JPH0613381A - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture

Info

Publication number
JPH0613381A
JPH0613381A JP17065992A JP17065992A JPH0613381A JP H0613381 A JPH0613381 A JP H0613381A JP 17065992 A JP17065992 A JP 17065992A JP 17065992 A JP17065992 A JP 17065992A JP H0613381 A JPH0613381 A JP H0613381A
Authority
JP
Japan
Prior art keywords
film
silicon
semiconductor device
silicon compound
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17065992A
Other languages
Japanese (ja)
Inventor
Hiroshi Miyazaki
博史 宮▲崎▼
Kenji Hinode
憲治 日野出
Yoshio Honma
喜夫 本間
Nobuyoshi Kobayashi
伸好 小林
Naoki Yamamoto
直樹 山本
Atsushi Hiraiwa
篤 平岩
Toshio Kojima
寿夫 小嶋
Masamichi Murakami
賢路 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi ULSI Engineering Corp
Hitachi Ltd
Original Assignee
Hitachi ULSI Engineering Corp
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi ULSI Engineering Corp, Hitachi Ltd filed Critical Hitachi ULSI Engineering Corp
Priority to JP17065992A priority Critical patent/JPH0613381A/en
Publication of JPH0613381A publication Critical patent/JPH0613381A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To prevent semiconductor device from being polluted by a Cu wiring. CONSTITUTION:The title semiconductor device has a PSG(phosphorus glass) film 3, an Si film 10, and a Cu film 12 provided on a semiconductor element. It is desirable that a film of a high-melting-point metal or its alloy or a nitride such as a TiN film 11 should be provided between the Si film 10 and the Cu film 12. As the PSG(phosphorus glass) film 3, an insulating film such as silicon oxynitride etc., can be acceptable. Besides, a silicide film containing exessive Si also can be acceptable as the Si film 10, and an alloy film containing Cu as its main component can be acceptable as the Cu film 12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、銅(Cu)膜又はCu
を主成分とする合金膜(以下、単にCu合金膜と記す)
を有する半導体装置及びその製造方法に関する。
The present invention relates to a copper (Cu) film or Cu.
Alloy film containing as a main component (hereinafter simply referred to as Cu alloy film)
And a manufacturing method thereof.

【0002】[0002]

【従来の技術】半導体装置の配線遅延時間を短縮するた
めに電気抵抗の低いCuを適用する検討が進められてい
る。このCu膜やCu合金膜からのCuによる半導体素
子の汚染の問題は、Cu配線の重要課題のひとつであ
る。しかしながら、Cu汚染の防止方法について十分な
指針が得られていない。従来、半導体装置上のCu膜
は、ボンディング用バンプや電源ラインのように半導体
素子から十分離れた多層配線の最上層に限定されて用い
られてきた。また、下層の信号線では、アルミニウム
(Al)とCu等の合金膜としてCuが使われている
が、このような使用方法ではCu汚染は問題にならなか
った。Al2Cu等の合金となって安定化していた可能
性がある。ところが、配線材料が純Cu又はCu合金膜
である場合は、素子特性に悪影響を及ぼすことが知られ
ている。下層の信号線にCu配線を用いるためには、新
たにCu汚染を防止する対策が必要である。
2. Description of the Related Art In order to reduce the wiring delay time of a semiconductor device, studies are underway to apply Cu having a low electric resistance. The problem of contamination of the semiconductor element by Cu from the Cu film or Cu alloy film is one of the important problems of Cu wiring. However, sufficient guidelines have not been obtained regarding the method of preventing Cu contamination. Conventionally, a Cu film on a semiconductor device has been used by being limited to the uppermost layer of a multilayer wiring which is sufficiently separated from a semiconductor element such as a bonding bump or a power supply line. Further, in the lower signal line, Cu is used as an alloy film of aluminum (Al) and Cu or the like, but Cu contamination did not pose a problem in such a usage method. It may have been stabilized by forming an alloy such as Al 2 Cu. However, when the wiring material is pure Cu or a Cu alloy film, it is known that the device characteristics are adversely affected. In order to use the Cu wiring for the lower layer signal line, it is necessary to newly take measures to prevent Cu contamination.

【0003】Cu汚染を防止する最も簡便な方法は、C
uが拡散透過しにくい絶縁膜で半導体素子を被覆する方
法である。通常、半導体装置の絶縁膜として用いられる
熱酸化(以下、Th−SiO2と記す)膜ではCuの拡
散速度が大きく、保護膜とはならない。そこで、窒化シ
リコン(SiN)膜、シリコンオキシナイトライド(S
iON)膜やリンガラス(以下、PSGと記す)膜を保
護膜として用いる方法が提案されている。SiN膜のC
u拡散抑制効果については、1989 プロシ−ディン
グス・アイイ−イ−イ−・ヴィエルエスアイ・マルチレ
ヴェル・インタ−コネクション・コンファレンス(Proc
eedings IEEE VLSI Multilevel Interconnection
Conf.)258〜263頁等に記載されている。ま
た、PSG膜については、第39回応用物理学関係連合
講演会講演予稿集、30a−V−6、678頁 (19
91春)に記載されている。
The simplest method for preventing Cu contamination is C
This is a method of covering the semiconductor element with an insulating film that makes it difficult for u to diffuse and transmit. Usually, a thermal oxidation (hereinafter referred to as Th-SiO 2 ) film used as an insulating film of a semiconductor device has a high Cu diffusion rate and does not serve as a protective film. Therefore, silicon nitride (SiN) film, silicon oxynitride (S
A method using an iON) film or a phosphorus glass (hereinafter referred to as PSG) film as a protective film has been proposed. C of SiN film
For the effect of suppressing u diffusion, refer to 1989 Procedures AY-A-V SII Multi-level Interconnection Conference (Proc).
eedings IEEE VLSI Multilevel Interconnection
Conf. ) Pp. 258-263. As for the PSG film, the proceedings of the 39th Joint Lecture on Applied Physics, 30a-V-6, pp. 678 (19
91 Spring).

【0004】[0004]

【発明が解決しようとする課題】各種保護膜中のCuの
拡散速度を定量的に測定するため原子吸光分析を行なっ
た。分析試料は以下の手順に従って作製した。Si基板
を熱酸化して厚さ10nmのTh−SiO2膜を形成し
た。次に厚さ100nmの保護膜で基板を被覆した。保
護膜として、常圧CVD法(化学気相成長法)で形成し
たリンガラス(以下、常圧CVD−PSGと略す)膜、
プラズマCVD法で形成した窒化シリコン(以下、プラ
ズマCVD−SiNと略す)膜、減圧CVD法で形成し
た窒化シリコン(以下、減圧CVD−SiNと略す)膜
を検討した。また、Si基板を熱酸化して厚さ100n
mのTh−SiO2膜を保護膜として形成した試料も検
討した。これらの保護膜上にCuの拡散源としてCu膜
を蒸着した。この試料に熱処理を施し、CuをSi基板
内に故意に拡散させた。Cu膜次いで保護膜をウェット
エッチングにより除去した後、Si基板内のCu量を原
子吸光法で定量した。その結果を図1に示した。減圧C
VD−SiN膜以外の保護膜については、拡散抑制効果
が不十分であることが分かった。
Atomic absorption spectrometry was carried out in order to quantitatively measure the diffusion rate of Cu in various protective films. The analytical sample was prepared according to the following procedure. The Si substrate was thermally oxidized to form a Th-SiO 2 film having a thickness of 10 nm. Next, the substrate was covered with a protective film having a thickness of 100 nm. As a protective film, a phosphorus glass (hereinafter abbreviated as atmospheric pressure CVD-PSG) film formed by an atmospheric pressure CVD method (chemical vapor deposition method),
A silicon nitride (hereinafter abbreviated as plasma CVD-SiN) film formed by a plasma CVD method and a silicon nitride (hereinafter abbreviated as low pressure CVD-SiN) film formed by a low pressure CVD method were examined. Moreover, the Si substrate is thermally oxidized to a thickness of 100 n.
A sample having a Th-SiO 2 film of m as a protective film was also examined. A Cu film was vapor-deposited on these protective films as a Cu diffusion source. This sample was heat-treated to intentionally diffuse Cu in the Si substrate. After removing the Cu film and the protective film by wet etching, the amount of Cu in the Si substrate was quantified by an atomic absorption method. The results are shown in Fig. 1. Reduced pressure C
It has been found that the protective films other than the VD-SiN film have an insufficient diffusion suppressing effect.

【0005】例えば、厚さ100nmの常圧CVD−P
SG膜でSi基板を被覆した場合には、その上に450
℃、1時間の熱処理で5×1010atom/cm2のC
u原子が保護膜を拡散透過することが予想される。ただ
し、PSG膜の厚膜化や配線工程の低温化によってCu
の拡散透過量は減少するが、厚膜化により配線層を上下
に繋ぐ接続孔の形成が困難になることや配線工程の低温
化にも限界があることから、これらの方法には実用上制
限が生じる。
For example, atmospheric pressure CVD-P having a thickness of 100 nm
When the Si substrate is coated with the SG film, 450
C of 5 × 10 10 atom / cm 2 by heat treatment for 1 hour at ℃
It is expected that u atoms diffusely permeate the protective film. However, due to the thicker PSG film and the lower temperature of the wiring process, Cu
Although the amount of diffused and transmitted light is reduced, it is difficult to form connection holes that connect the wiring layers up and down due to the thick film, and there is a limit to the low temperature of the wiring process. Occurs.

【0006】一方、減圧CVD−SiN膜についても実
用上制約がある。減圧CVD−SiN膜の最も大きな制
約は膜形成温度が700〜800℃と高いことである。
膜形成は当然配線工程よりも前に行なわなければなら
ず、必然的に素子に近い場所で減圧CVD−SiN膜を
用いることになる。減圧CVD−SiN膜は応力が高
く、ホット・キャリアよるMOS特性の劣化等も懸念さ
れる。また、高速バイポ−ラ等の浅いpn接合を必要と
する半導体素子は過度の熱処理を避けなければならず、
形成温度が高い減圧CVD−SiN膜の使用は好ましく
ない。その他の問題は、減圧CVD−SiN膜の誘電率
がSiO2膜の約2倍と高いことである。減圧CVD−
SiN膜を厚くすると配線容量が増大する。
On the other hand, there are practical restrictions on the low pressure CVD-SiN film. The greatest limitation of the low pressure CVD-SiN film is that the film forming temperature is as high as 700 to 800 ° C.
The film formation must of course be performed before the wiring process, and the low pressure CVD-SiN film is inevitably used near the element. The low pressure CVD-SiN film has a high stress, and there is a concern that the hot carrier may deteriorate the MOS characteristics. In addition, semiconductor elements that require a shallow pn junction such as a high-speed bipolar must avoid excessive heat treatment,
The use of low pressure CVD-SiN films with high formation temperatures is not preferred. Another problem is that the dielectric constant of the low pressure CVD-SiN film is about twice as high as that of the SiO 2 film. Low pressure CVD-
When the SiN film is thickened, the wiring capacitance increases.

【0007】本発明の目的は、保護膜の著しい厚膜化や
配線工程の低温化を行なうことなく、かつ配線容量や応
力の増大を伴うことなく、Cuの素子領域への拡散を防
止した半導体装置及びその製造方法を提供することにあ
る。
An object of the present invention is to prevent the diffusion of Cu into the element region without significantly increasing the thickness of the protective film or lowering the temperature of the wiring process and without increasing the wiring capacitance or stress. An object is to provide a device and a manufacturing method thereof.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明の半導体装置は、半導体素子と、Si、Oを
有し、かつP及びNからなる群から選ばれた少なくとも
一種の元素を含み、半導体素子を被覆する絶縁膜と、銅
膜又は銅を主成分とする合金膜からなる導体層と、導体
層と絶縁膜との間に設けられた、シリコン及び過剰Si
を含むシリサイドからなる群から選ばれた少なくとも一
種の材料からなるシリコン又はシリコン化合物膜とより
構成される。このシリコン又はシリコン化合物膜と導体
層との間に高融点金属、その合金又はその窒化物を少な
くとも含むバリア膜が設けられていることが好ましい。
In order to achieve the above object, a semiconductor device according to the present invention comprises a semiconductor element and at least one element selected from the group consisting of P and N, having Si, O. An insulating film covering the semiconductor element, a conductor layer made of a copper film or an alloy film containing copper as a main component, and silicon and excess Si provided between the conductor layer and the insulating film.
And a silicon or silicon compound film made of at least one material selected from the group consisting of silicides containing It is preferable that a barrier film containing at least a refractory metal, an alloy thereof, or a nitride thereof is provided between the silicon or silicon compound film and the conductor layer.

【0009】また、絶縁膜は、PSG膜、シリコンオキ
シナイトライド膜のうちの少なくとも一種の膜を含む膜
であることが望ましい。絶縁膜の厚みは100nm以上
であることが好ましく、500nm程度以下であること
が好ましい。上記シリコン又はシリコン化合物膜が、過
剰Siを含むシリサイドであるとき、一般式MSi
x(ただし、Mは、タングステン、チタン、モリブデ
ン、タンタル、ニッケル、コバルト及びジルコニウムか
らなる群から選ばれた少なくとも一種の金属元素、x
は、x>2の範囲の値である)で表されるシリサイドで
あることが好ましい。シリコン又はシリコン化合物膜は
10nm以上あれば十分効果が認められる。膜厚の上限
には特に制限はないが、保護膜全体の厚膜化を防ぐため
に、200nm程度以下であることが好ましい。
Further, the insulating film is preferably a film containing at least one film of a PSG film and a silicon oxynitride film. The thickness of the insulating film is preferably 100 nm or more, and preferably about 500 nm or less. When the silicon or silicon compound film is a silicide containing excess Si, the general formula MSi
x (where M is at least one metal element selected from the group consisting of tungsten, titanium, molybdenum, tantalum, nickel, cobalt and zirconium, x
Is a value in the range of x> 2). If the silicon or silicon compound film has a thickness of 10 nm or more, a sufficient effect is recognized. The upper limit of the film thickness is not particularly limited, but it is preferably about 200 nm or less in order to prevent thickening of the entire protective film.

【0010】また、本発明の半導体装置の製造方法の好
ましい一例を挙げると、基板上に形成された半導体素子
の上に、PSG膜等の絶縁膜を形成し、この上にシリコ
ン又はシリコン化合物膜を形成し、シリコン又はシリコ
ン化合物膜に接続孔を形成し、シリコン又はシリコン化
合物膜と接続孔上にバリア膜、導体層を形成し、導体
層、バリア膜及びシリコン又はシリコン化合物膜の外周
部を実質的に同一のパターンにエッチングするものであ
る。
In addition, as a preferred example of the method for manufacturing a semiconductor device of the present invention, an insulating film such as a PSG film is formed on a semiconductor element formed on a substrate, and a silicon or silicon compound film is formed thereon. Forming a connection hole in the silicon or silicon compound film, forming a barrier film and a conductor layer on the silicon or silicon compound film and the connection hole, and forming the conductor layer, the barrier film and the outer peripheral portion of the silicon or silicon compound film. Etching is performed in substantially the same pattern.

【0011】[0011]

【作用】PSG膜やプラズマCVD−SiON膜は、T
h−SiO2膜よりも高いCu拡散抑制効果を有する。
例えば、PSG膜中のCuの拡散速度は、図1から分か
るように、Th−SiO2膜中の1/60である。PS
G膜を用いることで、ある程度の汚染防止効果がまず得
られる。一方、Si/SiO2界面にCuが偏在し易い
ことが従来から知られている。この現象は、Cu原子が
Si/SiO2界面の過剰Siにゲッタリングされるた
めと説明されている。本発明でもSi膜又は過剰Siを
含むシリサイド膜は、Cu配線から絶縁膜中に拡散する
Cu原子をゲッタリングすると考えられる。従って、S
i膜もしくは過剰Siを含むシリサイド膜は、これらに
隣接する絶縁膜中のCu濃度の上昇を防ぐ。その結果、
保護膜内のCu濃度勾配が小さくなり、保護膜を拡散透
過するCu量が減少する。
[Function] The PSG film and the plasma CVD-SiON film are
It has a higher Cu diffusion suppressing effect than the h-SiO 2 film.
For example, the diffusion rate of Cu in the PSG film is 1/60 of that in the Th—SiO 2 film, as can be seen from FIG. PS
By using the G film, a certain degree of contamination prevention effect is first obtained. On the other hand, it is conventionally known that Cu is likely to be unevenly distributed at the Si / SiO 2 interface. This phenomenon is explained as Cu atoms are gettered to excess Si at the Si / SiO 2 interface. Also in the present invention, it is considered that the Si film or the silicide film containing excess Si getters Cu atoms diffused from the Cu wiring into the insulating film. Therefore, S
The i film or the silicide film containing excess Si prevents an increase in Cu concentration in the insulating film adjacent thereto. as a result,
The Cu concentration gradient in the protective film is reduced, and the amount of Cu diffused and transmitted through the protective film is reduced.

【0012】[0012]

【実施例】実施例1 図2(a)にCu積層配線の下地構造を示した。Si基
板1を酸化してTh−SiO2膜2を形成した後、MO
Sトランジスタ(図示せず、紙面の奥の位置に設けられ
る)を形成した。次に、常圧CVD法でPSG膜3を堆
積した。PSG膜3の膜厚は250nmである。なお、
PSG中のリン(P)濃度は五酸化リン(P25)濃度
に換算した値が用いられる。本実施例では、膜中のP2
5濃度は1.0mol%である。Si基板1に窒素
(N2)気流中で700℃、10分間の熱処理を施し、
PSG膜3を緻密化した。次にTh−SiO2膜2及び
PSG膜3を貫通する接続孔を設け、ここに選択CVD
法でタングステン(W)を埋込み、Wプラグ4を形成し
た。その上にスパッタ法で形成した膜厚100nmのW
膜5と0.5%のCuと1.5%のSiを含有する膜厚
500nmのAl合金膜6を重ねた積層配線を形成し、
所定のパターンとした。さらにテトラエトキシシランを
原料とするプラズマCVD法で形成した酸化膜(以下、
プラズマTEOS−SiO膜と記す)7と有機シリコン
化合物を原料とする塗布絶縁膜8とプラズマTEOS−
SiO膜9からなる三層層間絶縁膜でSi基板1の表面
を覆った。各絶縁膜の厚さは下層から順に300nm/
200nm/500nmとした。プラズマTEOS−S
iO膜7、9の形成温度は400℃である。塗布絶縁膜
8は、N2気流中で450℃、30分間の熱処理を施
し、硬化させた。
EXAMPLES Example 1 FIG. 2A shows the underlying structure of Cu laminated wiring. After oxidizing the Si substrate 1 to form a Th-SiO 2 film 2, MO film is formed.
An S-transistor (not shown, provided at the back of the paper) was formed. Next, the PSG film 3 was deposited by the atmospheric pressure CVD method. The film thickness of the PSG film 3 is 250 nm. In addition,
As the phosphorus (P) concentration in PSG, a value converted to the phosphorus pentoxide (P 2 O 5 ) concentration is used. In this embodiment, P 2 in the film is
The O 5 concentration is 1.0 mol%. The Si substrate 1 is heat-treated at 700 ° C. for 10 minutes in a nitrogen (N 2 ) stream,
The PSG film 3 was densified. Next, a connection hole penetrating the Th-SiO 2 film 2 and the PSG film 3 is provided, and selective CVD is performed here.
Then, tungsten (W) was embedded by the method to form a W plug 4. W with a film thickness of 100 nm formed on it by sputtering
A laminated wiring is formed by stacking a film 5 and an Al alloy film 6 having a film thickness of 500 nm containing 0.5% Cu and 1.5% Si,
It has a predetermined pattern. Furthermore, an oxide film formed by plasma CVD using tetraethoxysilane as a raw material (hereinafter,
Plasma TEOS-SiO film) 7, coating insulating film 8 made of organic silicon compound as a raw material, and plasma TEOS-
The surface of the Si substrate 1 was covered with a three-layer interlayer insulating film made of the SiO film 9. The thickness of each insulating film is 300 nm /
It was set to 200 nm / 500 nm. Plasma TEOS-S
The formation temperature of the iO films 7 and 9 is 400 ° C. The coated insulating film 8 was heat-treated at 450 ° C. for 30 minutes in an N 2 gas flow to be cured.

【0013】次に、図2(b)に示すように、プラズマ
TEOS−SiO膜9上にスパッタリング法で膜厚50
nmのSi膜10を堆積した。堆積時の基板温度は30
0℃とした。続いて図2(c)に示すように、ドライエ
ッチングによリSi膜10と三層層間絶縁膜に接続孔を
開口した。
Next, as shown in FIG. 2B, a film thickness of 50 is formed on the plasma TEOS-SiO film 9 by the sputtering method.
nm Si film 10 was deposited. Substrate temperature during deposition is 30
It was set to 0 ° C. Subsequently, as shown in FIG. 2C, a connection hole was formed in the Si film 10 and the three-layer interlayer insulating film by dry etching.

【0014】次に、図3(a)に示すように、膜厚10
0nmの窒化チタン(TiN)膜11と膜厚850nm
のCu膜12とをスパッタリング法により連続して堆積
した。堆積時の基板温度は300℃とした。続いて、図
3(b)に示すように、Cu膜12、TiN膜11及び
Si膜10をドライエッチング法により配線加工した。
Cu膜12のドライエッチングは基板温度320℃で四
塩化ケイ素と塩素の混合ガスを用いて行なった。次に、
図3(c)に示すように、Cu膜12を膜厚300nm
のプラズマTEOS−SiO膜13と膜厚200nmの
塗布絶縁膜14と膜厚100nmのプラズマCVD−S
iN膜15から構成される三層絶縁膜で被覆した。最後
に、水素(H2)気流中で450℃、30分間の熱処理
を施した。このようにして作製した半導体装置はCu被
着後、最高450℃の熱処理が1時間30分以上施され
ていることになる。ここで比較のためCu膜12をAl
−0.5%Cu膜に置き換えた半導体装置を作製した
が、両者の間に汚染に基づく素子特性の差は見られなか
った。
Next, as shown in FIG.
0 nm titanium nitride (TiN) film 11 and film thickness 850 nm
And the Cu film 12 were continuously deposited by the sputtering method. The substrate temperature during deposition was 300 ° C. Subsequently, as shown in FIG. 3B, the Cu film 12, the TiN film 11 and the Si film 10 were wiring processed by a dry etching method.
The dry etching of the Cu film 12 was performed at a substrate temperature of 320 ° C. using a mixed gas of silicon tetrachloride and chlorine. next,
As shown in FIG. 3C, the Cu film 12 has a film thickness of 300 nm.
Plasma TEOS-SiO film 13, coating insulating film 14 having a thickness of 200 nm, and plasma CVD-S having a thickness of 100 nm
It was covered with a three-layer insulating film composed of the iN film 15. Finally, heat treatment was performed at 450 ° C. for 30 minutes in a hydrogen (H 2 ) stream. The semiconductor device thus manufactured is subjected to heat treatment at a maximum temperature of 450 ° C. for 1 hour 30 minutes or more after Cu deposition. For comparison, the Cu film 12 is made of Al
A semiconductor device in which a -0.5% Cu film was replaced was produced, but no difference in element characteristics due to contamination was observed between the two.

【0015】本実施例ではPSG膜3のP25濃度を
1.0mol%にしたが、P25濃度が0.5mol%
以上の範囲で効果があった。また、Si膜10とCu膜
12との反応を防止する拡散バリア膜としてTiN膜1
1を用いたが、W、モリブデン(Mo)、タンタル(T
a)、ジルコニウム(Zr)等の高融点金属、チタン−
タングステン合金(TiW)等の高融点金属合金又は窒
化タングステン(WN)等の高融点金属窒化物としても
効果は同じであった。
In this embodiment, the P 2 O 5 concentration of the PSG film 3 is 1.0 mol%, but the P 2 O 5 concentration is 0.5 mol%.
It was effective in the above range. Further, the TiN film 1 is used as a diffusion barrier film for preventing the reaction between the Si film 10 and the Cu film 12.
1 was used, but W, molybdenum (Mo), tantalum (T
a), refractory metal such as zirconium (Zr), titanium-
The same effect was obtained with a refractory metal alloy such as a tungsten alloy (TiW) or a refractory metal nitride such as tungsten nitride (WN).

【0016】また、Si膜10の形成方法としてスパッ
タリング法を用いたが、周波数13.56MHzの高周
波励起プラズマCVD法、2.45GHzのマイクロ波
励起プラズマCVD法法で形成したSi膜でも汚染防止
効果は殆ど差がなかった。本実施例ではSi膜10の膜
厚を余裕をみて50nmとしたが、10nm以上あれば
十分であることも確認した。さらにまた、Cu膜12変
えて、Cu合金膜として、Cu−0.3%Zr又はCu
−1%Beを用いても効果は同じであった。
Although the sputtering method is used as the method for forming the Si film 10, the contamination prevention effect is obtained even with the Si film formed by the high frequency excitation plasma CVD method at a frequency of 13.56 MHz and the microwave excitation plasma CVD method at 2.45 GHz. Made little difference. In this embodiment, the thickness of the Si film 10 is set to 50 nm with a margin taken into consideration, but it was also confirmed that 10 nm or more is sufficient. Furthermore, the Cu film 12 is replaced with Cu-0.3% Zr or Cu as a Cu alloy film.
The effect was the same even when -1% Be was used.

【0017】実施例2 本実施例を図4を用いて説明する。プラズマTEOS−
SiO膜9より下層の構造及び作製方法は実施例1と全
く同じである。以下、プラズマTEOS−SiO膜9よ
り上層の構造及び作製方法について述べる。まず、実施
例1と同様の三層層間絶縁膜(プラズマTEOS−Si
O膜7、塗布絶縁膜8、プラズマTEOS−SiO膜
9)に接続孔を開口した。次に、過剰Siを含むタング
ステンシリサイド(WSix)膜21はCVD法により
形成した。膜形成時の基板温度は350℃である。反応
ガスとして六フッ化タングステン10sccmとモノシ
ラン1000sccmとアルゴンの混合ガスを供給し、
ガス圧力0.65Torrの減圧下で反応させた。形成
したWSix膜21の組成はx=2.5、膜厚は50n
mである。次に、膜厚100nmのTiN膜11と膜厚
850nmのCu膜12をスパッタリング法により連続
して堆積した。堆積時の基板温度は300℃とした。C
u膜12、TiN膜11、WSix膜21をドライエッ
チング法により配線加工した。
Embodiment 2 This embodiment will be described with reference to FIG. Plasma TEOS-
The structure of the layer below the SiO film 9 and the manufacturing method are exactly the same as in the first embodiment. Hereinafter, the structure of the layer above the plasma TEOS-SiO film 9 and the manufacturing method will be described. First, a three-layer interlayer insulating film (plasma TEOS-Si) similar to that of Example 1 is used.
Connection holes were opened in the O film 7, the coating insulating film 8, and the plasma TEOS-SiO film 9). Next, tungsten silicide (WSi x) film 21 containing excessive Si was formed by CVD. The substrate temperature during film formation is 350 ° C. A mixed gas of 10 sccm of tungsten hexafluoride, 1000 sccm of monosilane and argon was supplied as a reaction gas,
The reaction was carried out under reduced pressure with a gas pressure of 0.65 Torr. The composition of the formed WSi x film 21 is x = 2.5, and the film thickness is 50 n.
m. Next, a TiN film 11 having a film thickness of 100 nm and a Cu film 12 having a film thickness of 850 nm were successively deposited by a sputtering method. The substrate temperature during deposition was 300 ° C. C
The u film 12, the TiN film 11, and the WSi x film 21 were wiring processed by a dry etching method.

【0018】この後、実施例1と同じ方法で膜厚300
nmのプラズマTEOS−SiO膜(図示せず)と膜厚
200nmの塗布絶縁膜(図示せず)と膜厚100nm
のプラズマCVD−SiN膜(図示せず)から構成され
る三層絶縁膜で被覆し、最後にH2気流中で450℃、
30分間の熱処理を施した。本実施例でも、汚染による
特性劣化はなかった。WSix膜21に含まれる過剰S
iが実施例1のSi膜10と同じ作用をするものと推定
される。
Thereafter, the film thickness of 300 is obtained by the same method as in the first embodiment.
nm plasma TEOS-SiO film (not shown), coating insulating film (not shown) having a film thickness of 200 nm, and film thickness of 100 nm
Plasma CVD-SiN film (not shown) is coated with three layers insulating film composed of, finally 450 ° C. with H 2 gas stream,
Heat treatment was performed for 30 minutes. Also in this example, there was no characteristic deterioration due to contamination. Excess S contained in the WSi x film 21
It is presumed that i has the same function as the Si film 10 of the first embodiment.

【0019】本実施例のTiN膜11は膜厚100nm
のW膜でも良い。W膜とした場合は、同一反応容器でW
Six膜21と連続して堆積可能であり、生産性が上が
る。本実施例では、WSix膜を用いたが、チタンシリ
サイド(TiSix)膜、モリブデンシリサイド(Mo
Six)膜、タンタルシリサイド(TaSix)膜、コバ
ルトシリサイド(CoSix)膜、ニッケルシリサイド
(NiSix)膜、ジルコニウムシリサイド(ZrS
x)膜でも汚染防止効果が得られた。これらのシリサ
イドの組成xは2.5としたが、xが2.1から3.0
の範囲のものでも効果が認められた。
The TiN film 11 of this embodiment has a film thickness of 100 nm.
W film may be used. If a W membrane is used, W in the same reaction vessel
Since it can be deposited continuously with the Si x film 21, the productivity is increased. Although the WSi x film is used in the present embodiment, a titanium silicide (TiSi x ) film and a molybdenum silicide (Mo
Si x ) film, tantalum silicide (TaSi x ) film, cobalt silicide (CoSi x ) film, nickel silicide (NiSi x ) film, zirconium silicide (ZrS)
The contamination prevention effect was also obtained with the i x ) film. The composition x of these silicides is 2.5, but x ranges from 2.1 to 3.0.
The effect was recognized even in the range of.

【0020】実施例3 本実施例を図5を用いて説明する。本実施例では、実施
例1のAl−0.5%Cu−1.5%Si/W配線の代
わりに、膜厚100nmのW膜5と膜厚30nmのAl
−0.5%Cu−1.5%SiよりなるAl合金膜6と
膜厚10nmのSi膜31からなるSi/Al−0.5
%Cu−1.5%Si/W配線を形成した。三層層間絶
縁膜(プラズマTEOS−SiO膜7、塗布絶縁膜8、
プラズマTEOS−SiO膜9)で被覆した後、接続孔
を開口し、選択CVD法でWプラグ32を埋め込んだ。
続いて、膜厚50nmのTiN膜11と膜厚900nm
のCu膜12を積層し、ドライエッチング法で加工し
た。以下、実施例1と同様である。本実施例でも、汚染
による特性劣化はなかった。
Embodiment 3 This embodiment will be described with reference to FIG. In this embodiment, instead of the Al-0.5% Cu-1.5% Si / W wiring of the first embodiment, a W film 5 having a film thickness of 100 nm and an Al film having a film thickness of 30 nm are used.
Si / Al-0.5 composed of an Al alloy film 6 made of -0.5% Cu-1.5% Si and a Si film 31 having a film thickness of 10 nm
% Cu-1.5% Si / W wiring was formed. Three-layer interlayer insulating film (plasma TEOS-SiO film 7, coating insulating film 8,
After coating with the plasma TEOS-SiO film 9), the connection hole was opened and the W plug 32 was embedded by the selective CVD method.
Subsequently, a TiN film 11 having a film thickness of 50 nm and a film thickness of 900 nm
The Cu film 12 was laminated and processed by the dry etching method. Hereinafter, it is the same as that of the first embodiment. Also in this example, there was no characteristic deterioration due to contamination.

【0021】実施例4 本実施例を図6を用いて説明する。本実施例では実施例
3のSi/Al−0.5%Cu−1.5%Si/W配線
の代わりに膜厚50nmのWSix膜41と膜厚100
nmのW膜42と300nmのCu膜43と50nmの
W膜44を積層し、W/Cu/W/WSix配線とし
た。以下、実施例3と同様である。本実施例でも、汚染
による特性劣化はなかった。
Embodiment 4 This embodiment will be described with reference to FIG. In this embodiment, instead of the Si / Al-0.5% Cu-1.5% Si / W wiring of the third embodiment, a WSi x film 41 having a film thickness of 50 nm and a film thickness of 100 is used.
The W film 44 of Cu film 43 and 50nm in nm of W film 42 and 300nm are laminated and a W / Cu / W / WSi x wire. Hereinafter, it is the same as that of the third embodiment. Also in this example, there was no characteristic deterioration due to contamination.

【0022】実施例5 本実施例を図7を用いて説明する。本実施例では、図
2、3に示した実施例1のPSG膜3とプラズマTEO
S−SiO膜7を、各々プラズマTEOS−SiO膜5
1とシリコンオキシナイトライド膜52に代えた。基板
温度は350℃、反応ガスはモノシラン、アンモニア、
亜酸化窒素の混合ガス(分圧比20:20:1)を用い
た。ガス圧力は1Torrと500Wの高周波電力にて
放電し、膜形成を行なった。本実施例でも、汚染による
特性劣化はなかった。
Embodiment 5 This embodiment will be described with reference to FIG. In this embodiment, the PSG film 3 and the plasma TEO of the embodiment 1 shown in FIGS.
The S-SiO film 7 is replaced with the plasma TEOS-SiO film 5 respectively.
1 and silicon oxynitride film 52. The substrate temperature is 350 ° C., the reaction gas is monosilane, ammonia,
A mixed gas of nitrous oxide (partial pressure ratio 20: 20: 1) was used. A gas pressure was 1 Torr and a high-frequency power of 500 W was discharged to form a film. Also in this example, there was no characteristic deterioration due to contamination.

【0023】[0023]

【発明の効果】本発明の半導体装置によれば、保護膜の
厚膜化や配線プロセスの低温化を図ることなくCuの素
子領域への拡散量を低減することができる。従って、例
えば、接続孔の信頼性を低下させることなく、接合リ−
ク電流増大やMOSデバイスの閾値の変動を防ぐことが
できる。また、本発明の半導体装置の製造方法によれ
ば、上記の半導体装置を容易に製造することができる。
According to the semiconductor device of the present invention, the diffusion amount of Cu into the element region can be reduced without increasing the thickness of the protective film and lowering the wiring process temperature. Therefore, for example, the joint releasability can be improved without lowering the reliability of the connection hole.
It is possible to prevent an increase in the current and a change in the threshold of the MOS device. Further, according to the method for manufacturing a semiconductor device of the present invention, the above semiconductor device can be easily manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】各種保護膜のCu拡散抑制効果の比較を示す図
である。
FIG. 1 is a diagram showing a comparison of Cu diffusion suppressing effects of various protective films.

【図2】本発明の実施例1の製造工程を説明するための
半導体装置の縦断面図である。
FIG. 2 is a vertical cross-sectional view of the semiconductor device for explaining the manufacturing process according to the first embodiment of the present invention.

【図3】本発明の実施例1の製造工程を説明するための
半導体装置の縦断面図である。
FIG. 3 is a vertical cross-sectional view of the semiconductor device for explaining the manufacturing process according to the first embodiment of the present invention.

【図4】本発明の実施例2の半導体装置の縦断面図であ
る。
FIG. 4 is a vertical sectional view of a semiconductor device according to a second embodiment of the present invention.

【図5】本発明の実施例3の半導体装置の縦断面図であ
る。
FIG. 5 is a vertical sectional view of a semiconductor device according to a third embodiment of the present invention.

【図6】本発明の実施例4の半導体装置の縦断面図であ
る。
FIG. 6 is a vertical sectional view of a semiconductor device according to a fourth embodiment of the present invention.

【図7】本発明の実施例5の半導体装置の縦断面図であ
る。
FIG. 7 is a vertical sectional view of a semiconductor device according to a fifth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 Si基板 2 Th−SiO2膜 3 PSG膜 4、32 Wプラグ 5、42、44 W膜 6 Al合金膜 7、9、13、51 プラズマTEOS−SiO膜 8、14 塗布絶縁膜 10、31 Si膜 11 TiN膜 12、43 Cu膜 15 プラズマCVD−SiN膜 21、41 WSix膜 52 シリコンオキシナイトライド膜1 Si substrate 2 Th-SiO 2 film 3 PSG film 4 and 32 W plugs 5,42,44 W film 6 Al alloy film 7,9,13,51 plasma TEOS-SiO film 8, 14 coating insulating film 10, 31 Si Film 11 TiN film 12, 43 Cu film 15 Plasma CVD-SiN film 21, 41 WSi x film 52 Silicon oxynitride film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 日野出 憲治 東京都国分寺市東恋ケ窪1丁目280番地株 式会社日立製作所中央研究所内 (72)発明者 本間 喜夫 東京都国分寺市東恋ケ窪1丁目280番地株 式会社日立製作所中央研究所内 (72)発明者 小林 伸好 東京都国分寺市東恋ケ窪1丁目280番地株 式会社日立製作所中央研究所内 (72)発明者 山本 直樹 東京都国分寺市東恋ケ窪1丁目280番地株 式会社日立製作所中央研究所内 (72)発明者 平岩 篤 東京都国分寺市東恋ケ窪1丁目280番地株 式会社日立製作所中央研究所内 (72)発明者 小嶋 寿夫 東京都国分寺市東恋ケ窪1丁目280番地株 式会社日立製作所中央研究所内 (72)発明者 村上 賢路 東京都小平市上水本町5丁目20番1号日立 超エル・エス・アイ・エンジニアリング株 式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Kenji Hinode 1-280, Higashi Koikeku, Kokubunji, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd. (72) Inventor Yoshio Honma 1-280, Higashi Koikeku, Kokubunji, Tokyo Hitachi, Ltd. Central Research Laboratory (72) Inventor Nobuyoshi Kobayashi 1-280, Higashi Koikeku, Kokubunji, Tokyo Stock Company Hitachi Ltd. Central Research Institute (72) Inventor Naoki Yamamoto 1-280, Higashi Koikeku, Kokubunji, Tokyo Hitachi Central Research Laboratory (72) Inventor Atsushi Hiraiwa 1-280 Higashi Koigokubo, Kokubunji, Tokyo Stock Company Hitachi Central Research Laboratory (72) Inventor Toshio Kojima 1-280 Higashi Koikeku, Tokyo Kokubunji City Hitachi Ltd. Central Research Laboratory (72) Inventor Kenji Murakami Josui, Kodaira City, Tokyo 5-20-1 Hommachi Hitachi Cho-LS Engineering Co., Ltd. Inside the company

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】半導体素子と、Si、Oを有し、かつP及
びNからなる群から選ばれた少なくとも一種の元素を含
み、該半導体素子を被覆する絶縁膜と、銅膜又は銅を主
成分とする合金膜からなる導体層と、該導体層と該絶縁
膜との間に設けられた、シリコン及び過剰Siを含むシ
リサイドからなる群から選ばれた少なくとも一種の材料
からなるシリコン又はシリコン化合物膜とを有すること
を特徴とする半導体装置。
1. A semiconductor element, an insulating film which contains Si, O, and contains at least one element selected from the group consisting of P and N, and which covers the semiconductor element, and a copper film or copper as a main component. A conductor layer made of an alloy film as a component, and silicon or a silicon compound made of at least one material selected from the group consisting of silicon and silicide containing excess Si provided between the conductor layer and the insulating film. A semiconductor device having a film.
【請求項2】請求項1記載の半導体装置において、上記
シリコン又はシリコン化合物膜と上記導体層との間に高
融点金属、その合金又はその窒化物を少なくとも含むバ
リア膜を有することを特徴とする半導体装置。
2. The semiconductor device according to claim 1, further comprising a barrier film containing at least a refractory metal, an alloy thereof or a nitride thereof between the silicon or silicon compound film and the conductor layer. Semiconductor device.
【請求項3】請求項1又は2記載の半導体装置におい
て、上記シリコン又はシリコン化合物膜は、上記絶縁膜
の上部に設けられ、上記導体層は、上記シリコン又はシ
リコン化合物膜の上部に設けられたことを特徴とする半
導体装置。
3. The semiconductor device according to claim 1, wherein the silicon or silicon compound film is provided on the insulating film, and the conductor layer is provided on the silicon or silicon compound film. A semiconductor device characterized by the above.
【請求項4】基板、該基板に設けられた半導体素子並び
に該半導体素子を被覆し、Si、Oを有し、かつP及び
Nからなる群から選ばれた少なくとも一種の元素を含む
絶縁膜並びにシリコン及び過剰Siを含むシリサイドか
らなる群から選ばれた少なくとも一種の材料からなるシ
リコン又はシリコン化合物膜と、高融点金属、その合金
又はその窒化物を少なくとも含むバリア膜と、銅膜又は
銅を主成分とする合金膜からなる導体層との積層膜を有
し、該積層膜は該絶縁膜上に設けられたことことを特徴
とする半導体装置。
4. A substrate, a semiconductor element provided on the substrate, an insulating film covering the semiconductor element, containing Si, O, and containing at least one element selected from the group consisting of P and N, and A silicon or silicon compound film made of at least one material selected from the group consisting of silicon and silicide containing excess Si, a barrier film containing at least a refractory metal, its alloy or its nitride, and a copper film or copper A semiconductor device having a laminated film with a conductor layer made of an alloy film as a component, the laminated film being provided on the insulating film.
【請求項5】請求項1から4のいずれか一に記載の半導
体装置において、上記絶縁膜は、リンガラス膜及びシリ
コンオキシナイトライド膜からなる群から選ばれた少な
くとも一種の膜を含む膜であることを特徴とする半導体
装置。
5. The semiconductor device according to claim 1, wherein the insulating film is a film containing at least one film selected from the group consisting of a phosphorus glass film and a silicon oxynitride film. There is a semiconductor device.
【請求項6】請求項5記載の半導体装置において、上記
リンガラス膜は、五酸化リン換算で0.5mol%以上
のリンを含むことを特徴とする半導体装置。
6. The semiconductor device according to claim 5, wherein the phosphorus glass film contains 0.5 mol% or more of phosphorus in terms of phosphorus pentoxide.
【請求項7】請求項1から6のいずれか一に記載の半導
体装置において、上記絶縁膜は、膜厚が100nm以上
であることを特徴とする半導体装置。
7. The semiconductor device according to claim 1, wherein the insulating film has a film thickness of 100 nm or more.
【請求項8】請求項1から7のいずれか一に記載の半導
体装置において、上記シリコン又はシリコン化合物膜
は、一般式MSix(ただし、Mは、タングステン、チ
タン、モリブデン、タンタル、ニッケル、コバルト及び
ジルコニウムからなる群から選ばれた少なくとも一種の
金属元素、xは、x>2の範囲の値である)で表される
過剰Siを含むシリサイドであることを特徴とする半導
体装置。
8. The semiconductor device according to any one of claims 1 7, the silicon or silicon compound film, the formula MSi x (however, M is tungsten, titanium, molybdenum, tantalum, nickel, cobalt And at least one metal element selected from the group consisting of zirconium and x is a silicide containing excess Si represented by x> 2.
【請求項9】請求項1から7のいずれか一に記載の半導
体装置において、上記シリコン又はシリコン化合物膜
は、膜厚が10nm以上であることを特徴とする半導体
装置。
9. The semiconductor device according to claim 1, wherein the silicon or silicon compound film has a film thickness of 10 nm or more.
【請求項10】基板上に半導体素子を形成し、半導体素
子上に、Si、Oを有し、かつP及びNからなる群から
選ばれた少なくとも一種の元素を含む絶縁膜を形成し、
絶縁膜上にシリコン及び過剰Siを含むシリサイドから
なる群から選ばれた少なくとも一種の材料からなるシリ
コン又はシリコン化合物膜を形成し、シリコン又はシリ
コン化合物膜に接続孔を形成し、シリコン又はシリコン
化合物膜と接続孔上に高融点金属、その合金又はその窒
化物を少なくとも含むバリア膜を形成し、バリア膜上に
銅膜又は銅を主成分とする合金膜からなる導体層を形成
し、導体層、バリア膜及びシリコン又はシリコン化合物
膜の外周部を実質的に同一のパターンにエッチングする
ことにより半導体装置を形成することを特徴とする半導
体装置の製造方法。
10. A semiconductor element is formed on a substrate, and an insulating film containing Si, O and at least one element selected from the group consisting of P and N is formed on the semiconductor element.
A silicon or silicon compound film made of at least one material selected from the group consisting of silicon and silicide containing excess Si is formed on the insulating film, and a connection hole is formed in the silicon or silicon compound film, and the silicon or silicon compound film is formed. A barrier film containing at least a refractory metal, an alloy thereof or a nitride thereof on the connection hole, and a conductor layer formed of a copper film or an alloy film containing copper as a main component on the barrier film. A method of manufacturing a semiconductor device, comprising forming the semiconductor device by etching the outer peripheral portions of the barrier film and the silicon or silicon compound film into substantially the same pattern.
JP17065992A 1992-06-29 1992-06-29 Semiconductor device and its manufacture Pending JPH0613381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17065992A JPH0613381A (en) 1992-06-29 1992-06-29 Semiconductor device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17065992A JPH0613381A (en) 1992-06-29 1992-06-29 Semiconductor device and its manufacture

Publications (1)

Publication Number Publication Date
JPH0613381A true JPH0613381A (en) 1994-01-21

Family

ID=15908991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17065992A Pending JPH0613381A (en) 1992-06-29 1992-06-29 Semiconductor device and its manufacture

Country Status (1)

Country Link
JP (1) JPH0613381A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001244266A (en) * 2000-02-28 2001-09-07 Lg Philips Lcd Co Ltd Substrate for electronic element and its manufacturing apparatus
US6414395B1 (en) * 1999-05-24 2002-07-02 Mitsubishi Denki Kabushiki Kaisha Semiconductor device capable of preventing disconnection in a through hole
US7064439B1 (en) 1997-12-16 2006-06-20 Infineon Technologies Ag Integrated electrical circuit and method for fabricating it
JP2007005368A (en) * 2005-06-21 2007-01-11 Renesas Technology Corp Method of manufacturing semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7064439B1 (en) 1997-12-16 2006-06-20 Infineon Technologies Ag Integrated electrical circuit and method for fabricating it
US6414395B1 (en) * 1999-05-24 2002-07-02 Mitsubishi Denki Kabushiki Kaisha Semiconductor device capable of preventing disconnection in a through hole
JP2001244266A (en) * 2000-02-28 2001-09-07 Lg Philips Lcd Co Ltd Substrate for electronic element and its manufacturing apparatus
JP2007005368A (en) * 2005-06-21 2007-01-11 Renesas Technology Corp Method of manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
KR100505513B1 (en) Process for forming a semiconductor device
US6255217B1 (en) Plasma treatment to enhance inorganic dielectric adhesion to copper
TWI402887B (en) Structures and methods for integration of ultralow-k dielectrics with improved reliability
US6174810B1 (en) Copper interconnect structure and method of formation
US5973400A (en) Semiconductor device having a copper wiring layer formed on a base via a barrier layer of amorphous tantalum carbide
US8035230B2 (en) Semiconductor device and method for manufacturing same
US20030218253A1 (en) Process for formation of a wiring network using a porous interlevel dielectric and related structures
US6297555B1 (en) Method to obtain a low resistivity and conformity chemical vapor deposition titanium film
JP4746829B2 (en) Semiconductor device and manufacturing method thereof
US6365511B1 (en) Tungsten silicide nitride as a barrier for high temperature anneals to improve hot carrier reliability
US6274932B1 (en) Semiconductor device having metal interconnection comprising metal silicide and four conductive layers
US6569756B1 (en) Method for manufacturing a semiconductor device
CA1241457A (en) Integrated devices having titanium carbonitride diffusion barrier layer
KR20010001543A (en) Method of Fabricating Semiconductor Device Employing Copper Interconnect Structure
US20040251550A1 (en) Semiconductor device and method of manufacturing the same
JP2002203899A (en) Method for forming copper interconnection structure
US6723628B2 (en) Method for forming bonding pad structures in semiconductor devices
JPH0613381A (en) Semiconductor device and its manufacture
US20070161233A1 (en) Semiconductor Device and Method of Manufacturing the Same
JP2002164351A (en) Method of forming self-aligned copper cap diffusion barrier
JP2600593B2 (en) Semiconductor device and manufacturing method thereof
JP2000174019A (en) Semiconductor device and manufacture thereof
US20020137329A1 (en) Method for fabricating a barrier layer
US6943096B1 (en) Semiconductor component and method of manufacture
US20070072412A1 (en) Preventing damage to interlevel dielectric