JPH06132121A - Superconductive current lead body - Google Patents

Superconductive current lead body

Info

Publication number
JPH06132121A
JPH06132121A JP28446092A JP28446092A JPH06132121A JP H06132121 A JPH06132121 A JP H06132121A JP 28446092 A JP28446092 A JP 28446092A JP 28446092 A JP28446092 A JP 28446092A JP H06132121 A JPH06132121 A JP H06132121A
Authority
JP
Japan
Prior art keywords
current lead
resin mold
electrode
electrodes
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28446092A
Other languages
Japanese (ja)
Other versions
JP3172893B2 (en
Inventor
Kazuaki Naohara
和哲 直原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP28446092A priority Critical patent/JP3172893B2/en
Priority to US08/114,173 priority patent/US5623240A/en
Priority to EP97121654A priority patent/EP0837478B1/en
Priority to DE69333128T priority patent/DE69333128T2/en
Priority to DE69324436T priority patent/DE69324436T2/en
Priority to EP93115827A priority patent/EP0596249B1/en
Publication of JPH06132121A publication Critical patent/JPH06132121A/en
Application granted granted Critical
Publication of JP3172893B2 publication Critical patent/JP3172893B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • Y02E40/641

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To prevent breakdown or the like of a superconductive current lead used in a superconductive magnet apparatus. CONSTITUTION:A silver electrode 31 is respectively formed at both end portions of a ceramic current lead bulk 30 and these silver electrodes 31 are respectively provided with copper electrodes 32. Except for a part of this copper electrode, the current lead bulk 30 is molded with a resin mold layer 33 together with electrodes. Ceramic powder is added as required to the resin mold layer and its thermal expansion coefficient is set almost equal to that of the current lead bulk. Since the resin mold layer is provided as described, strength against stress increases and moreover since the thermal conduction coefficients of resin mold layer and current lead bulk are almost equal, thermal stress is little generated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超電導電磁石に電流を供
給する際に用いられる超電導電流リード体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting current lead used for supplying a current to a superconducting electromagnet.

【0002】[0002]

【従来の技術】一般に、超電導電磁石ではヘリウムを用
いて極低温に冷却されており、このため、超電導電磁石
に電流を供給する超電導電流リードには酸化物セラミッ
クスが用いられている。
2. Description of the Related Art Generally, a superconducting electromagnet is cooled to an extremely low temperature by using helium. Therefore, an oxide ceramic is used for a superconducting current lead for supplying a current to the superconducting electromagnet.

【0003】ここで、図5を参照して、超電導電磁石の
構成について概説する。
Here, the structure of the superconducting electromagnet will be outlined with reference to FIG.

【0004】真空容器11内にはコイル巻枠12が配設
され、このコイル巻枠12には所謂超電導コイル13が
巻かれている。図示のようにコイル12の外周面には外
周冷却用銅ブロック14が装着され、外周冷却用銅ブロ
ック14は巻枠12とともに冷却ステージ15に装着さ
れている。そして、この冷却ステージ15は冷媒(例え
ば、ヘリウム)通路管部16に支持されている。
A coil winding frame 12 is arranged in the vacuum container 11, and a so-called superconducting coil 13 is wound around the coil winding frame 12. As shown in the figure, an outer peripheral cooling copper block 14 is attached to the outer peripheral surface of the coil 12, and the outer peripheral cooling copper block 14 is attached to the cooling stage 15 together with the winding frame 12. The cooling stage 15 is supported by the refrigerant (for example, helium) passage pipe portion 16.

【0005】さらに、冷却ステージ15には一対の電極
(以下この電極を低温側電極と呼ぶ)17a及び17b
が絶縁体(図示せず)を介して支持され、図示はしない
がこれら低温側電極17a及び17bはコイル13に接
続されている。冷却ステージ15の下側には別の冷却ス
テージ18が冷媒通路管部16に支持されており、この
冷却ステージ18には一対の電極(以下この電極を高温
側電極と呼ぶ)19a及び19bが絶縁体(図示せず)
を介して支持されている。低温側電極17aと高温側電
極19aとの間には電流リードバルク20aが装着され
ており、これら低温側電極17a、高温側電極19a、
及び電流リードバルク20aによって超電導電流リード
が構成される。同様に、低温側電極17bと高温側電極
19bとの間には電流リードバルク20bが装着されて
おり、これら低温側電極17b、高温側電極19b、及
び電流リードバルク20bによって超電導電流リードが
構成される。
Further, the cooling stage 15 has a pair of electrodes (hereinafter referred to as low temperature side electrodes) 17a and 17b.
Are supported via an insulator (not shown), and although not shown, these low temperature side electrodes 17a and 17b are connected to the coil 13. Below the cooling stage 15, another cooling stage 18 is supported by the refrigerant passage pipe portion 16, and a pair of electrodes (hereinafter referred to as high temperature side electrodes) 19a and 19b are insulated from this cooling stage 18. Body (not shown)
Is supported through. A current lead bulk 20a is mounted between the low temperature side electrode 17a and the high temperature side electrode 19a, and these low temperature side electrode 17a, high temperature side electrode 19a,
The current lead bulk 20a constitutes a superconducting current lead. Similarly, a current lead bulk 20b is mounted between the low temperature side electrode 17b and the high temperature side electrode 19b, and the low temperature side electrode 17b, the high temperature side electrode 19b, and the current lead bulk 20b constitute a superconducting current lead. It

【0006】図示のように、超電導コイル13は冷却ス
テージ18の外周端に支持された熱シールド板21によ
って覆われている。高温側電極19a及び19bには銅
製電流リード22が接続され(図5には高温側電極19
aに接続された銅製電流リード22のみを示す)、この
銅製電流リード22は真空容器11外に引き出されてい
る。なお、真空容器11の下側には所謂GM冷凍機23
が取り付けられ、この冷凍機23は冷媒通路管部16に
連結されている。
As shown in the figure, the superconducting coil 13 is covered with a heat shield plate 21 supported on the outer peripheral end of the cooling stage 18. A copper current lead 22 is connected to the high temperature side electrodes 19a and 19b (see the high temperature side electrode 19 in FIG. 5).
Only the copper current lead 22 connected to a is shown), and the copper current lead 22 is drawn out of the vacuum container 11. A so-called GM refrigerator 23 is provided below the vacuum container 11.
Is attached, and the refrigerator 23 is connected to the refrigerant passage pipe portion 16.

【0007】[0007]

【発明が解決しようとする課題】ところで、超電導電流
リードに用いられている電流リードバルクには一般に酸
化物セラミックスが用いられている。このため、電流リ
ードバルクは脆く、酸化物セラミックスは構造用セラミ
ックス、例えば、アルミナ、ジルコニア、又は窒化ケイ
素に比べてその強度が数分の1から10分の1程度であ
る。従って、実際に電流リードバルクを用いる際には、
熱応力を十分に低減させることが必要である。
By the way, oxide ceramics are generally used in the current lead bulk used in the superconducting current lead. Therefore, the current lead bulk is fragile, and the strength of the oxide ceramics is about a fraction to one tenth of that of structural ceramics such as alumina, zirconia, or silicon nitride. Therefore, when actually using the current lead bulk,
It is necessary to reduce the thermal stress sufficiently.

【0008】しかしながら、設計上完全に熱応力を取り
除くことは不可能であり、しかも輸送時等において、外
力が加わると、超電導電流リードが破損する恐れが大き
いという問題点がある。
However, it is impossible to completely remove the thermal stress due to the design, and there is a problem that the superconducting current lead may be damaged if an external force is applied during transportation.

【0009】上述のような不具合を防止するため、仮焼
粉に対してAg若しくはZrOを添加した後成形して
焼結を行ってバルク体を得る方法が提案されているが、
Agを添加した場合、Agの熱伝導率が大きいことに起
因してバルク体自体の熱伝導率が大きくなってしまい、
電流リードとして用いることが不適当となってしまう。
一方、ZrOを添加した場合には、臨界電流密度Jc
が低下してしまうという問題点がある。
In order to prevent the above-mentioned problems, a method has been proposed in which Ag or ZrO 2 is added to the calcined powder, which is then molded and sintered to obtain a bulk body.
When Ag is added, the thermal conductivity of the bulk body itself becomes large due to the large thermal conductivity of Ag,
It becomes unsuitable to use as a current lead.
On the other hand, when ZrO 2 is added, the critical current density Jc
However, there is a problem in that

【0010】この点を解決するため、バルク体を熱伝導
率の小さな材料、例えば、ステンレス(SUS)又はガ
ラス繊維プラスチック(FRP)をバルク体の外周面に
補強材として配置することがある(バルク体が円筒形状
である場合にはFRPをその内周面に配置する)。しか
しながら、補強材とバルク体とは熱膨張率が大きくこと
なるため、熱膨張差によって熱応力が発生してしまうと
いう問題点がある。加えて、バルク体は焼結時に若干変
形する。この点を考慮して、補強材をバルク体毎に作製
しなければならず、作製が極めて面倒であるという問題
点がある。
In order to solve this point, a material having a small thermal conductivity such as stainless steel (SUS) or glass fiber plastic (FRP) may be arranged on the outer peripheral surface of the bulk body as a reinforcing material (bulk). If the body is cylindrical, the FRP is placed on its inner surface). However, since the thermal expansion coefficient of the reinforcing material and that of the bulk body are large, there is a problem that thermal stress is generated due to the difference in thermal expansion. In addition, the bulk body is slightly deformed during sintering. In consideration of this point, the reinforcing material has to be manufactured for each bulk body, and there is a problem that the manufacturing is extremely troublesome.

【0011】本発明の目的は破損等の恐れが極めて少な
い超電導電流リードを提供することにある。
It is an object of the present invention to provide a superconducting current lead which is extremely unlikely to be damaged.

【0012】[0012]

【課題を解決するための手段】本発明によれば、超電導
磁石に電流を供給する際に用いられる超電導電流リード
であって、両端に電極が形成されたセラミック製導体部
を備え、前記電極の一部を除いて前記セラミック製導体
部は前記電極とともに樹脂モールドされていることを特
徴とする超電導電流リードが得られる。この際、樹脂モ
ールドにはセラミックス粉を添加することが望ましい。
According to the present invention, there is provided a superconducting current lead used for supplying an electric current to a superconducting magnet, comprising a ceramic conductor portion having electrodes formed at both ends thereof. There is obtained a superconducting current flow lead characterized in that the ceramic conductor part is resin-molded together with the electrode except a part thereof. At this time, it is desirable to add ceramic powder to the resin mold.

【0013】[0013]

【作用】本発明では、セラミック製導体部を電極の一部
を除いて電極とともに樹脂モールドしたから、応力に対
する強度が増し、しかも樹脂モールドにセラミック粉を
添加することによって樹脂モールドの熱伝導率とセラミ
ック製導電体の熱伝導率をほぼ同じにすることができ、
その結果、熱応力の発生がほとんどない。
In the present invention, since the ceramic conductor part is resin-molded together with the electrodes except for a part of the electrodes, the strength against stress is increased, and moreover, by adding the ceramic powder to the resin mold, the thermal conductivity of the resin mold is improved. The thermal conductivity of the ceramic conductor can be made almost the same,
As a result, thermal stress is hardly generated.

【0014】[0014]

【実施例】以下本発明について実施例によって説明す
る。
EXAMPLES The present invention will be described below with reference to examples.

【0015】まず、図1を参照して、本発明による超電
導電流リードは円筒形状の電流リードバルク(超電導
体)30を備えており、超電導体30の両端部近傍外周
面にはそれぞれ銀電極部31が形成されている。銀電極
部31を形成に当たっては、超電導体30との接触抵抗
を低減させるため、超電導体30への銀テープの巻き付
け又は銀溶射等を行った後熱処理されて銀電極部31が
形成される。各銀電極部31には銅電極32が取り付け
られている。銅電極32は円環状部32aと接続部32
bとを備えており、円環状部32aによって銀電極部3
1が挟持されている。銅電極32の一方は図5に示す超
電導コイルに接続部32bで接続され、銅電極32の他
方は図5に示す銅製電流リードに接続部32bで接続さ
れる(なお、銅製電流リードは室温から77Kまでの範
囲で用いられる)。
First, referring to FIG. 1, a superconducting current lead according to the present invention is provided with a cylindrical current lead bulk (superconductor) 30, and silver electrode portions are provided on outer peripheral surfaces near both ends of the superconductor 30, respectively. 31 is formed. In forming the silver electrode portion 31, in order to reduce the contact resistance with the superconductor 30, the silver electrode portion 31 is formed by winding a silver tape around the superconductor 30, performing silver thermal spraying, or the like and then performing heat treatment. A copper electrode 32 is attached to each silver electrode portion 31. The copper electrode 32 includes an annular portion 32a and a connecting portion 32.
b, and the silver electrode portion 3 is formed by the annular portion 32a.
1 is sandwiched. One of the copper electrodes 32 is connected to the superconducting coil shown in FIG. 5 at the connecting portion 32b, and the other of the copper electrodes 32 is connected to the copper current lead shown in FIG. 5 at the connecting portion 32b (note that the copper current lead is from room temperature). Used in the range up to 77K).

【0016】ここで、図2を参照して、上述のように得
られた超電導電流リードは接続部32bの一部を残して
溶融樹脂に所定の時間浸漬され、その後引き上げられて
樹脂硬化が行われる。このような操作を少なくとも一回
行って図2に太線で示すように樹脂モールド層33を形
成する。上述の樹脂にはセラミック粉が適宜添加され、
これによって、超電導体30の熱膨張率と樹脂モールド
層33の熱膨張率とを近似させる。
Here, referring to FIG. 2, the superconducting current lead obtained as described above is immersed in the molten resin for a predetermined time leaving a part of the connecting portion 32b, and then pulled up to cure the resin. Be seen. Such an operation is performed at least once to form the resin mold layer 33 as shown by the thick line in FIG. Ceramic powder is appropriately added to the above resin,
As a result, the coefficient of thermal expansion of the superconductor 30 and the coefficient of thermal expansion of the resin mold layer 33 are approximated.

【0017】ところで、図1に示す状態の超電導電流リ
ードは一般にA点に応力が集中して、その結果、破損に
至る場合が多い。一方、図2に示す状態の超電導電流リ
ードでは樹脂モールド層33によって電極を含めて超電
導体30全体が補強されているので、A点への応力集中
が緩和され、破損に至ることが極めて少ない。さらに、
超電導体30の熱膨張率と樹脂モールド層33の熱伝導
率とはほぼ同じであるので、熱応力が生じることがな
い。
By the way, in the superconducting current flow lead shown in FIG. 1, stress is generally concentrated at the point A, and as a result, the lead is often broken. On the other hand, in the superconducting current lead in the state shown in FIG. 2, since the entire superconductor 30 including the electrodes is reinforced by the resin mold layer 33, stress concentration at the point A is relieved and the damage is extremely rare. further,
Since the coefficient of thermal expansion of the superconductor 30 and the coefficient of thermal conductivity of the resin mold layer 33 are almost the same, thermal stress does not occur.

【0018】ここで、図3を参照して、図2に示す超電
導電流リードの取り付けについて具体的に説明する。な
お、図2において、図5と同一の構成要素については同
一の参照番号を付して説明を省略する。
Now, the attachment of the superconducting current flow lead shown in FIG. 2 will be specifically described with reference to FIG. In FIG. 2, the same components as those in FIG. 5 are designated by the same reference numerals and the description thereof will be omitted.

【0019】冷却ステージ15には低温側電極17aが
絶縁体17cを介して支持され、低温側電極17aは超
電導コイルに接続されている。同様に、冷却ステージ1
8には高温側電極19aが絶縁体19cを介して支持さ
れている。そして、低温側電極17aと高温側電極19
aとの間には図2に示す超電導電流リード40が配置さ
れる。
A low temperature side electrode 17a is supported on the cooling stage 15 via an insulator 17c, and the low temperature side electrode 17a is connected to a superconducting coil. Similarly, cooling stage 1
A high temperature side electrode 19a is supported by 8 via an insulator 19c. Then, the low temperature side electrode 17a and the high temperature side electrode 19
The superconducting current lead 40 shown in FIG.

【0020】超電導電流リード40を低温側電極17a
及び高温側電極19aに取り付ける際には、図4に示す
ように別にリング状電極41を準備する。このリング状
電極41は円環状部41aと接続部41bとを備えてお
り、接続部41bが銅電極32の接続部32bとボルト
42に固定される。そして、リング状電極41の円環状
部41aにそれぞれ低温側電極17a及び高温側電極1
9aを挿入した後半田で固定する。
The superconducting current lead 40 is connected to the low temperature side electrode 17a.
When attaching to the high temperature side electrode 19a, a ring electrode 41 is separately prepared as shown in FIG. The ring-shaped electrode 41 includes an annular portion 41a and a connecting portion 41b, and the connecting portion 41b is fixed to the connecting portion 32b of the copper electrode 32 and the bolt 42. Then, the low temperature side electrode 17a and the high temperature side electrode 1 are provided on the annular portion 41a of the ring-shaped electrode 41, respectively.
After inserting 9a, it is fixed with solder.

【0021】[0021]

【発明の効果】以上説明したように、本発明ではセラミ
ック製導体部(電流リードバルク)を電極の一部を除い
て電極とともに樹脂モールドしたから、応力に対する強
度が増し、しかも樹脂モールドにセラミック粉を添加す
ることによって樹脂モールドの熱伝導率とセラミック製
導電体の熱伝導率をほぼ同じにすることができ、その結
果、熱応力の発生がほとんどないという効果がある。
As described above, in the present invention, the ceramic conductor portion (current lead bulk) is resin-molded together with the electrode except for a part of the electrode, so that the strength against stress is increased and the ceramic powder is molded on the resin mold. Is added, the thermal conductivity of the resin mold and the thermal conductivity of the ceramic conductor can be made almost the same, and as a result, there is an effect that almost no thermal stress is generated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による超電導電流リードを樹脂モールド
する前の状態で示す図である。
FIG. 1 is a diagram showing a superconducting current flow lead according to the present invention before resin molding.

【図2】本発明による超電導電流リードを樹脂モールド
された後の状態で示す図である。
FIG. 2 is a view showing a superconducting current flow lead according to the present invention after being resin-molded.

【図3】本発明による超電導電流リードの取り付けを説
明するための図である。
FIG. 3 is a view for explaining attachment of a superconducting current lead according to the present invention.

【図4】本発明による超電導電流リードの取り付けの際
用いられるリング状電極について説明するための図であ
る。
FIG. 4 is a view for explaining a ring-shaped electrode used when attaching the superconducting current lead according to the present invention.

【図5】超電導電磁石装置を概略的に示す図である。FIG. 5 is a diagram schematically showing a superconducting electromagnet device.

【符号の説明】[Explanation of symbols]

11 真空容器 12 コイル巻枠 13 超電導コイル 14 外周冷却用銅ブロック 15 冷却ステージ 16 冷媒通路管部 17a,17b 低温側電極 18 冷却ステージ 19a,19b 高温側電極 20a,20b 電流リードバルク 21 熱シールド板 22 銅製電流リード 23 GM冷凍機23 30 電流リードバルク(超電導体) 31 銀電極部 32 銅電極 32a 円環状部 32b 接続部 33 樹脂モールド層 11 Vacuum Container 12 Coil Reel 13 Superconducting Coil 14 Peripheral Cooling Copper Block 15 Cooling Stage 16 Refrigerant Passage Pipe 17a, 17b Low Temperature Side Electrode 18 Cooling Stage 19a, 19b High Temperature Side Electrode 20a, 20b Current Lead Bulk 21 Heat Shield Plate 22 Copper current lead 23 GM refrigerator 23 30 Current lead bulk (superconductor) 31 Silver electrode part 32 Copper electrode 32a Annular part 32b Connection part 33 Resin mold layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 超電導磁石に電流を供給する際に用いら
れる超電導電流リードであって、両端に電極が形成され
たセラミック製導体部を備え、前記電極の一部を除いて
前記セラミック製導体部は前記電極とともに樹脂モール
ドされていることを特徴とする超電導電流リード体。
1. A superconducting current lead used for supplying an electric current to a superconducting magnet, comprising a ceramic conductor part having electrodes formed on both ends thereof, and the ceramic conductor part except for a part of the electrode. Is a resin-molded body together with the above-mentioned electrodes.
【請求項2】 前記樹脂モールドにはセラミックス粉が
添加されていることを特徴とする超電導電流リード体。
2. A superconducting current flow lead body, wherein ceramic powder is added to the resin mold.
JP28446092A 1992-10-20 1992-10-22 Superconducting current lead Expired - Fee Related JP3172893B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP28446092A JP3172893B2 (en) 1992-10-22 1992-10-22 Superconducting current lead
US08/114,173 US5623240A (en) 1992-10-20 1993-09-01 Compact superconducting magnet system free from liquid helium
EP97121654A EP0837478B1 (en) 1992-10-20 1993-09-30 Current lead for a superconducting magnet system free from liquid helium
DE69333128T DE69333128T2 (en) 1992-10-20 1993-09-30 Power supply line for superconducting magnet system without liquid helium
DE69324436T DE69324436T2 (en) 1992-10-20 1993-09-30 Compact superconducting magnet system without liquid helium
EP93115827A EP0596249B1 (en) 1992-10-20 1993-09-30 Compact superconducting magnet system free from liquid helium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28446092A JP3172893B2 (en) 1992-10-22 1992-10-22 Superconducting current lead

Publications (2)

Publication Number Publication Date
JPH06132121A true JPH06132121A (en) 1994-05-13
JP3172893B2 JP3172893B2 (en) 2001-06-04

Family

ID=17678825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28446092A Expired - Fee Related JP3172893B2 (en) 1992-10-20 1992-10-22 Superconducting current lead

Country Status (1)

Country Link
JP (1) JP3172893B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005183941A (en) * 2003-11-28 2005-07-07 Dowa Mining Co Ltd Composite conductor, superconductive device system, and manufacturing method of composite conductor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005183941A (en) * 2003-11-28 2005-07-07 Dowa Mining Co Ltd Composite conductor, superconductive device system, and manufacturing method of composite conductor
JP4568894B2 (en) * 2003-11-28 2010-10-27 Dowaエレクトロニクス株式会社 Composite conductor and superconducting equipment system

Also Published As

Publication number Publication date
JP3172893B2 (en) 2001-06-04

Similar Documents

Publication Publication Date Title
JP5214744B2 (en) Superconducting joining method of 2 generation high temperature superconducting wire using heat treatment under reduced oxygen partial pressure
US5691679A (en) Ceramic superconducting lead resistant to moisture and breakage
JP4012311B2 (en) Bulk superconducting member and magnet, and method of manufacturing the same
JPH07142237A (en) Superconducting magnet device
US20200028061A1 (en) Connection structure
KR20090044236A (en) Superconductor tape with stabilizer and method thereof
JP4362009B2 (en) Method of manufacturing a coil from high temperature superconducting material and low AC loss high temperature superconducting coil
WO1993021642A1 (en) Composite lead for conducting an electrical current between 75-80 k and 4.5 k temperatures
US5552211A (en) Ceramic superconducting lead resistant to breakage
JP2002525790A (en) Protected superconducting component and its manufacturing method
JPH06132121A (en) Superconductive current lead body
US5759960A (en) Superconductive device having a ceramic superconducting lead resistant to breakage
US5690991A (en) Superconducting joint between Nb3 Sn tape and NbTi wire for use in superconducting magnets
JPH01100901A (en) Superconducting ceramic electromagnet and preparation thereof
KR100964361B1 (en) Method of joining YBCO-CC superconducting wire by the melting diffusion under the control of partial oxygen pressure
JPS63284720A (en) Superconducting wire
JPH11340533A (en) High-temperature superconducting coil persistent current switch
JP2839792B2 (en) Thermal permanent current switch
JPH08264312A (en) Current lead
JPH0897033A (en) Current lead
JP3641067B2 (en) Oxide superconducting conductor
JP4562947B2 (en) Superconducting magnet
JPS6362207A (en) Superconducting coil
JPS63250016A (en) Superconductive wire
JP2019046557A (en) High-temperature superconducting wire connection body

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010221

LAPS Cancellation because of no payment of annual fees