JPH06132907A - Method and device for transmitting intra-duct signal - Google Patents

Method and device for transmitting intra-duct signal

Info

Publication number
JPH06132907A
JPH06132907A JP28173092A JP28173092A JPH06132907A JP H06132907 A JPH06132907 A JP H06132907A JP 28173092 A JP28173092 A JP 28173092A JP 28173092 A JP28173092 A JP 28173092A JP H06132907 A JPH06132907 A JP H06132907A
Authority
JP
Japan
Prior art keywords
signal
transmission
data
data signal
transmitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28173092A
Other languages
Japanese (ja)
Inventor
Katsuhiko Honjo
克彦 本庄
Sadahiko Nakano
貞彦 中野
Shigeki Ogawa
茂樹 小川
Hiroki Kuwano
博喜 桑野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP28173092A priority Critical patent/JPH06132907A/en
Publication of JPH06132907A publication Critical patent/JPH06132907A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an intra-duct signal transmission method/device which transmits the signals by using the water flowing in a duct as a transmitting medium and improves the transmitting/receiving precision and reliability regardless of quality of the fluids like the muddy water, etc., flowing in the duct and of the flowing states of those fluids. CONSTITUTION:A fluid 8 supplied always into a duct 7 is used as a transmitting medium and also the ultrasonic waves within a frequency range of several tens through several hundreds of kHz are used. Then the signal transmission data are defined against 2n pieces of digital signals (n>=1) and for each sine pulse of plural wavelengths. These signal transmission data are repetitively transmitted by N times.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、土木建設工事,配管の
建設・保守等において、土中等に付設された送水及び配
水用管路を保守している場合、或いは、送水及び配水用
管路を付設しながら掘削する場合に、送配水用管路の一
端でセンサ等を通じて得られる位置、方向、計測データ
信号等の情報を、信号伝送用のケーブルを用いないで、
管路内を流れる送配水などの流体を媒体として利用して
超音波によって信号を伝送する管路内信号伝送方法及び
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used in civil engineering construction work, construction and maintenance of piping, etc., when the water supply and distribution pipes attached to the soil are being maintained, or the water supply and distribution pipes. When excavating while attaching, information such as position, direction and measurement data signal obtained through a sensor etc. at one end of the water supply and distribution pipe, without using a cable for signal transmission,
The present invention relates to a pipe signal transmission method and device for transmitting a signal by ultrasonic waves using a fluid such as water supply and distribution flowing in a pipe as a medium.

【0002】[0002]

【従来の技術】従来、この種の技術の送配水用管路内を
信号伝送させる技術としては、ケーブルを敷設する有線
以外の方法は、電磁波,光,音波等を伝送媒体として用
いる技術が利用されてきた。
2. Description of the Related Art Conventionally, as a technique for transmitting a signal in a water distribution pipe of this type of technique, a technique using electromagnetic waves, light, sound waves or the like as a transmission medium is used as a method other than a cable laying cable. It has been.

【0003】[0003]

【発明が解決しようとする課題】しかし、管路内に水等
の流体が充満或いは流動していては、管路内の流体によ
る減衰,散乱,屈折等による、以下のような状態で、電
磁波,光,音波を長い距離伝播させることは困難であっ
た。
However, when the fluid such as water is filled or flowing in the pipeline, the electromagnetic waves are generated in the following states due to attenuation, scattering, refraction, etc. by the fluid in the pipeline. It was difficult to propagate light and sound waves over long distances.

【0004】まず、電磁波を用いる場合は、水の誘電率
が81程度であり、水中での電磁波の減衰特性を考慮す
れば、数十m以上の距離を伝播させることは困難であ
る。光を用いる場合は、透明な水が管路内に送配水され
ている場合は、充分伝播は可能であるが、泥水等の濁っ
た流体中では、反射,散乱が大きいために、信号の伝播
は困難である。
First, when electromagnetic waves are used, the permittivity of water is about 81, and it is difficult to propagate a distance of several tens of meters or more considering the attenuation characteristics of electromagnetic waves in water. When light is used, it can be sufficiently propagated when transparent water is distributed in the pipe, but in muddy fluid such as muddy water, signal is propagated because of large reflection and scattering. It is difficult.

【0005】音波を用いる場合では、管路の内径以上の
波長を用いると管路の長さ方向に伝播し難くなり、管路
の内径以下の波長を用いても、管路内を流れる泥水に生
じる気泡,泥粒子,或いは渦等によって音波の伝送が著
しく減衰するために、伝送に使用する周波数,伝送方
式,送受信機能への選択,工夫がかなり要求されるた
め、技術的な実現はかなり困難である。
In the case of using sound waves, if a wavelength larger than the inner diameter of the pipe is used, it becomes difficult to propagate in the longitudinal direction of the pipe, and even if a wavelength smaller than the inner diameter of the pipe is used, the muddy water flowing in the pipe is Since the transmission of sound waves is significantly attenuated by the generated bubbles, mud particles, vortices, etc., the frequency used for transmission, the transmission method, the choice of transmission / reception functions, and devising are required considerably. Is.

【0006】ここにおいて、本発明は、前記従来の技術
の課題に鑑み、管路内の送配水を伝送媒体として信号を
伝播し、管路内を流れる泥水等の流体の水質や流水状態
に影響されず、送受信精度及び信頼性の高い、管路内信
号伝送方法及び装置を提供せんとするものである。
In view of the above-mentioned problems of the prior art, the present invention propagates a signal by using the transmission and distribution water in the pipeline as a transmission medium, and affects the water quality and running state of fluid such as muddy water flowing in the pipeline. Therefore, it is an object of the present invention to provide a method and apparatus for transmitting a signal in a pipeline, which has high transmission / reception accuracy and reliability.

【0007】[0007]

【課題を解決するための手段】前記課題の解決は、本発
明が次に列挙する新規な特徴的構成手法及び手段を採用
する事によって達成される。すなわち、本発明方法の第
1の特徴は、常時管路内に供給されている流体を伝送媒
体として、数十kHz〜数百kHzの周波数範囲に定め
られた超音波を使用し、1パルスあたり複数波長分の正
弦パルスを1単位とし、その有無を2n個(n≧1)の
ディジタル信号に対応させて信号伝送データ分として定
めて当該信号伝送データをn回繰り返してデータ送信し
てなる管路内信号伝送方法である。
The above-mentioned problems can be solved by the present invention by adopting the novel characteristic construction methods and means listed below. That is, the first feature of the method of the present invention is to use an ultrasonic wave defined in a frequency range of several tens of kHz to several hundreds of kHz as a transmission medium, using a fluid constantly supplied in the pipeline, and A tube in which sinusoidal pulses for a plurality of wavelengths are set as one unit, the presence or absence thereof is determined as signal transmission data corresponding to 2n (n ≧ 1) digital signals, and the signal transmission data is repeatedly transmitted n times. This is an in-road signal transmission method.

【0008】本発明方法の第2の特徴は、前記方法の第
1の特徴におけるデータ送信が、その直前に予め、パイ
ロット信号をデータ信号受信側から発信し、データ信号
送信側で当該パイロット信号の受信を確認してから、デ
ータ送信を開始してなる管路内信号伝送方法である。
A second feature of the method of the present invention is that immediately before the data transmission in the first feature of the method, a pilot signal is transmitted from the data signal receiving side in advance, and the pilot signal of the pilot signal is transmitted at the data signal transmitting side. This is a signal transmission method in a pipeline, which starts data transmission after confirming reception.

【0009】本発明装置の第1の特徴は、常時管路内に
流体が供給されている管路において、伝送信号を発振す
る超音波振動子と、データ信号をディジタル化するA/
D変換部と、当該A/D変換部で変換されたディジタル
データ信号で搬送周波数を変調して送出する送信回路部
と、当該送信回路部から出力された信号を増幅して前記
超音波振動子に出力する増幅回路部とを備え、前記管路
の終端或いはその途中に設置される送信器と、超音波振
動子と、当該超音波振動子で受信された伝送データ信号
を予め増幅する前置増幅器とを備え、前記管路の流体が
供給される開口端に設置される受信器と、前記管路内の
性質に応じて前記受信器からの超音波による受信データ
信号を濾波する濾波手段と、当該濾波手段から出力され
た濾波受信データ信号を増幅する増幅器と、当該増幅器
からの増幅濾波受信データ信号を二値化して、更に、二
値化データ信号をN回加算平均処理する信号処理部とを
備える信号処理器と、を備えてなる管路内信号伝送装置
である。
The first feature of the device of the present invention is that an ultrasonic transducer that oscillates a transmission signal and an A / D that digitizes a data signal are provided in a pipeline in which fluid is constantly supplied to the pipeline.
A D conversion section, a transmission circuit section that modulates a carrier frequency with the digital data signal converted by the A / D conversion section and sends the modulated carrier frequency, and an ultrasonic transducer that amplifies the signal output from the transmission circuit section. A transmitter installed at or at the end of the pipeline, an ultrasonic oscillator, and a pre-amplifier that pre-amplifies a transmission data signal received by the ultrasonic oscillator. A receiver provided with an amplifier at an open end to which the fluid of the pipeline is supplied, and a filtering means for filtering a reception data signal by an ultrasonic wave from the receiver according to a property in the pipeline. An amplifier that amplifies the filtered reception data signal output from the filtering means, a signal processing unit that binarizes the amplified filtered reception data signal from the amplifier, and further performs addition and averaging processing of the binarized data signal N times. And a signal processor having A conduit signal transmission device including a.

【0010】本発明装置の第2の特徴は、前記装置の第
1の特徴における受信器と送信器において、当該送信器
を作動させるための送信器用電源を超音波信号によって
電源投入・切断するため、管路内の流体に超音波を伝播
させてパイロット信号を送信するパイロット信号発生回
路を前記受信器に、かつ、当該パイロット信号を受信し
て電源投入・切断を行うパイロット信号受信回路を前記
送信器にそれぞれ備えてなる管路内信号伝送装置であ
る。
A second feature of the device of the present invention is that, in the receiver and the transmitter of the first feature of the device, the power supply for the transmitter for operating the transmitter is turned on / off by an ultrasonic signal. , A pilot signal generating circuit for transmitting a pilot signal by propagating ultrasonic waves to a fluid in a pipeline to the receiver, and a pilot signal receiving circuit for receiving the pilot signal and turning on / off the power It is a signal transmission device in a pipeline provided in each of the vessels.

【0011】[0011]

【作用】本発明は、前記のような手法及び手段を講じる
から、土中等に敷設されている送配水管中の流体を利用
して、超音波を使用して位置,方向,傾き,深さ等の情
報の信号等を伝達するので、簡易に情報伝達を行える。
また、ケーブルを敷設できないような配管を通じても情
報の伝送が効率的に行える。
In the present invention, since the above-mentioned method and means are taken, the position, the direction, the inclination, and the depth of ultrasonic waves are utilized by using the fluid in the water pipes laid in the soil. Since information signals and the like are transmitted, information can be easily transmitted.
In addition, information can be efficiently transmitted through pipes where cables cannot be laid.

【0012】[0012]

【実施例】(方法例)本発明の実施例を説明する。ま
ず、本発明方法に用いる装置構成の概略を図面につき説
明する。図1は本実施例を適用して信号伝送を行う際の
装置構成の概略説明図である。Aは管路内信号伝送装
置、1は送信器、2は受信器、3は信号処理器、4は表
示・記憶部、5は送信器1用電源、6は受信器2及び信
号処理器3用電源、7は送配水管路(以下、単に管路と
する)、8は管路7の中を流れる泥水等の伝達媒体(以
下、単に媒体とする)である。
EXAMPLE (Method Example) An example of the present invention will be described. First, the outline of the apparatus configuration used in the method of the present invention will be described with reference to the drawings. FIG. 1 is a schematic explanatory diagram of a device configuration when performing signal transmission by applying this embodiment. A is an in-pipe signal transmission device, 1 is a transmitter, 2 is a receiver, 3 is a signal processor, 4 is a display / storage unit, 5 is a power supply for the transmitter 1, 6 is a receiver 2 and a signal processor 3. A power source for use, 7 is a water transmission and distribution pipeline (hereinafter, simply referred to as a pipeline), and 8 is a transmission medium (hereinafter, simply referred to as a medium) such as muddy water flowing in the pipeline 7.

【0013】次に、本方法例で用いる超音波の特徴を説
明する。まず、使用する周波数範囲を、数十kHz〜数
百kHzの範囲に定める。超音波の伝送方式は、1パル
スあたり100〜1,000波長分の正弦波パルスと
し、このパルスの時間的に連なる2n個を1データ分の
超音波信号パルスとして、繰り返し数Nとして送受信す
る。
Next, the characteristics of ultrasonic waves used in this method example will be described. First, the frequency range to be used is set to a range of several tens kHz to several hundreds kHz. The transmission method of ultrasonic waves is a sinusoidal pulse of 100 to 1,000 wavelengths per pulse, and 2n time-sequential pulses of this pulse are transmitted / received as an ultrasonic signal pulse of one data with a repetition number N.

【0014】伝送された超音波信号パルスは、受信側に
おいて前記の周波数範囲内のデータ信号だけを濾波して
抽出し、再びディジタル化によって信号パルスを再生
し、再生されたN回の繰り返し信号群を加算平均処理し
て伝送データ信号の受信精度及び信頼性を高める。
From the transmitted ultrasonic signal pulse, only the data signal within the above frequency range is filtered and extracted at the receiving side, the signal pulse is reproduced again by digitization, and the reproduced N times repeated signal group. Is added and averaged to improve the reception accuracy and reliability of the transmission data signal.

【0015】本方法例の実行手順を次に述べる。まず、
受信器2側からパイロット信号を発信する。当該パイロ
ット信号は、超音波信号に変換されて管路7内の媒体8
を通じて送信器1側に受信される。これによって、送信
器1の電源5がONされて、送信器1側からデータ送信
信号が発信される。当該データ送信信号は、管路7内の
媒体8を通じて受信器2側に伝送される。
The execution procedure of this method example will be described below. First,
A pilot signal is transmitted from the receiver 2 side. The pilot signal is converted into an ultrasonic signal, and the medium 8 in the conduit 7 is converted.
Through the transmitter 1 side. As a result, the power supply 5 of the transmitter 1 is turned on, and the data transmission signal is transmitted from the transmitter 1 side. The data transmission signal is transmitted to the receiver 2 side through the medium 8 in the conduit 7.

【0016】次に、本方法例の信号伝送について図面を
参照して詳述する。図2は送信器1側の送信伝送データ
信号Tと受信器2側の受信伝送データ信号Rの関係を示
すタイムチャートである。図中、T1は送信器1側の送
信トーク開始信号、Δtは信号1ビットの時間単位、T
nは1パルスあたり100〜1,000波長分の正弦波
パルスが2n個ずつ1ビット間隔でディジタル信号とし
て組み合わされた送信伝送データ信号、R1は受信器2
側の受信トーク開始信号、Rnは受信器2側で受信され
た受信伝送データ信号である。
Next, the signal transmission of this method example will be described in detail with reference to the drawings. FIG. 2 is a time chart showing the relationship between the transmission transmission data signal T on the transmitter 1 side and the reception transmission data signal R on the receiver 2 side. In the figure, T1 is a transmission talk start signal on the transmitter 1 side, Δt is a time unit of 1 bit of signal, T
n is a transmission transmission data signal in which 2n sine wave pulses of 100 to 1,000 wavelengths per pulse are combined as a digital signal at 1-bit intervals, and R1 is a receiver 2
Side reception talk start signal, Rn is a reception transmission data signal received by the receiver 2 side.

【0017】送信トーク開始信号T1と受信トーク開始
信号R1との間の遅延δは、媒体8の伝播音速vによ
り、δ=L/vで与えられる。本方法例の場合、最小信
号単位は、2×Δtとしているため、2n 種類の信号が
伝送できる。なお、精度と信頼性確保のため、これらT
1からTnのデータをN回繰り返し送受信する。また、
受信器2側では受信トーク開始信号R1に同期させて、
加算平均処理して、データ信号Rnの信頼性を高めてい
る。
The delay δ between the transmission talk start signal T1 and the reception talk start signal R1 is given by δ = L / v by the propagation sound velocity v of the medium 8. In the case of this method example, since the minimum signal unit is 2 × Δt, 2 n types of signals can be transmitted. In order to ensure accuracy and reliability, these T
Data from 1 to Tn is repeatedly transmitted and received N times. Also,
On the receiver 2 side, in synchronization with the reception talk start signal R1,
The reliability of the data signal Rn is improved by performing the averaging process.

【0018】(装置例)次に、本発明方法に用いる装置
例を、図面につき詳述する。図3は送信器1の構成例を
示すブロック・ダイアグラム、図4は受信器2の構成例
を示すブロック・ダイアグラム、図5は信号処理器3の
構成例を示すブロック・ダイアグラムである。なお、図
3乃至図5においては、各回路部への電源供給線は省略
している。
(Example of Apparatus) Next, an example of an apparatus used in the method of the present invention will be described in detail with reference to the drawings. 3 is a block diagram showing a configuration example of the transmitter 1, FIG. 4 is a block diagram showing a configuration example of the receiver 2, and FIG. 5 is a block diagram showing a configuration example of the signal processor 3. In addition, in FIGS. 3 to 5, the power supply line to each circuit unit is omitted.

【0019】図中、9は超音波振動子たる送信用マイク
ロフォン、10は端子Xから得た情報信号をディジタル
信号に変換するA/D変換部、11はA/D変換部10
からのディジタル信号を搬送周波数に載せる送信回路
部、12は送信回路部11からの信号を増幅して送信用
マイクロフォン9へ送信データ信号Tとして送る送信信
号増幅回路部である。
In the figure, 9 is a transmission microphone which is an ultrasonic transducer, 10 is an A / D converter for converting an information signal obtained from the terminal X into a digital signal, and 11 is an A / D converter 10.
Reference numeral 12 denotes a transmission signal amplification circuit portion for mounting a digital signal from the transmission frequency signal on the carrier frequency, and reference numeral 12 denotes a transmission signal amplification circuit portion for amplifying the signal from the transmission circuit portion 11 and transmitting it to the transmission microphone 9 as the transmission data signal T.

【0020】13は受信器2側から送信されてくるパイ
ロット信号Sを送信用マイクロフォン9を通して受信す
るパイロット信号受信回路部、14はパイロット信号受
信回路部13に常時電力Pを供給しかつパイロット信号
S受信後自動的に電源5を動作させてA/D変換部1
0,送信回路部11,送信信号増幅回路部12へ電力P
の供給を開始する補助電源、15は送信用マイクロフォ
ン9の送受信の指向性を管路7の軸方向に高めるホーン
である。
Reference numeral 13 denotes a pilot signal receiving circuit section for receiving the pilot signal S transmitted from the receiver 2 side through the transmission microphone 9, and 14 always supplies electric power P to the pilot signal receiving circuit section 13 and pilot signal S. After receiving, the power supply 5 is automatically operated to operate the A / D converter 1
0, the power P to the transmission circuit unit 11 and the transmission signal amplification circuit unit 12
Is a supplementary power source for starting the supply of the signal, and 15 is a horn for increasing the directivity of transmission and reception of the transmission microphone 9 in the axial direction of the conduit 7.

【0021】16は超音波振動子たる受信用マイクロフ
ォン、17は送信器1からの送信データ信号Tを受信用
マイクロフォン16を通して受信しそのまま増幅して増
幅受信データ信号Raとして端子Yaを通じて信号処理
器3へ送る前置増幅器、18は端子Ybを通じて電源6
から電力Pを供給されかつ伝送開始時にパイロット信号
Sを送信するパイロット信号送信回路部である。
Reference numeral 16 denotes a reception microphone which is an ultrasonic transducer, and 17 denotes a transmission data signal T from the transmitter 1 through the reception microphone 16, which is amplified as it is and an amplified reception data signal Ra as a signal processing unit 3 through a terminal Ya. A preamplifier for sending to 18 and a power source 6 through a terminal Yb.
It is a pilot signal transmission circuit unit that is supplied with electric power P from and transmits a pilot signal S at the start of transmission.

【0022】19は前置増幅器17から端子Yaを通じ
て受け取った増幅受信データ信号Raを濾波するバンド
・パス・フィルタ(以下、BPFとする)、20はBP
F19により濾波された濾波受信データ信号Rbを増幅
する信号増幅器、21は信号増幅器20からの増幅濾波
データ信号Rcを演算・処理して表示・記憶部4への端
子Ycへ受信データ信号Rとして送る信号処理部であ
る。なお、電源6は前置増幅器17,パイロット信号送
信回路部18,BPF19,信号増幅器20及び信号処
理部21に電力を供給し、かつ、当該電源6のON後、
自動的にパイロット信号送信回路部18からパイロット
信号Sを送信させるものである。
Reference numeral 19 is a band pass filter (hereinafter referred to as BPF) for filtering the amplified reception data signal Ra received from the preamplifier 17 through the terminal Ya, and 20 is BP.
A signal amplifier which amplifies the filtered reception data signal Rb filtered by F19, 21 operates and processes the amplified filtered data signal Rc from the signal amplifier 20 and sends it as a reception data signal R to a terminal Yc to the display / storage unit 4. It is a signal processing unit. The power supply 6 supplies power to the preamplifier 17, the pilot signal transmission circuit unit 18, the BPF 19, the signal amplifier 20, and the signal processing unit 21, and after the power supply 6 is turned on,
The pilot signal transmission circuit section 18 automatically transmits the pilot signal S.

【0023】(動作例)本装置例は、以上のような具体
的実施態様を呈するが、次に、その動作について図面を
参照しながら説明する。図6は送信器1側の動作の流れ
を説明するフロー・チャート、図7は受信器2及び信号
処理器3側の動作の流れを説明するフロー・チャートで
ある。
(Example of Operation) The example of the present apparatus exhibits the specific embodiment as described above. Next, the operation will be described with reference to the drawings. FIG. 6 is a flow chart for explaining the operation flow on the transmitter 1 side, and FIG. 7 is a flow chart for explaining the operation flow on the receiver 2 and signal processor 3 side.

【0024】送信器1側の動作としては、まず受信器2
からのパイロット信号Sを送信用マイクロフォン9を経
てパイロット信号受信回路部13で受信する(図6のス
テップI)。その後、電源5がONになり(図6のステ
ップII)、各部に電源が供給され、伝送データ信号Tを
送信し(図6のステップIII )、これをN回繰り返す
(図6のステップIV)。この場合のパイロット信号S
は、前記方法例で述べた周波数の超音波パルスを用い
る。
Regarding the operation on the transmitter 1 side, first, the receiver 2
The pilot signal S from is received by the pilot signal receiving circuit unit 13 via the transmitting microphone 9 (step I in FIG. 6). Thereafter, the power supply 5 is turned on (step II in FIG. 6), the power is supplied to each part, the transmission data signal T is transmitted (step III in FIG. 6), and this is repeated N times (step IV in FIG. 6). . Pilot signal S in this case
Uses an ultrasonic pulse of the frequency described in the above method example.

【0025】受信器2及び信号処理器3の動作として
は、まず、電源6をONとする(図7のステップI)。
すると、受信器2のパイロット信号送信回路部18は、
パイロット信号Sを送信器1に向けて受信用マイクロフ
ォン16を通じて自動的に送信する(図7のステップI
I)。
In the operation of the receiver 2 and the signal processor 3, first, the power supply 6 is turned on (step I in FIG. 7).
Then, the pilot signal transmission circuit unit 18 of the receiver 2
The pilot signal S is automatically transmitted to the transmitter 1 through the receiving microphone 16 (step I in FIG. 7).
I).

【0026】そうすると、前記の送信器1側の動作が行
われて伝送データ信号Tが媒体8を通じて送信されてく
るので、伝送データ信号Tを受信用マイクロフォン16
を通じて伝送データ信号Tを受信する(図7のステップ
III )。
Then, the operation on the transmitter 1 side is performed and the transmission data signal T is transmitted through the medium 8. Therefore, the transmission data signal T is received by the receiving microphone 16
The transmission data signal T is received through (step of FIG. 7).
III).

【0027】次に、マイクロフォン16を通じて受信さ
れたデータ信号Tは、前置増幅器17により増幅されて
BPF19に入力され、当該BPF19は、増幅受信デ
ータ信号Raを下限周波数(以下、fLとする)及び上
限周波数(以下、fHとする)の範囲で濾波する(図7
のステップIV)。次に、濾波された濾波受信データ信号
Rbは、信号増幅器20により増幅され(図7のステッ
プV)、信号処理部21に入力される。
Next, the data signal T received through the microphone 16 is amplified by the preamplifier 17 and input to the BPF 19, and the BPF 19 lowers the amplified reception data signal Ra to the lower limit frequency (hereinafter referred to as fL) and It filters in the range of the upper limit frequency (hereinafter referred to as fH) (Fig. 7).
Step IV). Next, the filtered filtered reception data signal Rb is amplified by the signal amplifier 20 (step V in FIG. 7) and input to the signal processing unit 21.

【0028】信号処理部21は信号増幅器20から出力
された増幅濾波データ信号Rcを、まず濾波後の信号波
形の振幅包絡線を元に一定電圧値をしきい値として、パ
ルスデータ信号群を二値化する(図7のステップVI)。
The signal processing unit 21 first outputs the amplified filtered data signal Rc output from the signal amplifier 20 to a pulse data signal group with a constant voltage value as a threshold value based on the amplitude envelope of the filtered signal waveform. The value is converted (step VI in FIG. 7).

【0029】そして、以上のような一連の動作をN回繰
り返したかどうかを判断し(図7のステップVII )、N
回繰り返されたならば、受信・処理された二値化データ
信号を加算平均処理する(図7のステップVIII)。
Then, it is judged whether or not the series of operations described above is repeated N times (step VII in FIG. 7), and N
If repeated, the received and processed binarized data signal is added and averaged (step VIII in FIG. 7).

【0030】以上のように信号処理器3で処理されたデ
ータ信号Rは、端子Ycを通して表示・記憶器4に入力
され、人間が検知可能なように表示されたり、磁気記憶
媒体へ記憶されたりする。
The data signal R processed by the signal processor 3 as described above is input to the display / storage device 4 through the terminal Yc and displayed so that it can be detected by a human or stored in a magnetic storage medium. To do.

【0031】(測定例)続いて、管路径80mmφ,長
さ17.8mの鋼管に泥水を流した場合の超音波信号の
伝送結果について示す。超音波の送信には、マイクロフ
ォンへの印加電圧を正弦パルス波として最大振幅160
Vp-p で、パルス数Np=1000として、水温を32
℃とした。
(Measurement Example) Next, the result of transmission of ultrasonic signals when mud is flowed through a steel pipe having a pipe diameter of 80 mmφ and a length of 17.8 m will be described. For ultrasonic wave transmission, the voltage applied to the microphone is a sinusoidal pulse wave with a maximum amplitude of 160.
With Vp-p, the number of pulses Np = 1000 and the water temperature is 32
℃ was made.

【0032】図8は、伝送に用いた超音波の周波数と信
号振幅の利得の関係を示すグラフである。信号振幅の利
得は、送受信マイクロフォン9,16を1mの距離で対
向させた場合の受信利得を基準とした。管路7内を流れ
る泥水の流量Vは、0〜140(リットル/min.)
と変化させた。
FIG. 8 is a graph showing the relationship between the frequency of the ultrasonic wave used for transmission and the gain of the signal amplitude. The signal amplitude gain is based on the reception gain when the transmission / reception microphones 9 and 16 are opposed to each other at a distance of 1 m. The flow rate V of the muddy water flowing in the pipe 7 is 0 to 140 (liter / min.).
I changed it.

【0033】図8より、流量Vが増加するに伴って、f
=100kHz〜300kHzの範囲で信号の受信利得
は、20dBから60dB程度に減衰することがわか
る。しかし、f=400kHzでは、受信利得の減衰が
10dB以下となる。従って、この場合は、BPF19
の通過周波数範囲を、fL=300kHz,fH=50
0kHzと定めると、大幅に信号利得を上昇させること
が可能となる。
From FIG. 8, as the flow rate V increases, f
It can be seen that the signal reception gain is attenuated from about 20 dB to about 60 dB in the range of 100 kHz to 300 kHz. However, at f = 400 kHz, the attenuation of the reception gain is 10 dB or less. Therefore, in this case, BPF19
FL = 300 kHz, fH = 50
When the frequency is set to 0 kHz, the signal gain can be significantly increased.

【0034】図9は、流量V=100(リットル/mi
n.)とし、泥水の濃度の違いによる超音波の周波数と
信号振幅の利得の関係を示すグラフである。泥水の濃度
は、D1=0.4(vol.%),D2=0.8(vo
l.%)とした。図9に示すように、信号の利得は、泥
水の濃度が2倍になると、100kHz〜200kHz
の周波数範囲で20dB程度低下する。しかし、200
kHz以上では、10dB以内の低下に抑えられる。従
って、この場合も、BPF19の通過周波数範囲をfL
=350kHz,fH=450kHzと定めると、信号
利得を大きく稼ぐことが可能となる。
FIG. 9 shows the flow rate V = 100 (liter / mi).
n. ) Is a graph showing the relationship between the frequency of ultrasonic waves and the gain of signal amplitude due to the difference in the concentration of muddy water. The concentration of muddy water is D1 = 0.4 (vol.%), D2 = 0.8 (vo
l. %). As shown in FIG. 9, the gain of the signal is 100 kHz to 200 kHz when the concentration of the muddy water is doubled.
In the frequency range of about 20 dB. But 200
Above kHz, it is suppressed to fall within 10 dB. Therefore, also in this case, the pass frequency range of the BPF 19 is fL.
= 350 kHz and fH = 450 kHz, it is possible to obtain a large signal gain.

【0035】[0035]

【発明の効果】以上のように、本発明によれば、土中等
に敷設されている配管或いは土中を掘削しながら建設さ
れる配管中を用いて管の両端、或いは、その途中におい
て、その場所でのセンサ等から得られる位置,方向,傾
き,深さ等の情報の信号をケーブルを利用することなし
に、他端に伝送することが可能となる。
As described above, according to the present invention, the pipe laid in the soil or the pipe constructed while excavating the soil is used at both ends of the pipe or in the middle thereof. It becomes possible to transmit a signal of information such as position, direction, inclination, and depth obtained from a sensor or the like at a place to the other end without using a cable.

【0036】また、土中に限らず、内部に液体が流れ、
ケーブルを敷設できない配管を通して両端或いは途中の
2点間において信号及び情報を伝送する場合に、効率的
に信号の伝送を行うことが実現できる。
The liquid flows not only in the soil but also inside,
When signals and information are transmitted at both ends or between two points on the way through a pipe in which a cable cannot be installed, efficient signal transmission can be realized.

【0037】さらに、こうした技術は、管径及び水流等
の状態に対して超音波の周波数及び伝播モードを適当に
選ぶこと、或いは、これらの条件に従って装置を大型化
したり、送信出力を大きくすることによって、石油プラ
ント、パイプライン、側溝及び河川において、内部を流
れる流体(水,石油等)を媒体に、遠距離間の信号の伝
送が実現可能である等、優れた有用性を発揮する。
Further, in such a technique, the frequency and propagation mode of the ultrasonic wave are appropriately selected depending on the conditions such as the pipe diameter and the water flow, or the apparatus is enlarged or the transmission output is increased according to these conditions. Thus, in oil plants, pipelines, gutters and rivers, it is possible to realize signal transmission over a long distance using a fluid (water, petroleum, etc.) flowing inside as a medium, and exhibits excellent usefulness.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法例を適用して信号伝送を行う際の装
置構成の概略説明図である。
FIG. 1 is a schematic explanatory diagram of a device configuration when signal transmission is performed by applying a method example of the present invention.

【図2】同上、送信器側の送信伝送データ信号と受信器
側の受信伝送データ信号の関係を示すタイムチャートで
ある。
FIG. 2 is a time chart showing the relationship between the transmission transmission data signal on the transmitter side and the reception transmission data signal on the receiver side.

【図3】本発明装置の送信器の構成例を示すブロック・
ダイアグラムである。
FIG. 3 is a block diagram showing a configuration example of a transmitter of the device of the present invention.
It is a diagram.

【図4】同上、受信器の構成例を示すブロック・ダイア
グラムである。
FIG. 4 is a block diagram showing an example of the configuration of the receiver.

【図5】同上、信号処理器の構成例を示すブロック・ダ
イアグラムである。
FIG. 5 is a block diagram showing an example of the configuration of the signal processor.

【図6】同上、送信器側の動作の流れを説明するフロー
・チャートである。
FIG. 6 is a flow chart for explaining the flow of operation on the transmitter side in the above.

【図7】同上、受信器及び信号処理器側の動作の流れを
説明するフロー・チャートである。
FIG. 7 is a flow chart explaining the flow of operations on the side of the receiver and the side of the signal processor.

【図8】本発明の実施例の実験を示すグラフで、伝送に
用いた超音波の周波数と信号振幅の利得の関係を示すグ
ラフである。
FIG. 8 is a graph showing an experiment of an example of the present invention and is a graph showing a relationship between a frequency of an ultrasonic wave used for transmission and a gain of a signal amplitude.

【図9】同上、泥水の濃度の違いによる超音波の周波数
と信号振幅の利得の関係を示すグラフである。
FIG. 9 is a graph showing the relationship between the frequency of ultrasonic waves and the gain of signal amplitude depending on the difference in the concentration of muddy water.

【符号の説明】[Explanation of symbols]

A…管路内信号伝送装置 1…送信器 2…受信器 3…信号処理器 4…表示・記憶部 5…送信器用電源 6…受信器及び信号処理器用電源 7…送配水管路 8…流体 9…送信用マイクロフォン 10…A/D変換部 11…送信回路部 12…送信信号増幅回路部 13…パイロット信号受信回路部 14…補助電源 15…ホーン 16…受信用マイクロフォン 17…前段増幅器 18…パイロット信号送信回路部 19…バンド・パス・フィルタ 20…信号増幅器 21…信号処理部 S…パイロット信号 T…送信データ信号 A ... In-pipe signal transmission device 1 ... Transmitter 2 ... Receiver 3 ... Signal processor 4 ... Display / storage unit 5 ... Transmitter power supply 6 ... Receiver and signal processor power supply 7 ... Water distribution pipe 8 ... Fluid 9 ... Transmission microphone 10 ... A / D conversion unit 11 ... Transmission circuit unit 12 ... Transmission signal amplification circuit unit 13 ... Pilot signal reception circuit unit 14 ... Auxiliary power supply 15 ... Horn 16 ... Reception microphone 17 ... Pre-stage amplifier 18 ... Pilot Signal transmission circuit unit 19 ... Band pass filter 20 ... Signal amplifier 21 ... Signal processing unit S ... Pilot signal T ... Transmission data signal

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年12月1日[Submission date] December 1, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項1[Name of item to be corrected] Claim 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0007】[0007]

【課題を解決するための手段】前記課題の解決は、本発
明が次に列挙する新規な特徴的構成手法及び手段を採用
する事によって達成される。すなわち、本発明方法の第
1の特徴は、常時管路内に供給されている流体を伝送媒
体として、数十kHz〜数百kHzの周波数範囲に定め
られた超音波を使用し、1パルスあたり複数波長分の正
弦パルスを1単位とし、その有無を2n個(n≧1)の
ディジタル信号に対応させて信号伝送データ分として定
めて当該信号伝送データをN回繰り返してデータ送信し
てなる管路内信号伝送方法である。
The above-mentioned problems can be solved by the present invention by adopting the novel characteristic construction methods and means listed below. That is, the first feature of the method of the present invention is to use an ultrasonic wave defined in a frequency range of several tens of kHz to several hundreds of kHz as a transmission medium, using a fluid constantly supplied in the pipeline, and A tube in which sinusoidal pulses for a plurality of wavelengths are set as one unit, the presence or absence thereof is determined as signal transmission data corresponding to 2n (n ≧ 1) digital signals, and the signal transmission data is repeatedly transmitted N times. This is an in-road signal transmission method.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 桑野 博喜 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Hiroki Kuwano 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】常時管路内に供給されている流体を伝送媒
体として、 数十kHz〜数百kHzの周波数範囲に定められた超音
波を使用し、 1パルスあたり複数波長分の正弦パルスを1単位とし、
その有無を2n個(n≧1)のディジタル信号に対応さ
せて信号伝送データ分として定めて当該信号伝送データ
をn回繰り返してデータ送信することを特徴とする管路
内信号伝送方法。
1. An ultrasonic wave set in a frequency range of several tens of kHz to several hundreds of kHz is used as a transmission medium, which is a fluid constantly supplied in a pipe, and sinusoidal pulses of a plurality of wavelengths per pulse are used. 1 unit,
An in-pipe signal transmission method, characterized in that the presence or absence thereof is determined as signal transmission data corresponding to 2n (n ≧ 1) digital signals, and the signal transmission data is repeatedly transmitted n times.
【請求項2】データ送信は、その直前に予め、パイロッ
ト信号をデータ信号受信側から発信し、データ信号送信
側で当該パイロット信号の受信を確認してから、データ
送信を開始することを特徴とする前記請求項1記載の管
路内信号伝送方法。
2. The data transmission is characterized in that a pilot signal is transmitted from the data signal receiving side in advance immediately before the data transmission, and the data transmission is started after the reception of the pilot signal is confirmed on the data signal transmitting side. The method for transmitting an in-pipe signal according to claim 1, wherein
【請求項3】常時管路内に流体が供給されている管路に
おいて、 伝送信号を発振する超音波振動子と、データ信号をディ
ジタル化するA/D変換部と、当該A/D変換部で変換
されたディジタルデータ信号で搬送周波数を変調して送
出する送信回路部と、当該送信回路部から出力された変
調データ信号を増幅して前記超音波振動子に出力する増
幅回路部とを備え、前記管路の終端或いはその途中に設
置される送信器と、 超音波振動子と、当該超音波振動子で受信された伝送デ
ータ信号を予め増幅する前置増幅器とを備え、前記管路
の流体が供給される開口端に設置される受信器と、 前記管路内の性質に応じて前記受信器からの超音波によ
る受信データ信号を濾波する濾波手段と、当該濾波手段
から出力された濾波受信データ信号を増幅する増幅器
と、当該増幅器からの増幅濾波受信データ信号を二値化
して、更に、二値化データ信号をN回加算平均処理する
信号処理部とを備える信号処理器と、 を備えてなることを特徴とする管路内信号伝送装置。
3. An ultrasonic transducer that oscillates a transmission signal, an A / D conversion unit that digitizes a data signal, and an A / D conversion unit in a pipe in which a fluid is constantly supplied to the pipe. A transmission circuit section that modulates the carrier frequency with the digital data signal converted in step 1 and sends it out; and an amplification circuit section that amplifies the modulated data signal output from the transmission circuit section and outputs it to the ultrasonic transducer. , A transmitter installed at the end of the pipeline or in the middle of the pipeline, an ultrasonic transducer, and a preamplifier that amplifies a transmission data signal received by the ultrasonic transducer in advance, A receiver installed at an open end to which a fluid is supplied, a filtering means for filtering a reception data signal by an ultrasonic wave from the receiver according to a property in the conduit, and a filtering output from the filtering means. Amplifies the received data signal And a signal processor that binarizes the amplified and filtered received data signal from the amplifier and that further performs a averaging process on the binarized data signal N times. Characteristic signal transmission device in pipeline.
【請求項4】受信器と送信器において、当該送信器を作
動させるための送信器用電源を超音波パイロット信号に
よって電源投入・切断するため、管路内の流体に超音波
を伝播させてパイロット信号を送信するパイロット信号
発生回路を、前記受信器に、かつ、当該パイロット信号
を受信して電源投入・切断を行うパイロット信号受信回
路を前記送信器にそれぞれ備えてなる請求項3記載の管
路内信号伝送装置。
4. In the receiver and the transmitter, the power source for the transmitter for operating the transmitter is turned on / off by the ultrasonic pilot signal, so that the ultrasonic wave is propagated to the fluid in the pipeline and the pilot signal is transmitted. 4. The pipeline according to claim 3, wherein the receiver is provided with a pilot signal generating circuit for transmitting the pilot signal, and the transmitter is provided with a pilot signal receiving circuit for receiving the pilot signal and turning on / off the power. Signal transmission equipment.
JP28173092A 1992-10-20 1992-10-20 Method and device for transmitting intra-duct signal Pending JPH06132907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28173092A JPH06132907A (en) 1992-10-20 1992-10-20 Method and device for transmitting intra-duct signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28173092A JPH06132907A (en) 1992-10-20 1992-10-20 Method and device for transmitting intra-duct signal

Publications (1)

Publication Number Publication Date
JPH06132907A true JPH06132907A (en) 1994-05-13

Family

ID=17643186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28173092A Pending JPH06132907A (en) 1992-10-20 1992-10-20 Method and device for transmitting intra-duct signal

Country Status (1)

Country Link
JP (1) JPH06132907A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0848512A2 (en) * 1996-12-11 1998-06-17 Labarge, Inc. Method of and system for communication between points along a fluid flow
CN103873174A (en) * 2014-04-08 2014-06-18 苏州信美通信技术有限公司 Power-saving control method for receiving terminal in cloaking acoustic signal broadcast transmission

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58153433A (en) * 1982-03-08 1983-09-12 Fujitsu Ltd Communication system
JPH02272838A (en) * 1989-04-13 1990-11-07 Nippon Signal Co Ltd:The Data processor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58153433A (en) * 1982-03-08 1983-09-12 Fujitsu Ltd Communication system
JPH02272838A (en) * 1989-04-13 1990-11-07 Nippon Signal Co Ltd:The Data processor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0848512A2 (en) * 1996-12-11 1998-06-17 Labarge, Inc. Method of and system for communication between points along a fluid flow
EP0848512A3 (en) * 1996-12-11 2000-05-24 Labarge, Inc. Method of and system for communication between points along a fluid flow
CN103873174A (en) * 2014-04-08 2014-06-18 苏州信美通信技术有限公司 Power-saving control method for receiving terminal in cloaking acoustic signal broadcast transmission

Similar Documents

Publication Publication Date Title
US7423931B2 (en) Acoustic system for communication in pipelines
EP0161689B1 (en) Chain-like self-moving robot
US20140133276A1 (en) Telemetry System, a Pipe and a Method of Transmitting Information
CA2279257A1 (en) An ultrasonic flow velocity measuring method
Kokossalakis Acoustic data communication system for in-pipe wireless sensor networks
JPH06132907A (en) Method and device for transmitting intra-duct signal
JPH1164151A (en) System of detecting leakage in piping
JPH11142280A (en) Pipe-line inspecting method
Morgan et al. The acoustic ranger, a new instrument for tube and pipe inspection
JP2877156B2 (en) Conductive conduit signal transmission method and apparatus
WO1992019988A1 (en) Locating a concealed structure
JPS61120035A (en) Method for detecting abnormality of underground piping
JP3172618B2 (en) Identification device in gas pipe by sound wave
JPH07229876A (en) Identification of gas in conduit by sonic wave
JPS58153433A (en) Communication system
JPH071168B2 (en) A method for investigating in-pipe conditions using reflected sound waves
JPH10160615A (en) Acoustic device for specifying leakage position
CN115371794B (en) Underground pipe gallery ground surface construction event positioning method based on distributed optical fiber sensor
Mijarez et al. CONTINUOUS MONITORING GUIDED WAVE ENCODED SENSOR FOR FLOOD DETECTION OF OIL RIGS CROSS BEAMS
CN111610525A (en) Automatic pipeline distribution detection system and method based on sound wave transmission
JP2967460B2 (en) Automatic water meter reading system
SU792130A1 (en) Apparatus for measuring local volumetric vapour content
JPH06185290A (en) Posture detection method for underground prorelling boring machine and device thereof
Mijarez et al. Continuous structural health monitoring guided wave PPM system using steel pipes as communication channel for flood detection in steel offshore oilrigs
Mijarez et al. An automatic guided wave pulse position modulation system using steel pipes as a communication channel for flood detection in steel offshore oilrigs