JPH06133527A - Electromagnetic pump - Google Patents

Electromagnetic pump

Info

Publication number
JPH06133527A
JPH06133527A JP4279069A JP27906992A JPH06133527A JP H06133527 A JPH06133527 A JP H06133527A JP 4279069 A JP4279069 A JP 4279069A JP 27906992 A JP27906992 A JP 27906992A JP H06133527 A JPH06133527 A JP H06133527A
Authority
JP
Japan
Prior art keywords
coil
insulating material
electromagnetic pump
pipe
holding cover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4279069A
Other languages
Japanese (ja)
Inventor
Toshitaka Kuroki
敏高 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4279069A priority Critical patent/JPH06133527A/en
Publication of JPH06133527A publication Critical patent/JPH06133527A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Abstract

PURPOSE:To provide an improved electromagnetic pump having no possibility of crack in the coil insulating material even if the pump is operated in high temperature environment. CONSTITUTION:In an electromagnetic pump in which a conduit is formed of a coaxial double pipe comprising an outside pipe 2 and an inside pipe 3 with a plurality of laminated cores 4 being arranged on the outer peripheral surface of the outside pipe 2 and on the inner peripheral surface of the inside pipe 3 and a plurality of annular coils 5 are fitted in slots 4a made at least in the laminated core block 4, the annular coil 5 is constituted by covering the outer periphery of coil conductors 10 with an insulator holding cover 13 and filling the gap between the coil conductor 10 and the insulator holding cover 13 with a power or granular insulating material 14.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は導電性流体に外部より進
行磁界を印加して、導電性流体のポンピング作用を起こ
させる電磁ポンプに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic pump for applying a traveling magnetic field to a conductive fluid from the outside to cause a pumping action of the conductive fluid.

【0002】[0002]

【従来の技術】液体金属冷却型原子炉では冷却材として
通常液体ナトリウムが使用される。液体ナトリウムは化
学的に活性なうえ、液体金属冷却型原子炉においては30
0 〜600 ℃程度の高温下で使用される。近年、特に液体
金属冷却型原子炉においては、冷却材循環ポンプとして
電磁ポンプを採用し、さらにこの電磁ポンプ全体を高温
の液体ナトリウム中に浸漬して使用できることが期待さ
れている。このように電磁ポンプ全体が循環する冷却材
の中に浸積できれば、冷却材循環システムがコンパクト
になり、また、設計の自由度が大きくなる。また、従来
の電磁ポンプは効率が20〜30%という低い値であったも
のが、電磁ポンプを液体ナトリウム中に配置できるの
で、ポンプ内で発生する熱等に変換される損失は全て液
体ナトリウムに吸収され、系統全体としての効率が大き
く改善されることになる。
2. Description of the Related Art Liquid sodium is usually used as a coolant in liquid metal cooled nuclear reactors. Liquid sodium is chemically active and, in liquid metal cooled reactors, 30
It is used at a high temperature of 0 to 600 ° C. In recent years, particularly in liquid metal cooled nuclear reactors, it is expected that an electromagnetic pump will be adopted as a coolant circulation pump and that the entire electromagnetic pump can be immersed in high temperature liquid sodium for use. If the entire electromagnetic pump can be immersed in the circulating coolant in this way, the coolant circulation system becomes compact and the degree of freedom in design increases. In addition, the efficiency of the conventional electromagnetic pump was as low as 20 to 30%, but since the electromagnetic pump can be placed in liquid sodium, all the losses converted into heat etc. generated in the pump are converted to liquid sodium. It will be absorbed and the efficiency of the whole system will be greatly improved.

【0003】液体金属冷却型原子炉においては、一般
に、三相交流を使用したアニュラリニア形誘導形電磁ポ
ンプが使用される。アニュラリニア形電磁ポンプは流路
断面が環状であることからALIP(Annular Linear I
nduction Pump の略)と呼ばれており、管路すなわちダ
クト構造の信頼性、安全性が高いので、特に大容量の原
子炉冷却材循環ポンプに適する。以下に、三相交流形の
アニュラリニア形電磁ポンプの基本的な構造と、構造上
の特徴を図3を参照して説明する。
In a liquid metal cooled nuclear reactor, an annular linear induction type electromagnetic pump using three-phase alternating current is generally used. The annular linear type electromagnetic pump has an annular flow passage, so ALIP (Annular Linear I
It is called a nduction pump) and has a high reliability and safety of the pipeline or duct structure, so it is especially suitable for large capacity reactor coolant circulation pumps. The basic structure and structural characteristics of the three-phase AC type annular linear electromagnetic pump will be described below with reference to FIG.

【0004】(1)管路1はステンレス製の外側管2、
内側管3とからなる同心二重管で形成された環状流路で
ある。管路形状が環状となっており、強度的に優れた、
信頼性の高い管路構造といえる。
(1) The pipe line 1 is an outer pipe 2 made of stainless steel,
It is an annular flow path formed by a concentric double tube including an inner tube 3. The shape of the pipe line is annular, and it has excellent strength.
It can be said that the pipeline structure has high reliability.

【0005】(2)固定子は外側管2の外周面上に、積
層鉄心ブロックを積層方向が周方向で、積層面が管路1
に面するように複数個を放射状に配置した固定子鉄心4
と、固定子鉄心4のスロット4aに嵌挿された多数の環
状のコイル5とから形成される。
(2) The stator has a laminated core block on the outer peripheral surface of the outer tube 2 with the laminating direction being the circumferential direction and the laminating surface being the conduit 1.
A plurality of stator cores 4 arranged radially to face the
And a large number of annular coils 5 fitted into the slots 4a of the stator core 4.

【0006】(3)内側管3の内周面上には磁気回路を
形成するための、積層鉄心ブロックを積層方向が周方向
で、積層面が管路1に面するように複数個を配置した内
部鉄心6が納められている。 (4)液体金属7aは流体入口7から流体出口8の方向
に流れる。
(3) A plurality of laminated core blocks for forming a magnetic circuit are arranged on the inner peripheral surface of the inner tube 3 so that the laminated direction is the circumferential direction and the laminated surface faces the conduit 1. The internal iron core 6 is stored. (4) The liquid metal 7a flows from the fluid inlet 7 to the fluid outlet 8.

【0007】(5)電磁ポンプは全体を液体ナトリウム
中に浸漬して使用するため外被9を被せ、外被9の内部
には窒素などの電気的絶縁性が高く、活性度の低い気体
を封入する。 なお、大容量の冷却材循環用の電磁ポンプにおいては、
内部鉄心6にも環状のコイルを設けて冷却材に作用する
磁力を強めている。
(5) Since the entire electromagnetic pump is used by immersing it in liquid sodium, the outer casing 9 is covered with a gas having a high electrical insulation and a low activity such as nitrogen. Encapsulate. In addition, in an electromagnetic pump for circulating a large capacity coolant,
The inner iron core 6 is also provided with an annular coil to strengthen the magnetic force acting on the coolant.

【0008】このような構造を有する三相誘導形のアニ
ュラリニア形電磁ポンプを高温の冷却材中に浸漬して使
用した場合、コイル5、管路1、鉄心4および鉄心6で
発生する熱損失を流体に逃がす必要がある。例えばコイ
ル5で発生する熱損失はコイル5から固定子鉄心4に伝
達させ、固定子鉄心4から外側管2および外被9に伝達
させて、流体内に熱を逃がす必要があり、コイルから流
体までの熱抵抗をできるだけ小さくするため、それらの
構造物は運転時にできるだけ相互に密着するように構成
されている。つぎに、上記のような電磁ポンプの構造の
うち、コイル5の構造について、図4および図5を参照
して、以下にさらに詳細に説明する。
When the three-phase induction type annular linear type electromagnetic pump having such a structure is used by being immersed in a high temperature coolant, heat loss generated in the coil 5, the pipe line 1, the iron core 4 and the iron core 6 is lost. Need to escape to the fluid. For example, heat loss generated in the coil 5 needs to be transferred from the coil 5 to the stator core 4 and from the stator core 4 to the outer tube 2 and the outer jacket 9 to allow heat to escape into the fluid. In order to have as low a thermal resistance as possible, the structures are designed to be in close contact with each other during operation. Next, of the structures of the electromagnetic pump as described above, the structure of the coil 5 will be described in more detail below with reference to FIGS. 4 and 5.

【0009】コイル5は、必要な数だけ環状に巻回され
た耐熱性の電気絶縁材が施された導体10と、その外周面
に被覆してコイル5の主電気絶縁層を形成するセラミッ
ク系のコイル絶縁材11とで構成される。また、図4に示
すように、三相誘導形電磁ポンプの場合はコイル5の3
カ所からコイルリード端子12が引き出される。
The coil 5 includes a conductor 10 wound in a required number of rings and provided with a heat-resistant electrical insulating material, and a ceramic system for covering the outer peripheral surface of the conductor 10 to form a main electrical insulating layer of the coil 5. And coil insulation material 11 of. In addition, as shown in FIG. 4, in the case of a three-phase induction type electromagnetic pump, three
The coil lead terminal 12 is pulled out from the place.

【0010】液体金属冷却型原子炉の冷却材循環ポンプ
として使用される場合、室温で組み立てられたコイル
は、運転中は300 〜600 ℃の種々の高温環境中で使用さ
れる。一方、電磁ポンプの出力を大きくするためには、
コイルに流す電流を大きくしなければならず、そのため
にコイルの温度上昇許容値はできるだけ大きくすること
が要望される。従来の電磁ポンプのコイルではコイル導
体10として銅あるいは銅合金が用いられている。また、
液体金属冷却型原子炉の冷却材循環ポンプなどに使用さ
れる電磁ポンプは300 〜600 ℃の高温環境で運転される
ため、コイル絶縁材11としては有機系の材料が使用でき
ずセラミック系材料や雲母などの鉱物系材が使用されて
いる。電磁ポンプのコイル導体10として用いられる銅あ
るいは銅合金の熱膨張率は13〜15×10-6/℃程度であ
り、一方、コイル絶縁材11として用いられるセラミック
系材料の熱膨張率は3〜5×10-6/℃程度である。この
ため、常温で組み立てられたコイルを電磁ポンプ用とて
組み込んで運転すると、高温状態になったときコイル導
体10の熱膨張による伸び量がコイル絶縁材11の熱膨張に
よる伸び量より大きくなる。よってコイル絶縁材11の亀
裂の発生または絶縁層の剥離等によって、絶縁破壊電圧
が低下するなど電気的な絶縁機能が失われる恐れがあっ
た。
When used as a coolant circulation pump in a liquid metal cooled nuclear reactor, the coils assembled at room temperature are used in various high temperature environments of 300-600 ° C during operation. On the other hand, in order to increase the output of the electromagnetic pump,
The current passed through the coil must be increased, and therefore the allowable temperature rise of the coil is required to be as large as possible. In the coil of the conventional electromagnetic pump, copper or copper alloy is used as the coil conductor 10. Also,
Electromagnetic pumps used for coolant circulation pumps in liquid metal cooled nuclear reactors operate in high temperature environments of 300 to 600 ° C, so organic materials cannot be used as the coil insulation material 11, and ceramic-based materials and Mineral materials such as mica are used. The coefficient of thermal expansion of copper or copper alloy used as the coil conductor 10 of the electromagnetic pump is about 13 to 15 × 10 −6 / ° C., while the coefficient of thermal expansion of the ceramic material used as the coil insulating material 11 is 3 to It is about 5 × 10 -6 / ° C. Therefore, when the coil assembled at room temperature is incorporated for use in an electromagnetic pump and operated, the amount of expansion due to thermal expansion of the coil conductor 10 becomes larger than the amount of expansion due to thermal expansion of the coil insulating material 11 when the temperature becomes high. Therefore, the occurrence of cracks in the coil insulating material 11 or peeling of the insulating layer may result in a loss of the electrical insulating function such as a decrease in the dielectric breakdown voltage.

【0011】[0011]

【発明が解決しようとする課題】上述したように従来の
電磁ポンプは、高温状態になったときにコイル導体の熱
膨張による伸び量がコイル絶縁材の熱膨張による伸び量
より大きくなることにより、コイル絶縁材に亀裂が生じ
たり絶縁層が剥離したりして、絶縁破壊電圧が低下する
など電気的な絶縁機能が失われる可能性があった。
As described above, in the conventional electromagnetic pump, the expansion amount due to the thermal expansion of the coil conductor becomes higher than the expansion amount due to the thermal expansion of the coil insulating material at the time of high temperature. There is a possibility that the coil insulating material may be cracked or the insulating layer may be peeled off to lower the dielectric breakdown voltage and lose the electrical insulating function.

【0012】[0012]

【課題を解決するための手段】本発明は、外側管と内側
管からなる同心二重管による管路を形成し、外側管の外
周面上および内側管の内周面上に積層鉄心ブロックを積
層方向が周方向で積層面が管路に面するように複数個配
置し、これらの積層鉄心ブロックの少なくとも一方に設
けたスロットに多数の環状のコイルを嵌挿した電磁ポン
プにおいて、前記コイルはコイル導体の外周を絶縁材保
持カバーで覆い、コイル導体と絶縁材保持カバーとの間
に粉体状または粒状の絶縁材を充填して構成したことを
特徴とする。
DISCLOSURE OF THE INVENTION According to the present invention, a conduit is formed by a concentric double pipe consisting of an outer pipe and an inner pipe, and a laminated core block is formed on the outer peripheral surface of the outer pipe and the inner peripheral surface of the inner pipe. In the electromagnetic pump in which a plurality of laminated coils are arranged such that the laminating direction is the circumferential direction and the laminating surface faces the pipeline, and a large number of annular coils are inserted into slots provided in at least one of these laminated core blocks, the coils are The outer periphery of the coil conductor is covered with an insulating material holding cover, and a powdery or granular insulating material is filled between the coil conductor and the insulating material holding cover.

【0013】[0013]

【作用】この発明は上記構成からなり、コイル導体と絶
縁材保持カバーとの間に粉体状または粒状の絶縁材を充
填したことにより、高温状態になったときにコイル導体
の熱膨張による伸び量を粉体状絶縁材の粒子の適宜移動
により吸収して、絶縁材保持カバーおよび粉体状または
粒状絶縁材で構成されたコイル絶縁材に過大な応力がか
かることを防止し、コイル絶縁材に亀裂が発生するのを
防止することができる。
The present invention has the above-mentioned structure, and by filling the powder conductor or the granular insulating material between the coil conductor and the insulating material holding cover, when the temperature becomes high, the coil conductor expands due to thermal expansion. The amount of the powder insulating material is absorbed by the appropriate movement of the powder insulating material to prevent excessive stress from being applied to the insulating material holding cover and the coil insulating material composed of the powdery or granular insulating material. It is possible to prevent cracks from occurring in the.

【0014】[0014]

【実施例】以下この発明による電磁ポンプの一実施例を
図1ないし図2を参照して説明する。図1は液体金属冷
却型原子炉の冷却材循環ポンプのように高温環境下で運
転されるアニュラリニア型電磁ポンプに使用するコイル
の構造概念図を示しており、図2は図1のA−A線に沿
う矢視断面図を示す。コイル5は、耐熱絶縁を施された
銅または銅合金を用いたコイル導体10が必要な数だけ環
状に巻かれ、その外周面をセラミック系材料を使用した
絶縁材保持カバー13で被覆している。そしてこのコイル
導体10と絶縁材保持カバー13との間には酸化マグネシウ
ム、酸化アルミニウム、酸化ジルコニウムあるいは窒化
けい素のような高温環境での使用に耐える耐熱性に優れ
たセラミック系粉末を使用した粉体状絶縁材14が充填さ
れている。さらに前記絶縁材保持カバー13の外側はセラ
ミック系材料を使用した保護テープ15によって巻回した
構成となっている。コイル5は図2(a)および(b)
に示すように断面がU字形の環状の絶縁材保持カバー容
器13aの中に、環状に巻かれたコイル導体10が略中央に
位置するように粉体状絶縁材14とともに収納される。そ
してその上から環状の絶縁材保持カバー蓋13bで覆い、
その表面に図1に示すように保護テープ15を巻いて製造
する。三相誘導形電磁ポンプの場合はコイルの3カ所か
らコイルリード端子12が引き出される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of an electromagnetic pump according to the present invention will be described below with reference to FIGS. FIG. 1 shows a conceptual diagram of the structure of a coil used in an annular linear type electromagnetic pump operated in a high temperature environment such as a coolant circulation pump of a liquid metal cooling type nuclear reactor, and FIG. 2 shows A- of FIG. The arrow sectional drawing which follows the A line is shown. The coil 5 has a required number of coil conductors 10 made of heat-resistant insulated copper or copper alloy wound in an annular shape, and its outer peripheral surface is covered with an insulating material holding cover 13 made of a ceramic material. . Then, between the coil conductor 10 and the insulating material holding cover 13, a powder using a ceramic powder having excellent heat resistance such as magnesium oxide, aluminum oxide, zirconium oxide, or silicon nitride, which can withstand use in a high temperature environment. The body-shaped insulating material 14 is filled. Further, the outside of the insulating material holding cover 13 is wound with a protective tape 15 made of a ceramic material. The coil 5 is shown in FIGS. 2 (a) and 2 (b).
As shown in FIG. 5, the coil conductor 10 wound in an annular shape is housed together with the powdery insulating material 14 in an annular insulating material holding cover container 13a having a U-shaped cross section. Then, cover it with an annular insulating material holding cover lid 13b from above,
It is manufactured by winding a protective tape 15 on the surface thereof as shown in FIG. In the case of the three-phase induction type electromagnetic pump, the coil lead terminals 12 are drawn out from three places of the coil.

【0015】次にこの実施例の作用について説明する。
すでに説明したように、本発明の電磁ポンプは、例えば
液体金属冷却型原子炉の冷却材循環ポンプとして高温環
境下で使用される。コイル導体10として用いられる銅あ
るいは銅合金の熱膨張率は13〜15×10-6/℃程度であ
り、一方、コイル絶縁材として用いられるセラミック系
材料の熱膨張率は3〜5×10-6/℃程度である。このた
め、両者が密着した従来の状態では高温状態になったと
きにコイル導体10の熱膨張による伸び量がコイル絶縁材
の熱膨張による伸び量より大きくなり、従来のコイルで
はコイル絶縁材に亀裂を生ずる恐れがある。しかしなが
ら、本発明によるコイルを使用すれば、コイル導体10と
絶縁材保持カバー13との間に粉体状絶縁材14を充填した
ことにより、高温状態になったときコイル導体10の熱膨
張による伸び量が外周面に配置された絶縁材保持カバー
13の熱膨張による伸び量より大きくなっても粉体状絶縁
材14の粒子は適宜移動することができるため、粉体状絶
縁材14の部分でコイル導体10の熱膨張による伸び量を吸
収し、絶縁材保持カバー13に過大な応力がかかることが
ない。また絶縁材保持カバー13および粉体状絶縁材14の
2層で構成されるコイル絶縁により、コイル絶縁材に亀
裂が発生することが防止できる。なお、上記実施例にお
けるコイルは、外部鉄心すなわち外側管の外周面上の積
層鉄心ブロックに嵌挿されたものを対象として説明した
が、内部鉄心すなわち内側管の内周面上の積層鉄心ブロ
ックに嵌挿されるコイルについても同様に適用される。
Next, the operation of this embodiment will be described.
As described above, the electromagnetic pump of the present invention is used in a high temperature environment as a coolant circulation pump for a liquid metal cooled nuclear reactor, for example. The coefficient of thermal expansion of the copper or copper alloy used as the coil conductor 10 is about 13 to 15 × 10 −6 / ° C., while the coefficient of thermal expansion of the ceramic material used as the coil insulating material is 3 to 5 × 10 −. It is about 6 / ° C. Therefore, in the conventional state where the two are in close contact with each other, the amount of expansion due to the thermal expansion of the coil conductor 10 becomes larger than the amount of expansion due to the thermal expansion of the coil insulating material when the temperature becomes high, and the conventional coil has cracks in the coil insulating material. May occur. However, when the coil according to the present invention is used, by filling the powdery insulating material 14 between the coil conductor 10 and the insulating material holding cover 13, the expansion due to the thermal expansion of the coil conductor 10 becomes high when the temperature becomes high. Insulating material holding cover arranged on the outer peripheral surface
Since the particles of the powdery insulating material 14 can move appropriately even when the expansion amount of the powdery insulating material 13 is larger than that of the coiled material 13, the powdery insulating material 14 absorbs the expansion amount of the coil conductor 10 due to the thermal expansion. Excessive stress is not applied to the insulating material holding cover 13. Further, the coil insulation composed of the two layers of the insulating material holding cover 13 and the powdery insulating material 14 can prevent the coil insulating material from being cracked. Although the coil in the above-described embodiment has been described as being inserted into the outer core, that is, the laminated core block on the outer peripheral surface of the outer pipe, the inner core, that is, the laminated core block on the inner peripheral surface of the inner pipe, has been described. The same applies to the inserted coil.

【0016】[0016]

【発明の効果】以上のように、この発明の電磁ポンプは
高温環境下で使用してもコイルの絶縁材に亀裂を生ずる
恐れがないので、電磁ポンプとして使用すればプラント
の安全性が向上するなど、実用上の効果は大である。
As described above, the electromagnetic pump of the present invention does not cause cracks in the insulating material of the coil even when used in a high temperature environment. Therefore, when used as an electromagnetic pump, the safety of the plant is improved. The practical effect is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による電磁ポンプの一実施例に適用した
コイルの一部分解斜視図。
FIG. 1 is a partially exploded perspective view of a coil applied to an embodiment of an electromagnetic pump according to the present invention.

【図2】(a)は図1のA−A線に沿う矢視断面図。
(b)は図2(a)における製造工程を説明する説明
図。
2A is a sectional view taken along the line AA of FIG.
FIG. 2B is an explanatory view illustrating the manufacturing process in FIG.

【図3】アニュラリニア型電磁ポンプの従来例を示す斜
視図。
FIG. 3 is a perspective view showing a conventional example of an annular linear electromagnetic pump.

【図4】図3に示した電磁ポンプのコイルを示す一部切
欠き斜視図。
4 is a partially cutaway perspective view showing a coil of the electromagnetic pump shown in FIG.

【図5】図4のB−B線に沿う矢視断面図。5 is a sectional view taken along the line BB of FIG.

【符号の説明】[Explanation of symbols]

1…管路 2…外側管 3…内側管 4…固定子鉄心 4a…スロット 5…コイル 6…内部鉄心 7…流体入口 7a…液体金属 8…流体出口 9…外被 10…コイル導体 11…コイル絶縁材 12…コイルリード端子 13…絶縁材保持カバー 13a…絶縁材保持カバー容器 13b…絶縁材保持カバー蓋 14…粉体状絶縁材 15…保護テープ 1 ... Pipe line 2 ... Outer pipe 3 ... Inner pipe 4 ... Stator core 4a ... Slot 5 ... Coil 6 ... Inner core 7 ... Fluid inlet 7a ... Liquid metal 8 ... Fluid outlet 9 ... Envelope 10 ... Coil conductor 11 ... Coil Insulating material 12 ... Coil lead terminal 13 ... Insulating material holding cover 13a ... Insulating material holding cover container 13b ... Insulating material holding cover lid 14 ... Powder insulating material 15 ... Protective tape

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 外側管と内側管からなる同心二重管によ
る管路を形成し、前記外側管の外周面上および前記内側
管の内周面上に積層鉄心ブロックを積層方向が周方向で
積層面が管路に面するように複数個配置し、前記積層鉄
心ブロックの少なくとも一方に設けたスロットに複数の
環状のコイルを嵌挿した電磁ポンプにおいて、前記コイ
ルはコイル導体の外周を絶縁材保持カバーで覆い、コイ
ル導体と絶縁材保持カバーとの間には粉体状または粒状
の絶縁材を充填して構成したことを特徴とする電磁ポン
プ。
1. A pipe path is formed by a concentric double pipe consisting of an outer pipe and an inner pipe, and a laminated core block is laminated on the outer peripheral surface of the outer pipe and the inner peripheral surface of the inner pipe in a circumferential direction. In an electromagnetic pump in which a plurality of laminated surfaces are arranged so as to face a pipeline, and a plurality of annular coils are fitted in slots provided in at least one of the laminated iron core blocks, the coils are made of an insulating material around the outer circumference of the coil conductor. An electromagnetic pump characterized in that it is covered with a holding cover, and a powdery or granular insulating material is filled between the coil conductor and the insulating material holding cover.
JP4279069A 1992-10-19 1992-10-19 Electromagnetic pump Pending JPH06133527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4279069A JPH06133527A (en) 1992-10-19 1992-10-19 Electromagnetic pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4279069A JPH06133527A (en) 1992-10-19 1992-10-19 Electromagnetic pump

Publications (1)

Publication Number Publication Date
JPH06133527A true JPH06133527A (en) 1994-05-13

Family

ID=17605984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4279069A Pending JPH06133527A (en) 1992-10-19 1992-10-19 Electromagnetic pump

Country Status (1)

Country Link
JP (1) JPH06133527A (en)

Similar Documents

Publication Publication Date Title
JP2012089838A (en) Liquid cooled magnetic component with indirect cooling for high frequency and high power applications
KR20000016123A (en) Electromagnetic device
JPS58148659A (en) Electromagnetic pump
GB2211671A (en) Electromagnetic devices with superconducting windings
US4039990A (en) Sheet-wound, high-voltage coils
JP2002352645A (en) Superconducting cable
CN113474969A (en) Electric machine winding with improved cooling
US3075107A (en) Canned motor
JPS6310661B2 (en)
JPH04272685A (en) Sheath heater
CA1210464A (en) Iron powder encapsulated liquid cooled reactors
US3602858A (en) Winding with cooling ducts
US11145455B2 (en) Transformer and an associated method thereof
JPH06133527A (en) Electromagnetic pump
US4574261A (en) Bakeable electromagnets
JPS61113218A (en) Superconductive magnet
JPS63196016A (en) Superconducting coil
US6577028B2 (en) High temperature superconducting rotor power leads
US3260209A (en) Electromagnetic pump
JP3281022B2 (en) Electromagnetic pump
JPH0479756A (en) Electromagnetic pump
US3668584A (en) Electrical power apparatus
JPS5912003B2 (en) coil
Harvey et al. Mineral-insulated magnets for high-radiation environments
JPH0695489B2 (en) Gas insulated transformer