JPH06133447A - Ground fault detector - Google Patents

Ground fault detector

Info

Publication number
JPH06133447A
JPH06133447A JP28034092A JP28034092A JPH06133447A JP H06133447 A JPH06133447 A JP H06133447A JP 28034092 A JP28034092 A JP 28034092A JP 28034092 A JP28034092 A JP 28034092A JP H06133447 A JPH06133447 A JP H06133447A
Authority
JP
Japan
Prior art keywords
output
capacitor
charging
circuit
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28034092A
Other languages
Japanese (ja)
Other versions
JP3266667B2 (en
Inventor
Masataka Kanda
雅隆 神田
Hitoshi Makinaga
仁 牧永
Masaharu Kitadou
正晴 北堂
Minoru Kuroda
稔 黒田
Yasuo Nagai
康夫 永井
Yuji Tsukui
勇次 津久井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Microcomputer System Ltd
Hitachi Ltd
Panasonic Electric Works Co Ltd
Original Assignee
Hitachi Microcomputer System Ltd
Hitachi Ltd
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Microcomputer System Ltd, Hitachi Ltd, Matsushita Electric Works Ltd filed Critical Hitachi Microcomputer System Ltd
Priority to JP28034092A priority Critical patent/JP3266667B2/en
Publication of JPH06133447A publication Critical patent/JPH06133447A/en
Application granted granted Critical
Publication of JP3266667B2 publication Critical patent/JP3266667B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

PURPOSE:To provide a ground fault detector which facilitates the reduction of misoperations caused by the superposition of an abnormal peak voltage such as a lightning surge upon an AC voltage. CONSTITUTION:As the output (0) of a controller 17 is not turned to 'H' if the detection output of a lightning surge or the like detected by a zero phase current transformer CT has a pattern in the order of positive, negative and positive and its waveform level does not exceed the reference levels L1 and L1' of comparators 10 and 11, a charge/discharge circuit 12 does not perform a second time charging of a capacitor C4 and the discharge of the capacitor C4 is continued. When the voltage drop of the capacitor C4 in each discharge process reaches a certain rate, the charge/discharge circuit 12 reduces a discharge time constant to make the capacitor C4 discharged quickly. If a third time charging is performed and the voltage of the capacitor C4 does not reach the threshold Vth3 of a judging circuit 15, therefore, the conditions with which a grounding detection signal is generated, like at the time when the grounding is detected, are not realized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、漏洩電流や地絡電流等
を検出する地絡検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ground fault detecting device for detecting a leak current, a ground fault current and the like.

【0002】[0002]

【従来の技術】一般に、この種の地絡検出装置は、交流
電路に装備した零相変流器の出力電圧を所定のしきい値
と比較し、この比較した出力に従ってコンデンサに充放
電を行い時延判別すると共に、このコンデンサの電圧が
所定のしきい値を越えた時に地絡信号を送出するように
している。
2. Description of the Related Art Generally, a ground fault detector of this type compares an output voltage of a zero-phase current transformer provided in an AC circuit with a predetermined threshold value, and charges and discharges a capacitor according to the compared output. The time delay determination is performed, and the ground fault signal is transmitted when the voltage of the capacitor exceeds a predetermined threshold value.

【0003】しかし、上述の地絡検出装置にあっては、
例えば雷サージの如き異常なピーク電圧が交流電路に重
畳し、負荷機器を保護するために交流電路に装備される
バリスタや避雷器を通じて大地にピーク電流が流れた場
合に、そのピーク電流に対応した出力電圧が零相変流器
から出力されると共にその後にその反対側の極性に波尾
長の長い出力電圧が現れる現象が発生し、この反対側の
極性に出力される波尾長の長い出力電圧によって、コン
デンサの電圧が充分に充電され所定のしきい値を越えて
地絡信号を送出することがあった。
However, in the above ground fault detecting device,
For example, when an abnormal peak voltage such as lightning surge is superimposed on the AC circuit and a peak current flows to the ground through a varistor or lightning arrester equipped in the AC circuit to protect the load equipment, the output corresponding to that peak current When a voltage is output from the zero-phase current transformer, an output voltage with a long wave tail length appears in the polarity on the opposite side after that, and due to the output voltage with a long wave tail length output to the opposite side polarity, In some cases, the voltage of the capacitor was sufficiently charged to exceed a predetermined threshold value and a ground fault signal was transmitted.

【0004】そのため、零相変流器から出力される波尾
長の長い出力電圧の発生に対して不要動作を起こさない
ようにするために、零相変流器から出力される出力電圧
の正側または負側の出力電圧の発生回数を計数して地絡
判別を行う方法が提案された。このものは、零相変流器
の出力電圧を正側または負側の所定のしきい値と比較し
てしきい値を越えた回数を計数することにより、単発的
に発生する雷サージの如き異常なピーク電圧に対して、
連続的に発生する地絡電流をその回数によって区別する
ことにより地絡判別を行うようになっている。
Therefore, the positive side of the output voltage output from the zero-phase current transformer is provided in order to prevent unnecessary operation with respect to the generation of the output voltage having a long wave tail output from the zero-phase current transformer. Alternatively, a method has been proposed in which the number of times the negative output voltage is generated is counted to determine the ground fault. This one compares the output voltage of the zero-phase current transformer with a predetermined threshold value on the positive side or negative side and counts the number of times when it exceeds the threshold value. For abnormal peak voltage,
The ground fault is distinguished by continuously distinguishing the ground fault currents by the number of times.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述の
正側または負側の出力電圧の発生回数を計数して地絡判
別する地絡検出装置にあっては、次のような問題があっ
た。すなわち、交流電路の漏洩電流を検出する零相変流
器はコアの中心透孔に一次巻線となる交流電路の導体を
貫挿するようになっているが、この貫挿する導体が偏っ
て貫挿された場合には零相変流器に偏り特性が生じ、例
えば交流電路にモータ起動時の電流等大きな電流が流れ
た場合に、零相変流器から検出出力が発生すると同時に
この出力波形は歪み波形となって出力されることがあっ
た。
However, the ground fault detection device for counting the number of times the positive side or negative side output voltage is generated to discriminate the ground fault has the following problems. In other words, the zero-phase current transformer that detects the leakage current in the AC circuit is designed to insert the conductor of the AC circuit, which is the primary winding, into the center through hole of the core. When it is inserted, the zero-phase current transformer has a bias characteristic, and for example, when a large current such as the current at the time of starting the motor flows in the AC circuit, the zero-phase current transformer generates the detection output and this output at the same time. The waveform was sometimes output as a distorted waveform.

【0006】この歪み波形の出力電圧は、正側または負
側の所定しきい値を、断続的に越えることとなり所定の
計数が行われ地絡判別をする要因となった。本発明は上
述の問題点に鑑みてなされたもので、その目的とすると
ころは、雷サージ等の如き異常なピーク電圧の交流電路
への重畳に対して誤動作を少なくすると共に、零相変流
器の偏り特性により出力される歪み波形のある検出出力
に対しても誤動作を少なくした地絡検出装置を提供する
ことにある。
The output voltage of this distorted waveform intermittently exceeds a predetermined threshold value on the positive side or the negative side, and a predetermined count is performed, which is a factor for determining the ground fault. The present invention has been made in view of the above problems, and an object thereof is to reduce malfunction due to superimposition of an abnormal peak voltage such as a lightning surge on an AC circuit, and to achieve zero-phase current transformation. An object of the present invention is to provide a ground fault detection device in which malfunctions are reduced even for a detection output having a distorted waveform that is output due to a bias characteristic of a container.

【0007】[0007]

【課題を解決するための手段】本発明は、交流電路の漏
洩電流を検出する零相変流器と、この零相変流器の交番
する検出出力の正側の波形のレベルと基準レベルとを比
較する正側比較手段と、上記検出出力の負側の波形のレ
ベルと基準レベルとを比較する負側比較手段と、コンデ
ンサの充電を制御する充電手段と、上記コンデンサの電
圧と第1の閾値とを比較する第1の判定手段と、上記コ
ンデンサの電圧と第1の閾値より一定レベル高い第2の
閾値とを比較する第2の判定手段と、コンデンサの電圧
と第2の閾値より一定レベル高い第3の閾値とを比較す
る第3の判定手段と、上記両比較手段及び第1〜第3の
判定手段の出力に基づいて上記充電手段及び放電手段を
制御する制御手段とを備え、制御手段は上記正側比較手
段の最初の出力の立ち上がりがあると、上記充電手段に
より上記コンデンサを充電を行わせ、この充電過程で上
記第1の判定手段からの出力があると、充電を停止させ
て上記放電手段により放電を行わせ、この放電過程で上
記コンデンサの電圧降下が一定範囲を超えるまでに上記
負側比較手段からの出力があれば、充電手段によってコ
ンデンサの2回目の充電を行わせ、この充電過程で上記
第2の判定手段から出力があれば、充電を停止させて上
記放電手段により放電を行わせ、この放電過程で上記コ
ンデンサの電圧降下が一定範囲を超えるまでに上記正側
比較手段からの2回目の出力があれば、上記充電手段に
よりコンデンサの3回目の充電を行わせ、この充電過程
で上記第3の判定手段の出力があれば地絡検出信号を発
生させるものである。
DISCLOSURE OF THE INVENTION The present invention is directed to a zero-phase current transformer for detecting a leakage current in an alternating current circuit, and a waveform level and a reference level on the positive side of alternating detection outputs of the zero-phase current transformer. For comparing the negative side waveform level of the detection output with the reference level, charging means for controlling the charging of the capacitor, the voltage of the capacitor and the first level A first determination unit that compares a threshold value, a second determination unit that compares the voltage of the capacitor with a second threshold value that is higher than the first threshold value by a certain level, and a capacitor voltage and a constant value that is greater than the second threshold value. A third judging means for comparing with a third threshold having a high level, and a controlling means for controlling the charging means and the discharging means based on the outputs of the both comparing means and the first to third judging means, The control means controls the first output of the positive side comparing means. If there is a rise, the charging means causes the capacitor to be charged, and if there is an output from the first determining means in the charging process, the charging is stopped and the discharging means causes discharging. If there is an output from the negative side comparing means before the voltage drop of the capacitor exceeds a certain range during the discharging process, the charging means causes the capacitor to be charged for the second time, and the second determining means during the charging process. If there is an output from the positive side comparing means until the voltage drop of the capacitor exceeds a certain range in the discharging process, the charging is stopped and the discharging means performs discharging. The charging means causes the capacitor to be charged for the third time, and a ground fault detection signal is generated if there is an output from the third determining means in the charging process.

【0008】[0008]

【作用】而して、本発明によれば、地絡発生時のように
零相変流器からの交番する検出出力の波形が正、負、正
と続く場合のみは地絡検出信号を発生させ、雷サージ等
による一過性の電流や、零相変流器の偏り特性によって
モータ起動時等に発生する波形歪みのある検出出力では
地絡検出信号を発生させることがなく、高い信頼性が得
られる。
According to the present invention, the ground fault detection signal is generated only when the waveform of the alternating detection output from the zero-phase current transformer continues to be positive, negative, and positive as in the case of occurrence of a ground fault. In addition, a transient current due to a lightning surge, etc., or a detection output with waveform distortion that occurs at motor startup due to the bias characteristics of the zero-phase current transformer, does not generate a ground fault detection signal and has high reliability. Is obtained.

【0009】[0009]

【実施例】図2は本実施例の回路構成を示しており、こ
の実施例では図2に示すように交流電路を貫挿した零相
変流器CTは交流電路に地絡で漏洩電流が流れたときに
検出出力を発生するもので、交番する検出出力はクラン
プダイオードD1 、D2 及び抵抗R1 、R2 ,コンデン
サC1 、C2 からなるローパスフィルタ等で構成された
波形整形回路部1を介してIC回路からなる地絡電流検
出回路部2に入力する。
FIG. 2 shows a circuit configuration of the present embodiment. In this embodiment, a zero-phase current transformer CT having an AC electric line inserted therein as shown in FIG. 2 has a leakage current due to a ground fault in the AC electric line. A detection output is generated when it flows, and the alternating detection output is a waveform shaping circuit composed of a clamp diode D 1 , D 2 and a low-pass filter composed of resistors R 1 , R 2 , capacitors C 1 , C 2. It is input to the ground fault current detection circuit unit 2 including an IC circuit via the unit 1.

【0010】この地絡電流検出回路部2は電磁引き外し
装置3の励磁コイルを介して交流電路に接続されるダイ
オードD3 、抵抗R3 、R4 、コンデンサC3 からなる
整流平滑回路により直流電源Vccを得、地絡検出信号
OUT を上記電磁引き外し装置3と交流電路との間に挿入
されたサイリスタ4のトリガ回路に接続している。次に
この地絡電流検出回路部2の回路構成を図1 によって説
明する。
This ground fault current detection circuit section 2 is a direct current by a rectifying / smoothing circuit composed of a diode D 3 , resistors R 3 , R 4 and a capacitor C 3 which are connected to an AC circuit via an exciting coil of an electromagnetic trip device 3. Power source Vcc is obtained, ground fault detection signal
OUT is connected to the trigger circuit of the thyristor 4 inserted between the electromagnetic trip device 3 and the AC circuit. Next, the circuit configuration of the ground fault current detection circuit unit 2 will be described with reference to FIG.

【0011】まず波形整形回路1を介して零相変流器C
Tからの検出出力を夫々入力して、正側の波形のレベル
と基準レベルL1 とを比較する比較回路10と、負側の
波形のレベルと基準レベルL1 ’とを比較する比較回路
11と、外付けのコンデンサC4 の充電と放電とを行う
充放電回路12と、コンデンサC4 の電圧と閾値Vth
1 とを比較する第1の判定回路13と、コンデンサC4
の電圧と閾値Vth2とを比較する第2の判定回路14
と、コンデンサC4 の電圧と閾値Vth3 とを比較する
第3の判定回路15と、閾値Vth1 〜Vth3 を設定
するための抵抗R11〜R13との直列回路からなる閾値回
路16と、上記比較回路10、11の出力S1 、S
2 と、判定回路13、14、15の出力S3 、S4 、S
5 とに基づいて充放電回路12の制御信号Oを作成する
ととともに、地絡検出信号OUT の発生を制御する論理回
路からなる制御回路17と、比較回路11、12に基準
レベルL1 、L2 を与える基準電圧回路(図示せず)等
から構成される。
First, the zero-phase current transformer C is passed through the waveform shaping circuit 1.
The detection output from T to each input, comparator circuit 11 for comparing a comparison circuit 10 for comparing the level with a reference level L 1 of the positive side of the waveform, the level and the reference level L 1 'and negative side waveform When a charge and discharge circuit 12 for charging the external capacitor C 4 discharge and the voltage of the capacitor C 4 and the threshold value Vth
A first determination circuit 13 for comparing 1 and a capacitor C 4
Second determination circuit 14 for comparing the voltage of with the threshold Vth 2
A third determination circuit 15 for comparing the voltage of the capacitor C 4 with the threshold value Vth 3; and a threshold circuit 16 including a series circuit of resistors R 11 to R 13 for setting the threshold values Vth 1 to Vth 3. , The outputs S 1 and S of the comparison circuits 10 and 11
2 and the outputs S 3 , S 4 , S of the decision circuits 13, 14, 15
The control signal O of the charging / discharging circuit 12 is generated based on 5 and the control circuit 17 including a logic circuit for controlling the generation of the ground fault detection signal OUT and the reference circuits L 1 and L 2 are provided to the comparison circuits 11 and 12. And a reference voltage circuit (not shown) for providing

【0012】充放電回路12は制御回路17からの制御
信号Oが”H”の時に充電を、”L”のときに放電を行
うものである。而して正常時には比較回路10、11の
出力S1 、S2 は共に”H”であり、コンデンサC4
充電されていないため、判定回路13〜15の出力S3
〜S5は共に”L”となっている。
The charging / discharging circuit 12 performs charging when the control signal O from the control circuit 17 is "H" and discharging when the control signal O is "L". Thus, in a normal state, the outputs S 1 and S 2 of the comparison circuits 10 and 11 are both “H”, and the capacitor C 4 is not charged, so the outputs S 3 of the determination circuits 13 to 15 are generated.
~ S 5 are both "L".

【0013】この時制御回路17のノアゲートNR1
NR3 の出力は共に”L”で、ノアゲートNR4 の出力
は”H”、ノアゲートNR5 の出力は”L”、ノアゲー
トNR6 の出力は”H”となり、最終段のノアゲートN
7 の出力は”L”となる。つまり制御回路17の制御
信号Oが”L”となり、充放電回路12は放電動作状態
となっている。
At this time, the NOR gate NR 1 of the control circuit 17
The outputs of NR 3 are both “L”, the output of NOR gate NR 4 is “H”, the output of NOR gate NR 5 is “L”, the output of NOR gate NR 6 is “H”, and the NOR gate N at the final stage
The output of R 7 becomes “L”. That is, the control signal O of the control circuit 17 becomes "L", and the charging / discharging circuit 12 is in the discharging operation state.

【0014】次に地絡が起きて零相変流器CTに検出出
力が発生し、地絡電流検出回路部2に図3(a)に示す
ような波形の検出出力が波形整形回路1を通じて入力
し、入力波形の正側の最初の波形レベルが比較回路10
の基準レベルL1 を超えた場合比較回路10の出力S1
が”L”となり、そのため制御回路17のノアゲートN
1 の出力が”H”に反転し、そのためノアゲートNR
6 の出力も”L”に反転する。この反転により最終段の
ノアゲートNR7 の出力が”H”に反転する。
Next, a ground fault occurs and a detection output is generated in the zero-phase current transformer CT, and a detection output having a waveform as shown in FIG. The first waveform level of the input waveform on the positive side of the input waveform is compared circuit 10
When the reference level L 1 of is exceeded, the output S 1 of the comparison circuit 10
Becomes "L", and therefore the NOR gate N of the control circuit 17
The output of R 1 is inverted to “H”, so NOR gate NR
The output of 6 is also inverted to "L". By this inversion, the output of the NOR gate NR 7 at the final stage is inverted to "H".

【0015】尚最初に負側の波形レベルが比較回路11
の基準レベルL1 ’を超えて、比較回路11の出力S2
が”L”に反転した場合には、ノアゲートNR2 の出力
が”H”に反転し、ノアゲートNR4 の出力が”H”に
反転するが、ノアゲートNR 5 、NR6 の出力は初期状
態のままであるため、制御回路17の制御信号Oは”
L”のままである。
First, the waveform level on the negative side is compared circuit 11
Reference level L1’, The output S of the comparison circuit 112
Is inverted to "L", NOR gate NR2Output
Changes to "H", and NOR gate NRFourOutput goes to "H"
Invert, but NOR gate NR Five, NR6Output is initial
The control signal O of the control circuit 17 is "
It remains L ″.

【0016】さて上記のようにノアゲートNR7 の出力
が”H”に反転し、制御回路17の制御信号Oが”H”
になると、充放電回路12は所定の充電時定数によりコ
ンデンサC4 に充電電流IAを流して図3(b)に示す
ように一回目の充電を行う。このコンデンサC4 の充
電電圧が上昇して、判定回路13の閾値Vth1 に達す
ると、判定回路13は出力S3 を”L”から”H”に反
転する。この反転により、制御回路17のノアゲートN
1 は出力を”H”から”L”に反転する。そのためノ
アゲートNR6 の出力が”H”から”L”に反転するこ
とになり、その結果ノアゲートNR7 の出力が”L”に
戻って制御回路13の制御信号Oは”L”となる。充放
電回路12はそのためコンデンサC4 の充電を停止し
て、充電時定数よりも大きな放電時定数でコンデンサC
4 の電荷を図3(b)に示すように放電させる。この放
電開始後、入力波形の正側の波形レベルが比較回路10
の基準レベルL1 を下回ると、この比較回路10の出力
1 は”H”に反転する。この反転では制御回路17の
各ノアゲートNR1 〜NR7 の出力は反転せず、従って
制御回路17の制御信号Oも”L”のままで、充放電回
路12は放電動作を継続する。
Now, as described above, the output of the NOR gate NR 7 is inverted to "H", and the control signal O of the control circuit 17 is "H".
Then, the charging / discharging circuit 12 causes the charging current IA to flow through the capacitor C 4 according to a predetermined charging time constant and performs the first charging as shown in FIG. 3B. When the charging voltage of the capacitor C 4 rises and reaches the threshold value Vth 1 of the determination circuit 13, the determination circuit 13 inverts the output S 3 from “L” to “H”. By this inversion, the NOR gate N of the control circuit 17
R 1 inverts the output from "H" to "L". Therefore, the output of the NOR gate NR 6 is inverted from “H” to “L”, and as a result, the output of the NOR gate NR 7 returns to “L” and the control signal O of the control circuit 13 becomes “L”. Therefore, the charging / discharging circuit 12 stops charging the capacitor C 4 and causes the capacitor C 4 to have a discharging time constant larger than the charging time constant.
The charge of 4 is discharged as shown in FIG. After this discharge is started, the waveform level on the positive side of the input waveform changes to the comparator circuit 10.
Below the reference level L 1 of , the output S 1 of the comparison circuit 10 is inverted to "H". The output of each NOR gate NR 1 ~NR 7 of this inversion control circuit 17 is not inverted, thus the control signal O of the control circuit 17 also remains "L", the charge and discharge circuit 12 continues the discharging operation.

【0017】ここで判定回路13は閾値Vth1 から所
定割合まで入力電圧が降下するまでの範囲まで出力を保
持するヒステリシス機能を持ち、一方上記放電時定数は
電源周波の略半サイクルに対応する時間の間においてコ
ンデンサC4 の電圧が閾値Vth1 の上記所定割合の値
より降下しないように設定される。さて負側の波形レベ
ルが比較回路11の基準レベルL1 ’を超えると、比較
回路11は出力S2 を”H”から”L”に反転する。こ
の反転により制御回路17のノアゲートNR2 は出力
を”L”から”H”に反転し、ノアゲートNR4 は”
H”から”L”に出力を反転する。このため判定回路1
3の出力S3 とノアゲートNOR4 の出力を入力してい
るノアゲートNR5 は出力を”L”から”H”に反転す
る。従ってノアゲートNR6 の出力は”L”になり、ノ
アゲートNOR7の出力、つまり制御回路17の制御信
号Oが”H”となる。
Here, the judgment circuit 13 has a hysteresis function of holding the output from the threshold Vth 1 to the range where the input voltage drops to a predetermined rate, while the discharge time constant is a time corresponding to about half cycle of the power supply frequency. The voltage of the capacitor C 4 is set so as not to drop below the value of the predetermined ratio of the threshold value Vth 1 during the period. When the negative waveform level exceeds the reference level L 1 ′ of the comparison circuit 11, the comparison circuit 11 inverts the output S 2 from “H” to “L”. By this inversion, the NOR gate NR 2 of the control circuit 17 inverts the output from “L” to “H”, and the NOR gate NR 4 becomes “H”.
The output is inverted from H ”to“ L. ”Therefore, the determination circuit 1
The NOR gate NR 5 receiving the output S 3 of No. 3 and the output of the NOR gate NOR 4 inverts the output from “L” to “H”. Therefore, the output of the NOR gate NR 6 becomes “L”, and the output of the NOR gate NOR 7 , that is, the control signal O of the control circuit 17 becomes “H”.

【0018】充放電回路12は制御回路17の制御信号
Oが”H”になると、放電を停止して上述の充電時定数
でコンデンサC4 に充電電流IAを流して2回目の充電
を行う。コンデンサC4 の電圧が2回目の充電で上昇
して閾値Vth2 に達すると、判定回路14はその出力
4 を”L”から”H”に反転させる。この反転によ
り、制御回路17のノアゲートNR2 は出力を”H”か
ら”L”に反転する。そのためノアゲートNR4 の出力
が”L”から”H”に、ノアゲートNR5 の出力が”
H”から”L”に反転し、更にノアゲートNR6 の出力
が”L”から”H”に反転することになる。その結果ノ
アゲートNR7 の出力が”L”に戻って制御回路13の
制御信号Oは”L”となる。充放電回路12はそのため
コンデンサC4 の充電を停止して、上記放電時定数でコ
ンデンサC4 の電荷を図3(b)に示すように放電させ
る。この放電開始後、入力波形の負側の波形レベルが比
較回路11の基準レベルL1 ’を下回ると、この比較回
路11の出力S2 は”H”に反転する。この反転では制
御回路17の各ノアゲートNR1 〜NR7 の出力は反転
せず、従って制御回路17の制御信号Oも”L”のまま
で、充放電回路12は放電動作を継続する。
When the control signal O of the control circuit 17 becomes "H", the charging / discharging circuit 12 stops discharging and causes the charging current IA to flow through the capacitor C 4 with the above-mentioned charging time constant to perform the second charging. When the voltage of the capacitor C 4 rises by the second charge and reaches the threshold value Vth 2 , the decision circuit 14 inverts its output S 4 from “L” to “H”. By this inversion, the NOR gate NR 2 of the control circuit 17 inverts the output from “H” to “L”. Therefore, the output of NOR gate NR 4 changes from “L” to “H” and the output of NOR gate NR 5 changes to “H”.
The output of the NOR gate NR 6 is inverted from “L” to “H”, and the output of the NOR gate NR 6 is inverted from “L” to “H.” As a result, the output of the NOR gate NR 7 returns to “L” and the control of the control circuit 13 is performed. The signal O becomes “L.” Therefore, the charge / discharge circuit 12 stops charging the capacitor C 4 and discharges the charge of the capacitor C 4 with the above discharge time constant as shown in FIG. After the start, when the waveform level on the negative side of the input waveform falls below the reference level L 1 'of the comparison circuit 11, the output S 2 of this comparison circuit 11 is inverted to "H". The outputs of NR 1 to NR 7 are not inverted, so that the control signal O of the control circuit 17 remains “L”, and the charge / discharge circuit 12 continues the discharging operation.

【0019】ここで判定回路14も判定回路13と同様
なヒステリシス機能を持ち、また放電時定数も同様に対
応するように設定される。さて2サイクル目に入り、そ
の正側の波形レベルが比較回路10の基準レベルL1
超えると、比較回路10は出力S1 を”H”から”L”
に再び反転する。この反転により比較回路10の出力S
1 とともに判定回路14の出力S4 の反転出力を入力し
ている制御回路17のノアゲートNR3 は出力を”L”
から”H”に反転する。そのためノアゲートNR4 は”
H”から”L”に出力を反転し、この反転によりノアゲ
ートNR5 は出力を”L”から”H”に反転する。従っ
てノアゲートNR6 の出力は”L”になり、ノアゲート
NOR7 の出力、つまり制御回路17の制御信号Oが”
H”となる。
Here, the determination circuit 14 also has a hysteresis function similar to that of the determination circuit 13, and the discharge time constant is also set to correspond thereto. Now, in the second cycle, when the waveform level on the positive side exceeds the reference level L 1 of the comparison circuit 10, the comparison circuit 10 changes the output S 1 from “H” to “L”.
Flip again. By this inversion, the output S of the comparison circuit 10
The NOR gate NR 3 of the control circuit 17, which receives the inverted output of the output S 4 of the determination circuit 14 together with 1 , outputs “L”.
To "H". Therefore NOR gate NR 4 is
The output is inverted from "H" to "L", and by this inversion, the output of the NOR gate NR 5 is inverted from "L" to "H". Therefore, the output of the NOR gate NR 6 becomes "L" and the output of the NOR gate NOR 7 . That is, the control signal O of the control circuit 17 is "
H ".

【0020】充放電回路12は制御回路17の制御信号
Oが”H”になると、放電を停止して上述の充電時定数
でコンデンサC4 に充電電流IAを流して3回目の充電
を行う。コンデンサC4 の電圧が3回目の充電で上昇
して閾値Vth3 に達すると、判定回路15はその出力
5 を”L”から”H”に反転させる。この反転により
トランジスタQ1 がオンして、地絡電流検出回路部2は
図3(c)に示す地絡検出信号OUT を発生する。この地
絡検出信号OUT はサイリスタ4をトリガして導通させ、
電磁引き外し装置3を駆動し、遮断器5により交流電路
を遮断させる。またトランジスタQ2 がオンして閾値回
路16の抵抗R11〜R13をトランジスタQ2とダイオー
ドD10との直列回路で短絡して判定回路15の出力S5
の状態を保持させる。更にトランジスタQ3 をオンして
コンデンサC4 にトランジスタQ3 に接続している抵抗
0 を並列接続する。
When the control signal O of the control circuit 17 becomes "H", the charging / discharging circuit 12 stops discharging and supplies the charging current IA to the capacitor C 4 with the above-mentioned charging time constant to perform the third charging. When the voltage of the capacitor C 4 rises by the third charge and reaches the threshold value Vth 3 , the determination circuit 15 inverts its output S 5 from “L” to “H”. By this inversion, the transistor Q 1 is turned on, and the ground fault current detection circuit section 2 generates the ground fault detection signal OUT shown in FIG. 3 (c). This ground fault detection signal OUT triggers the thyristor 4 to conduct,
The electromagnetic tripping device 3 is driven, and the AC circuit is interrupted by the circuit breaker 5. Further, the transistor Q 2 is turned on, and the resistors R 11 to R 13 of the threshold circuit 16 are short-circuited in the series circuit of the transistor Q 2 and the diode D 10, and the output S 5 of the determination circuit 15
Hold the state of. Further, the transistor Q 3 is turned on, and the resistor R 0 connected to the transistor Q 3 is connected in parallel to the capacitor C 4 .

【0021】一方制御回路17のノアゲートNR7 の出
力、つまり制御回路17の制御信号Oはは判定回路15
の出力が”H”になるため、”L”に反転する。この反
転により充放電回路12は放電を開始するが、上記のよ
うに抵抗R0 が並列接続されるため放電時定数が小さく
なり、1回目、2回目の放電電流IDに比べて大きな放
電電流ICが流れることになる。充放電回路12はコン
デンサC4 の電圧が閾値Vth3 の一定割合の値よりも
降下した時に放電時定数を小さくして急速にコンデンサ
4 を放電させる。
On the other hand, the output of the NOR gate NR 7 of the control circuit 17, that is, the control signal O of the control circuit 17 is the determination circuit 15
Output becomes "H", so it is inverted to "L". By this inversion, the charging / discharging circuit 12 starts discharging, but since the resistor R 0 is connected in parallel as described above, the discharging time constant becomes small, and the discharging current IC larger than the first and second discharging currents ID. Will flow. Charging and discharging circuit 12 to rapidly discharge the capacitor C 4 by reducing the discharge time constant when the drops below the value of the predetermined percentage of the voltage threshold Vth 3 of the capacitor C 4.

【0022】上記の動作は地絡が生じて、零相変流器C
Tから交番する検出出力の波形が略サイクル以上の継続
した時の動作であるが、図4に示すように雷サージ等に
よって一過性の検出出力が零相変流器CTから発生した
場合や、或いは図5に示すように零相変流器CTの偏り
特性によってモータの起動時等に波形歪みのある検出出
力が発生した場合には、正、負、正の順序のパターンで
波形レベルが比較回路10、11の基準レベルL1 、L
1 ’を超えることが無いため、上述のような地絡検出信
号OUT は出力することはない。尚図4の(a)(b)
(c)及び図5の(a)(b)(c)は図3の(a)
(b)(c)に夫々対応し、又、も同様に対応す
る。
In the above operation, a ground fault occurs and the zero-phase current transformer C
This is the operation when the waveform of the detection output alternating from T continues for approximately more than a cycle. However, as shown in FIG. 4, when a transient detection output is generated from the zero-phase current transformer CT due to lightning surge or the like, Alternatively, as shown in FIG. 5, when a detection output having waveform distortion is generated at the time of starting the motor due to the bias characteristics of the zero-phase current transformer CT, the waveform levels are positive, negative, and positive in order. Reference levels L 1 and L of the comparison circuits 10 and 11
Since it does not exceed 1 ', the ground fault detection signal OUT as described above is not output. In addition, (a) and (b) of FIG.
(C) and (a) (b) (c) of FIG. 5 are (a) of FIG.
It corresponds to (b) and (c), respectively, and similarly.

【0023】つまり1回目の放電過程で入力波形の負の
波形レベルが比較回路11の基準レベルL1 ’を超えな
ければ、2回目の充電が行われず、放電が継続される。
また例え2回目の充電が行われても、その充電に対応す
る放電過程で入力波形の正の波形レベルが比較回路11
の基準レベルL1 を超えない場合には放電が継続され
る。そして充放電回路12はコンデンサC4 の電圧降下
が夫々の放電過程で一定割合まで進むと、その時点で放
電時定数を小さくして急速放電を行うのである。
That is, if the negative waveform level of the input waveform does not exceed the reference level L 1 'of the comparison circuit 11 in the first discharging process, the second charging is not performed and the discharging is continued.
Further, even if the second charging is performed, the positive waveform level of the input waveform remains in the comparison circuit 11 in the discharging process corresponding to the charging.
If the reference level L 1 is not exceeded, the discharge is continued. Then, when the voltage drop of the capacitor C 4 progresses to a certain rate in each discharging process, the charging / discharging circuit 12 reduces the discharging time constant at that time to perform rapid discharging.

【0024】従って、3回目の充電が行われて判定回路
15の閾値Vth3 にコンデンサC 4 の電圧が達しない
上記の場合には地絡検出時のように地絡検出信号OUT が
発生する条件が成立しないのである。
Therefore, the third charging is performed and the determination circuit
Threshold Vth of 153Capacitor C FourVoltage does not reach
In the above case, the ground fault detection signal OUT is
The conditions that occur are not met.

【0025】[0025]

【発明の効果】本発明は、上述のように構成し、制御手
段は正側比較手段の最初の出力の立ち上がりがあると、
充電手段によりコンデンサを充電を行わせ、この充電過
程で第1の判定手段からの出力があると、充電を停止さ
せて放電手段により放電を行わせ、この放電過程で上記
コンデンサの電圧降下が一定範囲を超えるまでに負側比
較手段からの出力があれば、充電手段によってコンデン
サの2回目の充電を行わせ、この充電過程で第2の判定
手段から出力があれば、充電を停止させて上記放電手段
により放電を行わせ、この放電過程で上記コンデンサの
電圧降下が一定範囲を超えるまでに上記正側比較手段か
らの2回目の出力があれば、上記充電手段によりコンデ
ンサの3回目の充電を行わせ、この充電過程で上記第3
の判定手段の出力があれば地絡検出信号を発生させるも
のであるから、地絡発生時のように零相変流器からの交
番する検出出力の波形が正、負、正と続く場合のみに地
絡検出信号を発生させることができ、雷サージ等による
一過性の電流や零相変流器の偏り特性によってモータ起
動時等に発生する検出出力では地絡検出信号を発生させ
ることがなく、高い信頼性が得られるという効果があ
る。
The present invention is configured as described above, and when the control means has the rising edge of the first output of the positive side comparing means,
When the capacitor is charged by the charging means and the output from the first judging means is generated in the charging process, the charging is stopped and the discharging means is caused to discharge, and the voltage drop of the capacitor is constant during the discharging process. If there is an output from the negative side comparing means before exceeding the range, the charging means causes the capacitor to be charged for the second time, and if there is an output from the second determining means in this charging process, the charging is stopped and If the second side output from the positive side comparing means is generated before the voltage drop of the capacitor exceeds a certain range in the discharging process by the discharging means, the third charging of the capacitor is performed by the charging means. Let's do this in the charging process
Since the ground fault detection signal is generated if there is an output of the judgment means, only when the waveform of the alternating detection output from the zero-phase current transformer continues to be positive, negative, or positive, as when a ground fault occurs. A ground fault detection signal can be generated at the output, and a ground fault detection signal can be generated at the detection output generated at motor startup due to transient current due to lightning surge, etc. and bias characteristics of the zero-phase current transformer. There is an effect that high reliability is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の地絡電流検出回路部の回路図である。FIG. 1 is a circuit diagram of a ground fault current detection circuit unit according to the present invention.

【図2】同上の回路構成図である。FIG. 2 is a circuit configuration diagram of the above.

【図3】同上の動作説明用波形図である。FIG. 3 is a waveform diagram for explaining the operation of the above.

【図4】同上の雷サージ発生時の動作説明用波形図であ
る。
FIG. 4 is a waveform diagram for explaining the operation when a lightning surge occurs in the above.

【図5】同上の歪み波形発生時の動作説明用波形図であ
る。
FIG. 5 is a waveform diagram for explaining the operation when the above distortion waveform is generated.

【符号の説明】[Explanation of symbols]

2 地絡電流検出回路部 10 比較回路 11 比較回路 12 充放電回路 13 判定回路 14 判定回路 15 判定回路 16 閾値回路 17 制御回路 2 Ground Fault Current Detection Circuit Section 10 Comparison Circuit 11 Comparison Circuit 12 Charge / Discharge Circuit 13 Judgment Circuit 14 Judgment Circuit 15 Judgment Circuit 16 Threshold Circuit 17 Control Circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 牧永 仁 大阪府門真市大字門真1048番地松下電工株 式会社内 (72)発明者 北堂 正晴 大阪府門真市大字門真1048番地松下電工株 式会社内 (72)発明者 黒田 稔 大阪府門真市大字門真1048番地松下電工株 式会社内 (72)発明者 永井 康夫 群馬県高崎市西横手町111番地 株式会社 日立製作所高崎工場内 (72)発明者 津久井 勇次 東京都小平市上水本町5丁目22番1号 株 式会社日立マイコンシステム内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hitoshi Makinaga 1048, Kadoma, Kadoma, Osaka Prefecture Matsushita Electric Works Co., Ltd. (72) Masaharu Kitado, 1048, Kadoma, Kadoma, Osaka Matsushita Electric Works Co., Ltd. (72) Inventor Minoru Kuroda 1048 Kadoma, Kadoma-shi, Osaka Prefecture Matsushita Electric Works Co., Ltd. (72) Inventor Yasuo Nagai 111 Nishiyote-cho, Takasaki-shi, Gunma Hitachi, Ltd. Takasaki Plant (72) Inventor Yuji Tsukui 5-22-1, Kamisuihoncho, Kodaira-shi, Tokyo Inside Hitachi Microcomputer System Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】交流電路の漏洩電流を検出する零相変流器
と、この零相変流器の交番する検出出力の正側の波形の
レベルと基準レベルとを比較する正側比較手段と、上記
検出出力の負側の波形のレベルと基準レベルとを比較す
る負側比較手段と、コンデンサの充電を制御する充電手
段と、上記コンデンサの電圧と第1の閾値とを比較する
第1の判定手段と、上記コンデンサの電圧と第1の閾値
より一定レベル高い第2の閾値とを比較する第2の判定
手段と、コンデンサの電圧と第2の閾値より一定レベル
高い第3の閾値とを比較する第3の判定手段と、上記両
比較手段及び第1〜第3の判定手段の出力に基づいて上
記充電手段及び放電手段を制御する制御手段とを備え、
制御手段は上記正側比較手段の最初の出力の立ち上がり
があると、上記充電手段により上記コンデンサを充電を
行わせ、この充電過程で上記第1の判定手段からの出力
があると、充電を停止させて上記放電手段により放電を
行わせ、この放電過程で上記コンデンサの電圧降下が一
定範囲を超えるまでに上記負側比較手段からの出力があ
れば、充電手段によってコンデンサの2回目の充電を行
わせ、この充電過程で上記第2の判定手段から出力があ
れば、充電を停止させて上記放電手段により放電を行わ
せ、この放電過程で上記コンデンサの電圧降下が一定範
囲を超えるまでに上記正側比較手段からの2回目の出力
があれば、上記充電手段によりコンデンサの3回目の充
電を行わせ、この充電過程で上記第3の判定手段の出力
があれば地絡検出信号を発生させることを特徴とする地
絡検出装置。
1. A zero-phase current transformer for detecting a leak current in an alternating current circuit, and a positive-side comparing means for comparing the level of a waveform on the positive side of an alternating detection output of the zero-phase current transformer with a reference level. A negative side comparison means for comparing the level of the negative side waveform of the detection output with a reference level, a charging means for controlling the charging of the capacitor, and a first side for comparing the voltage of the capacitor with a first threshold value. And a second determining means for comparing the voltage of the capacitor with a second threshold having a constant level higher than the first threshold, and a third threshold having a constant voltage higher than the second threshold for the capacitor voltage. A third judging means for comparing, and a controlling means for controlling the charging means and the discharging means based on the outputs of the both comparing means and the first to third judging means,
The control means causes the charging means to charge the capacitor when the first output of the positive side comparison means rises, and stops the charging when there is an output from the first determination means in the charging process. Then, the discharging means performs discharging, and if there is an output from the negative side comparing means before the voltage drop of the capacitor exceeds a certain range in the discharging process, the charging means performs the second charging of the capacitor. If there is an output from the second determining means in the charging process, the charging is stopped and the discharging means performs discharging, and the positive voltage is exceeded until the voltage drop of the capacitor exceeds a certain range in the discharging process. If there is a second output from the side comparing means, the charging means causes the capacitor to be charged for the third time, and if there is an output from the third determining means during this charging process, a ground fault is detected. Ground fault sensing device which is characterized in that to generate the issue.
JP28034092A 1992-10-19 1992-10-19 Ground fault detector Expired - Lifetime JP3266667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28034092A JP3266667B2 (en) 1992-10-19 1992-10-19 Ground fault detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28034092A JP3266667B2 (en) 1992-10-19 1992-10-19 Ground fault detector

Publications (2)

Publication Number Publication Date
JPH06133447A true JPH06133447A (en) 1994-05-13
JP3266667B2 JP3266667B2 (en) 2002-03-18

Family

ID=17623644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28034092A Expired - Lifetime JP3266667B2 (en) 1992-10-19 1992-10-19 Ground fault detector

Country Status (1)

Country Link
JP (1) JP3266667B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117970037A (en) * 2024-03-29 2024-05-03 昆明理工大学 SOD change-based multiple lightning identification method for power transmission line

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117970037A (en) * 2024-03-29 2024-05-03 昆明理工大学 SOD change-based multiple lightning identification method for power transmission line
CN117970037B (en) * 2024-03-29 2024-06-07 昆明理工大学 SOD change-based multiple lightning identification method for power transmission line

Also Published As

Publication number Publication date
JP3266667B2 (en) 2002-03-18

Similar Documents

Publication Publication Date Title
KR100299014B1 (en) Ground circuit breaker with broadband noise immunity
US4931893A (en) Loss of neutral or ground protection circuit
EP0782779A1 (en) Transient voltage protection circuit for electrical power converters
US4321644A (en) Power line transient limiter
GB2132828A (en) Current supply apparatus for an a c load
US7068047B2 (en) Residual current detection circuit
KR960003201B1 (en) Trip control device for circuit breaker
US4731721A (en) Regulated high-voltage power supply with output shorting prevention
US4423477A (en) Rectifier controller
US4567539A (en) Power interruption and brownout detector
US4346432A (en) Rectifier controller responsive to sensed A.C. voltage signals
JPH06133447A (en) Ground fault detector
JPS62166739A (en) Regulator overvoltage circuit
CA1036670A (en) Ground fault detector circuit with high current inhibit
JP3227228B2 (en) Ground fault detector
JP2774377B2 (en) Ground fault detector
US4346421A (en) Fault detector
US20190148930A1 (en) Ground fault current interrupter circuit
JP3376644B2 (en) Ground fault detector
JP3266666B2 (en) Ground fault detector
JPH05153725A (en) Ground fault detector
JP2505604B2 (en) Ground fault detector
JPS61154422A (en) Ground-fault detector
JPS619120A (en) Leakage detecting circuit
JPH07170651A (en) Electronic circuit breaker for wiring protection

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011218

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100111

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 11

EXPY Cancellation because of completion of term