる。ここで、一般に、タ
イヤ最大幅位置は肉厚が最も薄く、しかも、コードの埋
設されている層はカーカス層だけであるため、サイドウ
ォール部のなかでは最も変形が容易であるが、前述のよ
うにこの変形が最も容易なタイヤ最大幅位置Qの横剛性
が高くなると、前記横力によるタイヤ最大幅位置Q近傍
での変形が小さくなり、この結果、操縦安定性が向上す
るのである。しかも、このタイヤ11のタイヤ最大幅位置
Q近傍は縦荷重を受けて撓むため内部に大きな内部歪が
生じるが、このような内部歪は、前述のようにタイヤ最
大幅位置Q近傍の横剛性が高くなると、旋回時にサイド
ウォール部15がタイヤ赤道面E側に倒れ込んでも、タイ
ヤ最大幅位置Qの曲率半径はあまり大きくならないた
め、あまり減少せず、この結果、タイヤ最大幅位置Q近
傍における横剛性がさらに高くなって操縦安定性がさら
に向上するのである。As described above, the tire maximum width position Q located on the sidewall portion 15 on the outer side of the mounting is set to the position K.
When the pneumatic tire 11 is arranged further inward in the radial direction, the steering stability of the pneumatic tire 11 is improved as described below. That is, when a vehicle equipped with such a tire 11 turns, a large lateral force acts on the mounting outer side of the tire 11, particularly a large lateral force acts on the mounting outer side of the tire 11 mounted on the turning outer side. However, since the tire maximum width position Q on the outer side of the mounting on which the large lateral force acts is arranged radially inward of the position K as described above and brought close to the bead portion 13, the influence of the bead portion 13 having extremely high lateral rigidity is exerted. Accordingly, the lateral rigidity near the tire maximum width position Q is also increased. Here, generally, the tire maximum width position has the smallest wall thickness, and since the layer in which the cords are embedded is only the carcass layer, it is the easiest to deform in the sidewall portion. When the lateral rigidity of the tire maximum width position Q where the deformation is easiest is increased, the deformation in the vicinity of the tire maximum width position Q due to the lateral force becomes small, and as a result, the steering stability is improved. Moreover, a large internal strain is generated inside the tire 11 in the vicinity of the tire maximum width position Q due to bending under a vertical load. Such internal strain causes the lateral rigidity near the tire maximum width position Q as described above. Becomes higher, even if the sidewall portion 15 falls to the tire equatorial plane E side during turning, the radius of curvature of the tire maximum width position Q does not increase so much, and as a result, the lateral width near the tire maximum width position Q increases. The rigidity is further increased and the steering stability is further improved.
【0015】また、前述のように装着内側のサイドウォ
ール部14に位置するタイヤ最大幅位置Rを前記位置Kよ
り半径方向外側に配置すると、該タイヤ11のロードノイ
ズ性が以下に説明するように向上するのである。即ち、
前述のようにタイヤ最大幅位置はサイドウォール部のな
かで変形が最も容易な箇所であるが、このような変形容
易なタイヤ最大幅位置Rを位置Kよりトレッド端46側に
ずらして該トレッド端46に接近させると、ロードノイズ
の大きさに影響のあるトレッド端46近傍の内部歪はこの
タイヤ最大幅位置R近傍の変形によってその一部が吸収
され、これによりタイヤ11のロードノイズ性が向上する
のである。このようにタイヤ11の装着外側は旋回時に大
きな横力を受けるため、操縦安定性向上という役割を担
わせ、一方、タイヤ11の装着内側は、旋回時に小さな横
力しか受けず、サイドウォール部14の横剛性を変化させ
ても操縦安定性にあまり影響を与えないため、ロードノ
イズ低減という役割を担わせ、装着外側と装着内側とで
その果たす機能を分担させたのである。Further, when the tire maximum width position R located in the side wall portion 14 on the inner side of the mounting is arranged outside the position K in the radial direction as described above, the road noise characteristic of the tire 11 is as described below. It will improve. That is,
As described above, the tire maximum width position is the easiest portion of the sidewall portion to be deformed. However, such a tire maximum width position R which is easily deformed is shifted from the position K to the tread end 46 side and the tread end When approaching 46, a part of the internal strain near the tread edge 46, which affects the magnitude of road noise, is absorbed by the deformation near the maximum tire width position R, which improves the road noise of the tire 11. To do. In this way, since the outer side of the tire 11 mounted receives a large lateral force during turning, it plays a role of improving steering stability, while the inner side of the tire 11 receives a small lateral force during turning, and the sidewall portion 14 Even if the lateral rigidity of the vehicle is changed, it does not significantly affect the steering stability. Therefore, it plays a role of reducing road noise and divides the function performed by the outer mounting side and the inner mounting side.
【0016】なお、前述したタイヤ最大幅位置Qと位置
Kとの間の半径方向距離Tがタイヤ高さHの0.02倍から
0.15倍の範囲であり、また、タイヤ最大幅位置Rと位置
Kとの間の半径方向距離Uがタイヤ高さHの0.02倍から
0.12倍の範囲であると、前述の効果を充分に発揮するこ
とができる。The radial distance T between the tire maximum width position Q and the position K is 0.02 times the tire height H.
The radial distance U between the maximum tire width position R and the maximum tire position K is 0.02 times the tire height H.
Within the range of 0.12 times, the above-mentioned effects can be sufficiently exhibited.
【0017】また、前述したタイヤ11を正規リム40に装
着するとともに該タイヤ11内に 0.1kg/cm2の内圧を充填
したとき、このタイヤ11のトレッド半径、即ちトレッド
部16の子午線断面形状における外表面の曲率半径を、タ
イヤ赤道面Eの両側で異ならせており、即ち、タイヤ赤
道面Eより装着外側のトレッド部16bの曲率半径(トレ
ッド半径)D1を装着内側のトレッド部16aの曲率半径
(トレッド半径)D2より小としている。When the tire 11 described above is mounted on the regular rim 40 and the tire 11 is filled with an internal pressure of 0.1 kg / cm 2 , the tread radius of the tire 11, that is, the meridian sectional shape of the tread portion 16 The radius of curvature of the outer surface is made different on both sides of the tire equatorial plane E, that is, the radius of curvature of the tread portion 16b outside the tire equatorial plane E (tread radius) D1 is the radius of curvature of the inner tread portion 16a. (Tread radius) Smaller than D2.
【0018】このようにトレッド部16bのトレッド半径
D1を小とすると、トレッド部16bの接地形状が丸くなる
(矩形率が低下する)ため、接地面内での接地圧分布が
均一となり、しかも、内圧充填時におけるトレッド端47
近傍での半径方向外側への径成長量が大きくなるため、
該トレッド端47近傍に発生する張力が高くなって横剛性
が高くなる。ここで、旋回時に大きな横力が入力するの
は、装着外側であるため、装着外側の形状がタイヤ11の
操縦安定性に大きな影響を与える。このため、この実施
例では、前述のように装着外側のトレッド部16bのトレ
ッド半径D1を装着内側のトレッド部16aのトレッド半径
D2より小として、タイヤ11の操縦安定性をさらに向上さ
せているのである。Thus, the tread radius of the tread portion 16b
When D1 is set to a small value, the ground contact shape of the tread portion 16b becomes round (rectangular ratio decreases), so that the ground pressure distribution in the ground contact surface becomes uniform and, moreover, the tread end 47 at the time of filling the inner pressure 47.
Since the amount of radial growth in the radial direction in the vicinity increases,
The tension generated in the vicinity of the tread end 47 is increased and the lateral rigidity is increased. Here, since a large lateral force is input on the outer side of the tire when turning, the shape on the outer side of the tire has a great influence on the steering stability of the tire 11. Therefore, in this embodiment, as described above, the tread radius D1 of the tread portion 16b on the outer side of the mounting is set to the tread radius of the tread portion 16a on the inner side of the mounting.
By making it smaller than D2, the steering stability of tire 11 is further improved.
【0019】一方、トレッド部16aのトレッド半径D2を
大とすると、接地形状が四角くなる(矩形率が上昇す
る)ため、トレッド端46近傍における接地圧がタイヤ赤
道面E近傍における接地圧より高くなり、この結果、振
動の伝達に大きな寄与をしているベルト層24の端部が路
面に押し付けられて動きが規制され、伝達される振動の
レベルが低下してロードノイズ性が向上するのである。
しかも、トレッド半径D2が大であると、内圧充填時にお
けるトレッド端46近傍での半径方向外側への径成長量が
小さく(場合によっては符号が負となって半径方向内側
に向かって変形する)なるため、該トレッド端46近傍に
発生する張力が低くなり、この結果、ベルト層24はこの
影響を受けて張力が高くなる。そして、このようにベル
ト層24の張力が高くなると、路面の凹凸にタイヤ11が乗
り上げたときのベルト層24の変形量(ロードノイズの原
因)が小さくなり、これによってさらにロードノイズ性
がさらに向上するのである。ここで、操縦安定性向上を
役割を前述のように装着外側のトレッド部16bに担わせ
たので、ロードノイズ性向上の役割を残りの側、即ち装
着内側のトレッド部16aに担わせようと、前述のように
装着内側のトレッド部16aのトレッド半径D2を装着外側
のトレッド部16bのトレッド半径D1より大としたのであ
る。このようにタイヤ赤道面Eの両側で異なった機能を
分担させるようにしたので、操縦安定性とロードノイズ
性の向上という2つの性能を共に向上させることができ
るのである。On the other hand, when the tread radius D2 of the tread portion 16a is made large, the ground contact shape becomes square (the rectangular ratio increases), so that the ground contact pressure near the tread end 46 becomes higher than the ground contact pressure near the tire equatorial plane E. As a result, the end portion of the belt layer 24, which makes a large contribution to the transmission of vibration, is pressed against the road surface and its movement is restricted, and the level of transmitted vibration is reduced, improving the road noise characteristic.
Moreover, when the tread radius D2 is large, the amount of radial growth outward in the radial direction in the vicinity of the tread end 46 during internal pressure filling is small (in some cases, the sign becomes negative and deforms inward in the radial direction). Therefore, the tension generated in the vicinity of the tread edge 46 becomes low, and as a result, the belt layer 24 is affected by this and the tension becomes high. When the tension of the belt layer 24 is increased in this way, the amount of deformation (the cause of road noise) of the belt layer 24 when the tire 11 rides on the unevenness of the road surface is reduced, which further improves the road noise property. To do. Here, since the role of improving the steering stability is played by the tread portion 16b on the outer side of the mounting as described above, the remaining side, that is, the tread portion 16a on the inner side of the mounting is played a role of improving the road noise property. As described above, the tread radius D2 of the inner tread portion 16a is larger than the tread radius D1 of the outer tread portion 16b. Since the different functions are shared on both sides of the tire equatorial plane E in this way, it is possible to improve both of the two performances of improving steering stability and road noise.
【0020】ここで、前記トレッド半径D1が 500mmから
1200mmの範囲であり、また、トレッド半径D2が 700mmか
ら1400mmの範囲であると、前述した効果を充分に発揮す
ることができる。Here, the tread radius D1 is from 500 mm
If it is in the range of 1200 mm and the tread radius D2 is in the range of 700 mm to 1400 mm, the above-mentioned effects can be sufficiently exhibited.
【0021】次に、試験例を説明する。この試験に当た
っては、両方のタイヤ最大幅位置が共に位置K上にあ
り、トレッド半径がタイヤ赤道面の両側で共に等しく 8
10mmである従来タイヤと、両タイヤ最大幅位置が共に位
置Kから半径方向外側に 5mmだけずれており、トレッド
半径がタイヤ赤道面の両側で共に等しく 810mmである比
較タイヤ1と、両タイヤ最大幅位置が共に位置Kから半
径方向内側に 5mmだけずれており、トレッド半径がタイ
ヤ赤道面の両側で共に等しく 810mmである比較タイヤ2
と、装着外側のタイヤ最大幅位置Qが位置Kから半径方
向内側に 5mmだけずれ、装着内側のタイヤ最大幅位置R
が位置Kから半径方向外側に 5mmだけずれており、トレ
ッド半径がタイヤ赤道面の両側で共に等しく 810mmであ
る供試タイヤ1と、装着外側のタイヤ最大幅位置Qが位
置Kから半径方向内側に 5mmだけずれ、装着内側のタイ
ヤ最大幅位置Rが位置Kから半径方向外側に 5mmだけず
れており、タイヤ赤道面より装着外側のトレッド半径が
710mm、装着内側のトレッド半径が 910mmである供試タ
イヤ2と、を準備した。ここで、各タイヤのサイズは20
5/65 R15であり、これらタイヤが装着された正規リム
は 5.5JJであった。次に、各タイヤに規定内圧 1.9kg/c
m2を充填した後、これら各タイヤを2000ccクラスの国産
乗用車に装着し、時速60kmで舗装路面を走行させて車内
でのロードノイズの音圧を計器を用いて測定した。その
結果は、従来タイヤでは 68.4dB(A)であったが、比較タ
イヤ1では 67.8dB(A)、比較タイヤ2では 68.1dB(A)、
供試タイヤ1では 67.9dB(A)、供試タイヤ2では 67.8d
B(A)とロードノイズ性が向上していた。ここで、このロ
ードノイズを周波数分析したところ、25Hzから 160Hzの
低音域においては、従来タイヤでは 65.9dB(A)であった
が、比較タイヤ1では 65.4dB(A)、比較タイヤ2では 6
6.0dB(A)、供試タイヤ1では 65.6dB(A)、供試タイヤ2
では 65.5dB(A)と、比較タイヤ2で悪化したものの、そ
れ以外のタイヤではロードノイズ性が向上していた。次
に、前述した各タイヤを装着した前記乗用車を乾燥した
ワインディング路において走行させ、その操縦安定性を
ドライバーのフィーリングに基づき10点法で評価し
た。その結果は、従来タイヤでは5点であり、比較タイ
ヤ1、2ではそれぞれ4、9点であったが、供試タイヤ
1、2では共に9点と操縦安定性が大きく向上していた
(操縦安定性に関しては数値が大きくなるほど良好とな
る)。また、前記乗用車を舗装路を走行させ、その振動
乗り心地性をドライバーのフィーリングに基づき10点
法で評価した。その結果は、従来タイヤでは5点であ
り、比較タイヤ1、2ではそれぞれ8、4点であった
が、供試タイヤ1、2では共に6点と振動乗り心地性が
大きく向上していた(振動乗り心地性に関しては数値が
大きくなるほど良好となる)。Next, a test example will be described. In this test, both tire maximum width positions are both on position K and the tread radii are equal on both sides of the tire equatorial plane.
The maximum width of both tires is 10 mm, the maximum width of both tires is 5 mm, and the maximum width of both tires is radially offset from position K by 5 mm, and the tread radii are equal to 810 mm on both sides of the tire equatorial plane. A comparative tire 2 in which both positions are offset from the position K by 5 mm inward in the radial direction, and the tread radii are both equal to 810 mm on both sides of the tire equatorial plane.
And the maximum tire width position Q on the outer side of the mounting is displaced from the position K by 5 mm inward in the radial direction, and the maximum tire width position R on the inner side of the mounting side is
Is offset from the position K by 5 mm in the radial direction, and the tread radius is equal to 810 mm on both sides of the tire equatorial plane. The tire maximum width position R on the inner side of the tire is offset by 5 mm from the position K on the outer side in the radial direction, and the tread radius on the outer side of the tire is greater than the equatorial plane of the tire.
A test tire 2 having 710 mm and a tread radius of 910 mm on the inner side of the mounting was prepared. Here, the size of each tire is 20
It was 5/65 R15 and the regular rim with these tires was 5.5JJ. Next, the specified internal pressure of each tire is 1.9kg / c
After filling m 2 , each of these tires was mounted on a 2000cc class domestic passenger car, run on a paved road surface at a speed of 60km, and the sound pressure of road noise inside the car was measured using a meter. The result was 68.4 dB (A) for the conventional tire, 67.8 dB (A) for the comparative tire 1, 68.1 dB (A) for the comparative tire 2,
67.9 dB (A) for test tire 1 and 67.8d for test tire 2
B (A) and road noise were improved. Here, when frequency analysis of this road noise was performed, it was 65.9 dB (A) for the conventional tire in the low range of 25 Hz to 160 Hz, but 65.4 dB (A) for the comparative tire 1 and 6 for the comparative tire 2.
6.0 dB (A), for test tire 1 65.6 dB (A), test tire 2
It was 65.5 dB (A), which was worse for comparative tire 2, but the road noise performance was improved for other tires. Next, the passenger car equipped with each of the tires described above was run on a dry winding road, and its steering stability was evaluated by a 10-point method based on the driver's feeling. The results were 5 points for the conventional tires and 4 and 9 points for the comparative tires 1 and 2, respectively, but 9 points for both the test tires 1 and 2 and the steering stability was greatly improved. The larger the number, the better the stability). Further, the passenger car was run on a paved road, and its vibration riding comfort was evaluated by a 10-point method based on the driver's feeling. The results were 5 points for the conventional tires and 8 and 4 points for the comparative tires 1 and 2, respectively, but 6 points for both the test tires 1 and 2 and the vibration riding comfort was greatly improved ( The larger the value, the better the vibration riding comfort).
【0022】[0022]
【発明の効果】以上説明したように、この発明によれ
ば、一般に二律背反と言われている操縦安定性とロード
ノイズ性とを共に向上させることができる。As described above, according to the present invention, it is possible to improve both the steering stability and the road noise characteristic, which are generally called antinomy.
【図1】この発明の一実施例を示す空気入りタイヤの子
午線断面図である。FIG. 1 is a meridional sectional view of a pneumatic tire showing an embodiment of the present invention.
11…空気入りタイヤ 12、13…ビード部 14、15…サイドウォール部 16…トレッド部 40…正規リム L…ビードベースライン H…タイヤ高さ 11 ... Pneumatic tire 12, 13 ... Bead part 14, 15 ... Sidewall part 16 ... Tread part 40 ... Regular rim L ... Bead base line H ... Tire height
Claims (2)
れぞれ略半径方向外側に向かって延びるサイドウォール
部と、これらサイドウォール部の半径方向外端同士を連
ねる略円筒状のトレッド部とを備えた空気入りタイヤに
おいて、該空気入りタイヤを正規リムに装着するととも
に規定内圧を充填したときに、ビードベースラインから
タイヤ高さの 0.5倍だけ半径方向外側に離れた位置をK
とすると、装着外側のタイヤ最大幅位置Qは前記位置K
より半径方向内側に配置され、装着内側のタイヤ最大幅
位置Rは前記位置Kより半径方向外側に配置されている
ことを特徴とする空気入りタイヤ。1. A pair of bead portions, a sidewall portion extending outward from each of the bead portions in a substantially radial direction, and a substantially cylindrical tread portion connecting the radially outer ends of the sidewall portions. When the pneumatic tire is mounted on the regular rim and is filled with the specified internal pressure, the position K which is radially outward from the bead baseline by 0.5 times the tire height is set to K.
Then, the maximum tire width position Q on the outer side of the mounting is the above position K.
A pneumatic tire characterized in that it is arranged further inward in the radial direction, and the tire maximum width position R on the inner side of the wearing is arranged radially outward from the position K.
とともに 0.1kg/cm2の内圧を充填したとき、タイヤ赤道
面より装着外側のトレッド部の子午線断面形状における
外表面の曲率半径D1は、タイヤ赤道面より装着内側のト
レッド部の子午線断面形状における外表面の曲率半径D2
より小である請求項1記載の空気入りタイヤ。2. When the pneumatic tire is mounted on a regular rim and is filled with an internal pressure of 0.1 kg / cm 2 , the radius of curvature D1 of the outer surface in the meridional cross-sectional shape of the tread portion outside the tire equatorial plane is: Radius of curvature D2 of the outer surface in the meridional cross section of the tread inside the tire equatorial plane
The pneumatic tire according to claim 1, which is smaller.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4309547A JPH06135204A (en) | 1992-10-23 | 1992-10-23 | Pneumatic tire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4309547A JPH06135204A (en) | 1992-10-23 | 1992-10-23 | Pneumatic tire |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06135204A true JPH06135204A (en) | 1994-05-17 |
Family
ID=17994334
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4309547A Withdrawn JPH06135204A (en) | 1992-10-23 | 1992-10-23 | Pneumatic tire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06135204A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010053665A (en) * | 1999-12-01 | 2001-07-02 | 조충환 | Radial Tire Having Asymmetrical Cross Section |
JP2002192905A (en) * | 2000-12-26 | 2002-07-10 | Bridgestone Corp | Tire and rim wheel assembly and pneumatic tire |
KR20020067786A (en) * | 2001-02-19 | 2002-08-24 | 금호산업 주식회사 | Asymmetric tire |
KR20030082081A (en) * | 2002-04-16 | 2003-10-22 | 금호산업주식회사 | A pneumatic tire that has an asymmetric body ply |
KR20030082082A (en) * | 2002-04-16 | 2003-10-22 | 금호산업주식회사 | A pneumatic tire that has asymmetric sidewall inserts |
KR20030082080A (en) * | 2002-04-16 | 2003-10-22 | 금호산업주식회사 | A pneumatic tire that has asymmetric bead fillers |
US7278455B2 (en) * | 2004-12-20 | 2007-10-09 | The Goodyear Tire & Rubber Company | Asymmetrical pneumatic run-flat tire |
US20100252157A1 (en) * | 2007-11-02 | 2010-10-07 | Bridgestone Corporation | Pneumatic radial tire |
US20100326579A1 (en) * | 2008-02-04 | 2010-12-30 | Bridgestone Corporation | Studless tire |
WO2024034225A1 (en) * | 2022-08-08 | 2024-02-15 | 株式会社ブリヂストン | Pneumatic radial tire for passenger cars |
-
1992
- 1992-10-23 JP JP4309547A patent/JPH06135204A/en not_active Withdrawn
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010053665A (en) * | 1999-12-01 | 2001-07-02 | 조충환 | Radial Tire Having Asymmetrical Cross Section |
JP2002192905A (en) * | 2000-12-26 | 2002-07-10 | Bridgestone Corp | Tire and rim wheel assembly and pneumatic tire |
JP4593769B2 (en) * | 2000-12-26 | 2010-12-08 | 株式会社ブリヂストン | Tire / rim wheel assembly |
KR20020067786A (en) * | 2001-02-19 | 2002-08-24 | 금호산업 주식회사 | Asymmetric tire |
KR20030082081A (en) * | 2002-04-16 | 2003-10-22 | 금호산업주식회사 | A pneumatic tire that has an asymmetric body ply |
KR20030082082A (en) * | 2002-04-16 | 2003-10-22 | 금호산업주식회사 | A pneumatic tire that has asymmetric sidewall inserts |
KR20030082080A (en) * | 2002-04-16 | 2003-10-22 | 금호산업주식회사 | A pneumatic tire that has asymmetric bead fillers |
US7278455B2 (en) * | 2004-12-20 | 2007-10-09 | The Goodyear Tire & Rubber Company | Asymmetrical pneumatic run-flat tire |
US20100252157A1 (en) * | 2007-11-02 | 2010-10-07 | Bridgestone Corporation | Pneumatic radial tire |
US8752599B2 (en) * | 2007-11-02 | 2014-06-17 | Bridgestone Corporation | Pneumatic radial tire |
US20100326579A1 (en) * | 2008-02-04 | 2010-12-30 | Bridgestone Corporation | Studless tire |
WO2024034225A1 (en) * | 2022-08-08 | 2024-02-15 | 株式会社ブリヂストン | Pneumatic radial tire for passenger cars |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0671287B1 (en) | Pneumatic tyre | |
US9174497B2 (en) | Pneumatic tire with tread having chamfered circumferential groove portion of bent auxiliary groove | |
US5645662A (en) | Pneumatic radial tire with first and second damping rubber layers | |
CN105682939A (en) | Tire | |
JPH0672104A (en) | Pneumatic radial tire | |
JPH06135204A (en) | Pneumatic tire | |
JPS63121503A (en) | Radial tire for passenger car | |
US5565047A (en) | Pneumatic tire with specified carcass line for reduced road noise | |
EP3744536A1 (en) | Tyre | |
CN100475560C (en) | Pneumatic tire | |
JP2002205513A (en) | Pneumatic radial tire | |
JP2899203B2 (en) | Tires for all terrain vehicles | |
EP0300779B1 (en) | Pneumatic tyre | |
JP3436409B2 (en) | Pneumatic tire | |
JP2003080906A (en) | Radial tire for atv | |
JPH04218414A (en) | Pneumatic tire | |
JP2002192909A (en) | Tire and rim wheel assembly and pneumatic tire | |
JP3535880B2 (en) | Pneumatic tire | |
JPH06247106A (en) | Pneumatic tire | |
JPH0592708A (en) | Pneumatic tire | |
EP4431311A1 (en) | Tire | |
JP3311055B2 (en) | Flat pneumatic tire | |
JPH09193615A (en) | Pneumatic tire | |
JP3260465B2 (en) | Pneumatic radial tire | |
JPH07101205A (en) | Pneumatic tire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20000104 |