JP3641067B2 - Oxide superconducting conductor - Google Patents
Oxide superconducting conductor Download PDFInfo
- Publication number
- JP3641067B2 JP3641067B2 JP13566696A JP13566696A JP3641067B2 JP 3641067 B2 JP3641067 B2 JP 3641067B2 JP 13566696 A JP13566696 A JP 13566696A JP 13566696 A JP13566696 A JP 13566696A JP 3641067 B2 JP3641067 B2 JP 3641067B2
- Authority
- JP
- Japan
- Prior art keywords
- current
- plane
- reba
- bulk
- degrees
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000004020 conductor Substances 0.000 title claims description 16
- 241000954177 Bangana ariza Species 0.000 claims description 16
- 239000002184 metal Substances 0.000 claims description 14
- 229910052751 metal Inorganic materials 0.000 claims description 14
- 229910052684 Cerium Inorganic materials 0.000 claims 1
- 229910052692 Dysprosium Inorganic materials 0.000 claims 1
- 229910052691 Erbium Inorganic materials 0.000 claims 1
- 229910052693 Europium Inorganic materials 0.000 claims 1
- 229910052688 Gadolinium Inorganic materials 0.000 claims 1
- 229910052689 Holmium Inorganic materials 0.000 claims 1
- 229910052765 Lutetium Inorganic materials 0.000 claims 1
- 229910052779 Neodymium Inorganic materials 0.000 claims 1
- 229910052777 Praseodymium Inorganic materials 0.000 claims 1
- 229910052772 Samarium Inorganic materials 0.000 claims 1
- 229910052771 Terbium Inorganic materials 0.000 claims 1
- 229910052775 Thulium Inorganic materials 0.000 claims 1
- 229910052769 Ytterbium Inorganic materials 0.000 claims 1
- 229910052746 lanthanum Inorganic materials 0.000 claims 1
- 229910052727 yttrium Inorganic materials 0.000 claims 1
- 239000010949 copper Substances 0.000 description 42
- 239000000463 material Substances 0.000 description 20
- 229910052802 copper Inorganic materials 0.000 description 14
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- 239000013078 crystal Substances 0.000 description 10
- 230000035882 stress Effects 0.000 description 8
- 239000011152 fibreglass Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 239000002887 superconductor Substances 0.000 description 7
- 239000007788 liquid Substances 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 239000012071 phase Substances 0.000 description 6
- 238000001816 cooling Methods 0.000 description 5
- 238000003776 cleavage reaction Methods 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 230000007017 scission Effects 0.000 description 4
- 238000005382 thermal cycling Methods 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 3
- 230000005856 abnormality Effects 0.000 description 2
- 239000013590 bulk material Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は熱サイクルに強い金属導体との電極部を有し、かつ臨界電流密度の高いREBa2 Cu3 Ox 系酸化物超電導導体を提供するものであり、電流リードや永久電流スイッチ等の材料として利用される。
【0002】
【従来の技術】
REBa2 Cu3 Ox 系超電導体は、Bi系やTl系超電導体に比較して液体窒素温度でのピンニング力が強く、先天的には高い臨界電流密度が得られる物質である。しかし、結晶粒界が弱結合として働き、粒界を横切って大きな超電導電流を流すことができないため、高い臨界電流密度を得るには高度に配向させる必要がある。
【0003】
この中で、QMG法(特公平4−40289)に代表されるような酸化物超電導材料の作製法である溶融法により、体積が50cm3 以上の大きな結晶粒をもつREBa2 Cu3 Ox 系超電導バルク材料の製造が可能になっている(M.Morita ら :Advances in superconductivity III ,Springer−Verlag,Tokyo,1990.p733−736)。溶融法は基本的にはREBa2 Cu3 Ox 系超電導体の原料物質を加熱して、RE2 BaCuO5 相とBa、Cu、Oを主成分とした液相の共存する半溶融状態にし、包晶温度直上から徐冷することによりREBa2 Cu3 Ox 相を結晶成長させる方法である。この方法で作製された大きな結晶粒内には、結晶方位が数度ずれた小傾角粒界はあるが、弱結合となるような大きな傾角を有する粒界が存在しない。このため、この材料の粒内の臨界電流密度は77K、1Tで10000A/cm2 以上と高く、バルク磁石、磁気シールド、電流リード等の材料として用いることが考えられている。
【0004】
この材料を電流リードとして用いる場合、バルク体から棒状の導体を切り出して使用されるが、ダイヤモンドカッター等で直線的に切り出し、多角柱状の導体として用いる場合が多い。特に四角柱・棒状に切り出すことは、円柱状の導体に切削加工するよりも容易で歩留まりもよく、コスト的に有利である。
【0005】
四角柱状に切り出す場合、長さ方向、すなわち電流の流れる方向をab面と平行にする場合が多い。これは、ab面方向に電流を流した場合の臨界電流密度がc軸方向に流した場合に比較して大きいからである。また、長さ方向の一面をab面と平行とし、この面を広くとる場合が多い。特に細い導体の場合、このようにする場合が圧倒的に多い。これは、この材料がab面で劈開割れを起こしやすく強度が低いため、ab面に垂直方向に厚みがないと小さな力で容易に破壊してしまうためである。すなわち、ab面に平行な面をある程度の幅をもたせることによって、試料加工時や使用時におけるab面での劈開割れを防ぐ手段を施す場合が多い。
【0006】
こうした材料は端部で金属線と接続して使用するが、電流リードなどのような大きな電流を通電する用途には、金属線との接続抵抗を低減するために大きな面積で接続する必要がある。したがって、結果的に面積の大きなab面で接続する場合が多い。また、大きな電流を流すため電流方向、すなわち長さ方向に平行な周囲の4面で接続した場合は、ab面での接続が必ず伴う。こうした理由から、これまで配向したREBa2 Cu3 Ox で表記される多角柱のバルクで構成され、かつ通電方向がab面に平行になっている導体が、ab面あるいはこれと直交する面以外で金属と接続された応用例はない。
【0007】
また、酸化物超電導バルクはアルミナなどのセラミックスに比較しても強度が劣る。したがって、電流リードなどの比較的長さが必要なものに利用する場合、ガラス繊維や金属材料などで補強して利用する場合が多い。このためこれらの材料とREBa2 Cu3 Ox とを固定して用いる場合、これらの材料とREBa2 Cu3 Ox とでは熱膨張係数に差があるために、冷却によってREBa2 Cu3 Ox に熱応力が生じる。
【0008】
室温から約5KまでのREBa2 Cu3 Ox 単結晶の熱収縮率は、c軸方向で0.41%、a・b軸で0.14%であるのに対し、低温用構造材に用いられるガラス繊維強化プラスチック(繊維方向)は、1.5%、ステンレス鋼(SUS304)は0.26%、また、導電材料である鋼は0.29%である。したがって、冷却によって銅や補強材との熱収縮の差による応力が生じる。また、熱膨張係数の等しい材料を選択しても、熱容量が異なるなどして冷却時に温度勾配が生じると応力が生じる。このため、後に示すようにab面で金属と接続固定した場合、熱サイクルの激しい環境で使用すると、上記に示した原因によって電極部で導体が破壊される場合がしばしば生じた。
【0009】
【発明が解決しようとする課題】
本発明は上記の従来技術の現状に鑑み、熱サイクルに強い金属導体との電極部を有し、かつ臨界電流密度の高いREBa2 Cu3 Ox 系酸化物超電導導体を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明は上記課題を解決するために、ab面以外の平面で金属と接続する手段を施したものである。具体的には、REBa2 Cu3 Ox で表記される結晶配向した多角柱の超電導バルク体の両端部に金属電極が接続され、通電方向が該超電導バルク体のab面に平行になっており、かつ多角柱周部でab面と20度以上70度以下をなす面、望ましくは45度で金属電極と接続されていることを特徴とする酸化物超電導導体である。
【0011】
【発明の実施の形態】
REBa2 Cu3 Ox 超電導バルク体のab面は劈開割れをおこしやすく、他の面に比較して著しく強度が低くこの面に作用する力が大きくなると、容易に破壊してしまう。したがって、金属と接続固定する場合は、この面に作用する力が小さくなる面で接続することによって、熱サイクルに強い電極部をつくることが可能になる。特に、大きな電流を流すために全ての面で銅など接続する場合、ab面とその直角の基本面以外の中間的な角度で接続することによって、ab面での剥離破壊が起き難く、熱サイクルに強い電流リードをつくることができる。この時、ab面に作用する力がもっとも小さくなる角度は45度であり、最も現実的な四角柱導体の場合、周囲の4面をab面と45度をなす面になるように切り出し、電極で接続することが望ましい。
【0012】
以下に本発明の酸化物超電導体の具体的形態について述べる。
溶融法で作製されたYBa2 Cu3 Ox 系超電導バルクを使用して、電流リードを作製した。図1は、試作した電流リードである。使用したバルク材料1は内部にY2 BaCuO5 相が平均2μm以下の大きさ、体積率約30%で分散しているが、マトリックスは大傾角粒界のない配向したYBa2 Cu3 Ox 超電導相になっている単結晶状の材料である。YBa2 Cu3 Ox 系バルクの大きさは長さ(電流の方向)45mm、幅4mm、厚さ2mmの材料を5種類用意した。5種類とも、結晶方位は長さ方向がab面と平行になっている。ただし、両端10mmの銅電極2と接する面はそれぞれ異なり、ab面と平行(図中の角度θが0度)になっているものと、ab面となす角θが15度、25度、30度、また45度になるように角度を変えて切り出した試料を用意した。図中4はc軸の方向すなわちab面に垂直な方向を示す。これら5つの試料で構成された電流リードを、0度で接続されたものから、電流リードA、B、C、D、Eとする。
【0013】
これらの材料は、スパッタリングによって、約1μmの銀がコーティングされ、銅電極と半田で接続されている。また、図1に示すように、G10と呼ばれるガラス繊維強化プラスチック3で補強されている。この補強用プラスチックは超電導バルクと密着されていないが、銅電極とは固定、一体化されている。
【0014】
これらの電流リードは液体窒素温度(77K)で200Aの通電をしても、超電導体状態を維持することが可能であった。この電流リードを室温に戻し、再び液体窒素温度まで冷却する操作を100回熱サイクルを繰り返した。このうち、電流リードAは10回の熱サイクルを印加したところで、図2に示したように両端の電極部近くでab面から剥離破壊した。その他の電流リードは100回の熱サイクルでも外見上問題はなかったが、電流リードBは液体窒素温度で60A通電したところで両端の電気抵抗が大きくなり、通電できなくなった。これを光学顕微鏡で観察したところ、電極部近傍で試料のab面に平行に大きなクラックが観察された。このクラックによって電流の流れが阻害され、臨界電流が低下してしまったと見られる。電流リードC、D、Eについては200Aの電流を通電しても異常は認められなかった。
【0015】
電流リードAおよびBの電極部が破損した原因は、電極部の銅とYBa2 Cu3 Ox 系超電導バルク、およびガラス繊維強化プラスチックとYBa2 Cu3 Ox 系超電導バルクの熱膨張係数の差によって、電極部近傍に応力が生じ、強度の低いab面で劈開クラックが発生・拡大したためと考えられる。一方、電極接合面がab面とが25度よりも大きかったものは、ab面にかかる応力が小さくなったために、熱サイクルによる繰り返し応力に耐えたものと考えられる。
【0016】
溶融法で作製されたYBa2 Cu3 Ox 系超電導バルクを使用して、上記のものとは異なる形態の電流リードを作製した。図3は、試作した電流リードである。使用したバルク材料5は内部にY2 BaCuO5 相が平均2μm以下の大きさ、体積率約30%で分散しているが、マトリックスは大傾角粒界のない配向したYBa2 Cu3 Ox 超電導相になっている単結晶状の材料である。YBa2 Cu3 Ox 系バルクの大きさは長さ(電流の方向)45mm、幅4mm、厚さ3mmの材料を2種類用意した。2種類とも、結晶方位は長さ方向がab面になっている。この材料は、長さ方向と垂直な端部の面と長さ5mmの周囲の4面全てを使って銅電極6と接続されているが、周囲の4面の結晶面はそれぞれ異なる。電流リードFは4mm幅の側がab面であり、3mm幅の部分がab面と直交する面になっているのに対し、電流リードGは、4面ともab面と45度をなす面で銅電極と接続されている。これらの材料は、スパッタリングによって、約1μmの銀がコーティングされ、銅電極と半田で接続されている。また、図3に示すように、G10と呼ばれるガラス繊維強化プラスチックのパイプ7で周囲から固定・補強されている。
【0017】
これらの電流リードは液体窒素温度(77K)で200Aの通電しても、超電導状態を維持することが可能であった。この電流リードを室温に戻し、再び液体窒素温度まで冷却する操作を繰り返した。この時電流リードの両端に生じる電気抵抗は、10-4オームのオーダーであった。これはほとんど銅の電気抵抗である。このうち、電流リードFは10回の熱サイクルを印加したところで、両端の電気抵抗が、キロオーム以上になり通電が不可能になった。中を観察したところ、片側の電極部近くでab面から剥離破壊を起こしていた。一方、電流リードGは100回の熱サイクル後も200Aの電流を通電可能であり、電気抵抗の異常は認められなかった。
【0018】
電流リードFの電極部が破損した原因は、電極部の銅とYBa2 Cu3 Ox 系超電導バルク、およびガラス繊維強化プラスチックとYBa2 Cu3 Ox 系超電導バルクの熱膨張係数の差によって、電極部近傍に応力が生じ、強度の低いab面で劈開クラックが発生・拡大したためと考えられる。一方、電極接合面がab面とが45度に切り出したものは、ab面にかかる応力が小さくなったために、熱サイクルによる繰り返し応力に耐えたものと考えられる。
【0019】
【発明の効果】
REBa2 Cu3 Ox 系バルクを導体として用いる場合、本発明にしたがって金属の接続する面をREBa2 Cu3 Ox 系バルクのab面以外、望ましくは45度をなす面に近い面に限定することにより、熱サイクルに強い酸化物電流リードを作製することが可能になる。この材料は、電流リードや永久電流スイッチなどに応用できる。
【図面の簡単な説明】
【図1】酸化物超電導導体による電流リードの例を示す概略図
【図2】剥離破壊を起こしたYBa2 Cu3 Ox バルクを示す図
【図3】酸化物超電導導体による電流リードの例を示す概略図
【符号の説明】
1 YBa2 Cu3 Ox 系バルク
2 銅電極
3 ガラス繊維強化プラスチック補強体
4 c軸の方向
5 YBa2 Cu3 Ox 系バルク
6 銅電極
7 ガラス繊維強化プラスチックのパイプ[0001]
BACKGROUND OF THE INVENTION
The present invention provides a REBa 2 Cu 3 O x oxide superconducting conductor having an electrode portion with a metal conductor that is resistant to thermal cycling and having a high critical current density, and is a material for current leads, permanent current switches, and the like. Used as
[0002]
[Prior art]
The REBa 2 Cu 3 O x- based superconductor is a substance that has a strong pinning force at liquid nitrogen temperature compared to Bi-based and Tl-based superconductors, and is inherently capable of obtaining a high critical current density. However, since the crystal grain boundary acts as a weak bond and a large superconducting current cannot flow across the grain boundary, it must be highly oriented to obtain a high critical current density.
[0003]
Among these, the REBa 2 Cu 3 O x system having large crystal grains with a volume of 50 cm 3 or more is obtained by a melting method, which is a method for producing an oxide superconducting material represented by the QMG method (Japanese Patent Publication No. 4-40289). Production of superconducting bulk materials is possible (M. Morita et al .: Advances in superconductivity III, Springer-Verlag, Tokyo, 1990. p733-736). In the melting method, basically, the raw material of the REBa 2 Cu 3 O x- based superconductor is heated to a semi-molten state in which the RE 2 BaCuO 5 phase and the liquid phase mainly composed of Ba, Cu and O coexist, In this method, the REBa 2 Cu 3 O x phase is crystal-grown by slow cooling from directly above the peritectic temperature. In the large crystal grains produced by this method, there are small-angle grain boundaries whose crystal orientations are deviated by several degrees, but there are no grain boundaries having such a large tilt angle that causes weak coupling. For this reason, the critical current density in the grain of this material is as high as 10000 A / cm 2 or more at 77 K and 1 T, and it is considered to be used as a material for bulk magnets, magnetic shields, current leads and the like.
[0004]
When this material is used as a current lead, a rod-shaped conductor is cut out from a bulk body and used, but is often cut out linearly with a diamond cutter or the like and used as a polygonal columnar conductor. In particular, cutting into a square pole / bar shape is easier and has a better yield than cutting into a cylindrical conductor, and is advantageous in terms of cost.
[0005]
When cutting into a quadrangular prism shape, the length direction, that is, the direction of current flow, is often parallel to the ab plane. This is because the critical current density when a current flows in the ab plane direction is larger than that when a current flows in the c-axis direction. In many cases, one surface in the length direction is parallel to the ab surface and this surface is wide. In particular, in the case of a thin conductor, this is overwhelmingly common. This is because this material is easy to cause cleavage cracks on the ab surface and has a low strength, so that if the material is not thick in a direction perpendicular to the ab surface, it is easily broken with a small force. That is, in many cases, by providing a plane parallel to the ab plane with a certain width, means for preventing cleavage cracks on the ab plane at the time of sample processing or use are provided.
[0006]
These materials are used by connecting to the metal wire at the end, but for applications where a large current such as a current lead is applied, it is necessary to connect with a large area in order to reduce the connection resistance with the metal wire. . Therefore, as a result, the connection is often made on the ab surface having a large area. In addition, in order to flow a large current, when connecting on the four surrounding surfaces parallel to the current direction, that is, the length direction, connection on the ab surface is always accompanied. For these reasons, a conductor composed of a bulk of a polygonal column represented by REBa 2 Cu 3 O x oriented so far and whose energization direction is parallel to the ab plane is other than the ab plane or a plane orthogonal thereto. There is no application example connected with metal.
[0007]
In addition, the oxide superconducting bulk is inferior in strength to ceramics such as alumina. Therefore, when it is used for a current lead or the like that requires a relatively long length, it is often used by reinforcing it with glass fiber or a metal material. For this reason, when these materials and REBa 2 Cu 3 O x are used in a fixed manner, there is a difference in thermal expansion coefficient between these materials and REBa 2 Cu 3 O x , so that REBa 2 Cu 3 O x is caused by cooling. Thermal stress is generated.
[0008]
The thermal shrinkage of REBa 2 Cu 3 O x single crystal from room temperature to about 5K is 0.41% in the c-axis direction and 0.14% in the a · b axis. Glass fiber reinforced plastic (fiber direction) is 1.5%, stainless steel (SUS304) is 0.26%, and conductive steel is 0.29%. Therefore, a stress is generated due to a difference in thermal shrinkage from copper and the reinforcing material due to cooling. Even when materials having the same thermal expansion coefficient are selected, stress is generated when a temperature gradient occurs during cooling due to different heat capacities. For this reason, when it is connected and fixed to the metal on the ab surface as described later, when used in an environment with a severe thermal cycle, the conductor often breaks at the electrode part due to the above-described causes.
[0009]
[Problems to be solved by the invention]
The present invention has been made in view of the current state of the prior art described above, and an object thereof is to provide a REBa 2 Cu 3 O x oxide superconducting conductor having an electrode portion with a metal conductor that is resistant to thermal cycling and having a high critical current density. To do.
[0010]
[Means for Solving the Problems]
In order to solve the above problems, the present invention is provided with means for connecting to a metal on a plane other than the ab plane. Specifically, metal electrodes are connected to both ends of a crystal-oriented polygonal column superconducting bulk body represented by REBa 2 Cu 3 O x , and the energization direction is parallel to the ab surface of the superconducting bulk body. In addition, the oxide superconducting conductor is characterized in that it is connected to the metal electrode at a surface that forms 20 degrees or more and 70 degrees or less with the ab surface at the polygonal column peripheral portion, preferably at 45 degrees.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The ab surface of the REBa 2 Cu 3 O x superconducting bulk body is prone to cleave cracking, and its strength is significantly lower than the other surfaces, and when the force acting on this surface is increased, it is easily broken. Therefore, when connecting and fixing to a metal, it is possible to make an electrode portion that is resistant to thermal cycling by connecting on a surface where the force acting on this surface is small. In particular, when connecting copper or the like on all surfaces in order to pass a large current, peeling failure on the ab surface is difficult to occur by connecting at an intermediate angle other than the ab surface and its perpendicular basic surface. A strong current lead can be made. At this time, the angle at which the force acting on the ab plane is the smallest is 45 degrees, and in the case of the most realistic quadrangular prism conductor, the surrounding four faces are cut out to form a plane that forms 45 degrees with the ab plane. It is desirable to connect with.
[0012]
The specific form of the oxide superconductor of the present invention is described below.
A current lead was produced using a YBa 2 Cu 3 O x -based superconducting bulk produced by the melting method. FIG. 1 shows a prototype current lead. In the bulk material 1 used, the Y 2 BaCuO 5 phase has an average size of 2 μm or less and a volume ratio of about 30%, but the matrix is an oriented YBa 2 Cu 3 O x superconductivity without a large grain boundary. It is a single crystal material in phase. The YBa 2 Cu 3 O x bulk was prepared in five types of materials having a length (current direction) of 45 mm, a width of 4 mm, and a thickness of 2 mm. In all five types, the crystal orientation is parallel to the ab plane in the length direction. However, the surfaces in contact with the
[0013]
These materials are coated with about 1 μm of silver by sputtering, and are connected to a copper electrode by solder. Moreover, as shown in FIG. 1, it is reinforced with a glass fiber reinforced plastic 3 called G10. This reinforcing plastic is not in close contact with the superconducting bulk, but is fixed and integrated with the copper electrode.
[0014]
These current leads were able to maintain a superconductor state even when energized with 200 A at a liquid nitrogen temperature (77 K). The operation of returning the current lead to room temperature and cooling it again to the liquid nitrogen temperature was repeated 100 times. Among them, the current lead A was peeled and broken from the ab surface near the electrode portions at both ends as shown in FIG. 2 when 10 thermal cycles were applied. The other current leads had no problem in appearance even after 100 thermal cycles. However, when the current lead B was energized at 60 A at the liquid nitrogen temperature, the electrical resistance at both ends increased and the current could not be energized. When this was observed with an optical microscope, a large crack was observed in the vicinity of the electrode portion in parallel with the ab surface of the sample. It seems that the current flow was hindered by this crack, and the critical current was lowered. For the current leads C, D, and E, no abnormality was observed even when a current of 200 A was applied.
[0015]
The reason why the electrodes of the current leads A and B are damaged is that the difference in thermal expansion coefficient between the copper of the electrode and the YBa 2 Cu 3 O x superconducting bulk, and between the glass fiber reinforced plastic and the YBa 2 Cu 3 O x superconducting bulk This is thought to be because stress was generated in the vicinity of the electrode portion, and cleavage cracks were generated and expanded on the ab surface having low strength. On the other hand, when the electrode bonding surface is larger than 25 degrees with respect to the ab surface, it is considered that the stress applied to the ab surface is small, so that it can withstand repeated stress due to the thermal cycle.
[0016]
Using a YBa 2 Cu 3 O x -based superconducting bulk produced by the melting method, a current lead having a form different from that described above was produced. FIG. 3 shows a prototype current lead. In the
[0017]
These current leads were able to maintain a superconducting state even when a current of 200 A was applied at a liquid nitrogen temperature (77 K). The operation of returning the current lead to room temperature and cooling it again to the liquid nitrogen temperature was repeated. At this time, the electric resistance generated at both ends of the current lead was on the order of 10 −4 ohm. This is almost the electrical resistance of copper. Of these, when the current lead F was subjected to 10 thermal cycles, the electrical resistance at both ends became greater than kilohms, making it impossible to energize. When the inside was observed, peeling breakage occurred from the ab surface near the electrode part on one side. On the other hand, the current lead G was able to pass a current of 200 A even after 100 thermal cycles, and no abnormality in electrical resistance was observed.
[0018]
The reason why the electrode part of the current lead F is damaged is due to the difference in thermal expansion coefficient between the copper of the electrode part and the YBa 2 Cu 3 O x superconducting bulk and between the glass fiber reinforced plastic and the YBa 2 Cu 3 O x superconducting bulk. This is probably because stress was generated in the vicinity of the electrode portion, and cleavage cracks were generated and expanded on the ab surface having low strength. On the other hand, when the electrode bonding surface is cut out at 45 degrees from the ab surface, it is considered that the stress applied to the ab surface is small, so that it can withstand repeated stress due to the thermal cycle.
[0019]
【The invention's effect】
When a REBa 2 Cu 3 O x bulk is used as a conductor, the surface to which the metal is connected is limited to a surface close to a plane that preferably forms 45 degrees other than the ab surface of the REBa 2 Cu 3 O x bulk according to the present invention. This makes it possible to produce an oxide current lead that is resistant to thermal cycling. This material can be applied to current leads and permanent current switches.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an example of a current lead by an oxide superconductor. FIG. 2 is a diagram showing a YBa 2 Cu 3 O x bulk that has undergone delamination. FIG. 3 is an example of a current lead by an oxide superconductor. Schematic shown 【Explanation of symbols】
1 YBa 2 Cu 3 O x bulk 2 Copper electrode 3 Glass fiber reinforced plastic reinforcement 4 c-
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13566696A JP3641067B2 (en) | 1996-05-07 | 1996-05-07 | Oxide superconducting conductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13566696A JP3641067B2 (en) | 1996-05-07 | 1996-05-07 | Oxide superconducting conductor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09295896A JPH09295896A (en) | 1997-11-18 |
JP3641067B2 true JP3641067B2 (en) | 2005-04-20 |
Family
ID=15157103
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13566696A Expired - Fee Related JP3641067B2 (en) | 1996-05-07 | 1996-05-07 | Oxide superconducting conductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3641067B2 (en) |
-
1996
- 1996-05-07 JP JP13566696A patent/JP3641067B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH09295896A (en) | 1997-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7138581B2 (en) | Low resistance conductor, processes of production thereof, and electrical members using same | |
JPH07245211A (en) | Superconducting magnet and its manufacture | |
JP4799979B2 (en) | Oxide superconductor coil, oxide superconductor coil manufacturing method, oxide superconductor coil excitation method, oxide superconductor coil cooling method, and magnet system | |
JP2011134610A (en) | Superconducting connection structure and connection method of superconducting wire rod and superconducting coil device | |
JP3641067B2 (en) | Oxide superconducting conductor | |
JPH0745874A (en) | Anisotropic superconductive element and its manufacturing method and fluxon device using it | |
JP4402928B2 (en) | Oxide superconductor conducting element | |
JP5675232B2 (en) | Superconducting current lead | |
JP6471625B2 (en) | Superconducting conductive element | |
JP4612311B2 (en) | Oxide superconductor current lead | |
JP2002009353A (en) | Bicrystal oxide superconducting film and high temperature superconducting josephson junction element and superconducting quantum inteference element using it | |
JP4903729B2 (en) | Oxide superconducting magnet, manufacturing method thereof, and cooling method | |
US5248851A (en) | Pseudo-rod fabricated from discrete planar conductors | |
JP3766448B2 (en) | Superconducting current lead | |
Matsumoto et al. | Magnetic flux pinning properties of oxide superconductors produced by melt processes | |
JPH09306721A (en) | Oxide superconductor | |
JPH08264312A (en) | Current lead | |
JP7335501B2 (en) | Oxide superconducting bulk conductor and current-carrying element | |
JP2003173718A (en) | Low resistance compound conductor and its manufacturing method | |
JP2560088B2 (en) | How to join superconductors | |
JP2549684B2 (en) | Oxide-based superconducting wire connection method | |
JP7127463B2 (en) | Oxide superconducting bulk conductor | |
JPH0982516A (en) | Oxide superconducting current lead | |
JP2004047259A (en) | Oxide superconductor current-carrying element | |
JP3172893B2 (en) | Superconducting current lead |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041213 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050111 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050120 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090128 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100128 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110128 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120128 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130128 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130128 Year of fee payment: 8 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130128 Year of fee payment: 8 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130128 Year of fee payment: 8 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130128 Year of fee payment: 8 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140128 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |