JPH06129952A - Tire testing device - Google Patents

Tire testing device

Info

Publication number
JPH06129952A
JPH06129952A JP4281634A JP28163492A JPH06129952A JP H06129952 A JPH06129952 A JP H06129952A JP 4281634 A JP4281634 A JP 4281634A JP 28163492 A JP28163492 A JP 28163492A JP H06129952 A JPH06129952 A JP H06129952A
Authority
JP
Japan
Prior art keywords
tire
tread
thermocouple
generated
thermoelectromotive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4281634A
Other languages
Japanese (ja)
Inventor
Kazu Sasaki
計 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP4281634A priority Critical patent/JPH06129952A/en
Publication of JPH06129952A publication Critical patent/JPH06129952A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure the friction energy at a number of points at a tread part once by providing a thermocouple for converting the friction heat generated on the tread surface of a tire to thermoelectromotive force. CONSTITUTION:A grounding part 1 is moved by a drive source, a retention device 2 is operated to lower a shaft part 3, and then the tread surface of a tire T to be tested is grounded to the grounding part 1 with a specific pressure. The tire T runs, while being grounded, on a sensor-buried plate 4 of the grounding part 1 while it rotates. At this time, friction heat is generated corresponding to the strain of each part at the tread part of the tire T. The friction heat is transferred to the warm contact of the thermocouple at each corresponding position via a casing and thermoelectromotive force is generated corresponding to the level of the friction heat which is generated at each part of the tread. The thermoelectromotive force is processed by a central processing unit 12 to obtain the friction energy distribution corresponding to the friction heat at each part of the tread.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、タイヤが路面に接触し
た時の摩擦エネルギー分布を測定するタイヤ試験装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tire testing apparatus for measuring a friction energy distribution when a tire comes into contact with a road surface.

【0002】[0002]

【従来の技術】タイヤの開発において、タイヤのトレッ
ド面に発生する摩擦エネルギー分布を知ることは、例え
ば偏摩耗を起こしにくいタイヤを開発するのに極めて重
要である。従来、このような摩擦エネルギー分布を測定
するには、接地部上を被試験タイヤが転動可能に構成さ
れたタイヤ試験装置によりタイヤのトレッド部を多点に
わたり測定する必要があるため、一回の測定操作では測
定不可能とされ、多数回にわたり測定操作を繰り返すこ
とを余儀なくされていた。
2. Description of the Related Art In developing a tire, it is extremely important to know the distribution of frictional energy generated on the tread surface of the tire, for example, to develop a tire that is less likely to cause uneven wear. Conventionally, in order to measure such a friction energy distribution, it is necessary to measure the tread portion of the tire at multiple points by a tire testing device configured so that the tire under test can roll on the ground contact portion. It was impossible to perform the measurement with the measurement operation of, and the measurement operation had to be repeated many times.

【0003】また、各点毎の測定に当たり、3方向(進
行方向、進行方向と直交する方向、鉛直方向)の力と、
2方向の滑り(進行方向及びその進行方向に直交する方
向)とを1度に測定する必要があるため、センサー等の
測定機器が極めて複雑で高価になっていた。
Further, in measuring at each point, a force in three directions (a traveling direction, a direction orthogonal to the traveling direction, and a vertical direction),
Since it is necessary to measure the slip in two directions (the advancing direction and the direction orthogonal to the advancing direction) at once, the measuring device such as a sensor is extremely complicated and expensive.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、簡単
な装置構成でタイヤのトレッド部の多数の点における摩
擦エネルギーを1回の測定で測定可能なタイヤ試験装置
を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a tire testing apparatus capable of measuring frictional energy at a large number of points on a tread portion of a tire with a single measurement with a simple apparatus configuration.

【0005】[0005]

【発明を解決するための手段】上記目的を達成する本発
明は、接地部上を被試験タイヤが転動可能に構成された
タイヤ試験装置において、前記接地部に被試験タイヤの
トレッド面に生じる摩擦熱を熱起電力に変換する熱電対
を設けたことを要旨とするものである。また、前記熱電
対は接地部のタイヤ踏面に露出する熱伝導性のケーシン
グに温接点が埋設されたことを要旨とするものである。
Means for Solving the Problems The present invention, which achieves the above object, provides a tire testing apparatus configured such that a tire under test can roll on a ground contact portion, which occurs on the tread surface of the tire under test at the ground contact portion. The gist is to provide a thermocouple for converting frictional heat into thermoelectromotive force. Further, the gist of the thermocouple is that a hot junction is embedded in a thermally conductive casing exposed at the tire tread surface of the grounding portion.

【0006】[0006]

【作用】本発明は上記のように構成され、被試験タイヤ
が転動しながら接地するときのトレッド面には摩擦熱が
発生するので、その摩擦熱を接地部に配置した熱電対に
伝達することにより、各トレッド部の摩擦熱の大きさ
(即ち温度の高さ)に応じた熱起電力を発生させること
が出来る。また、接地部のタイヤ踏面に露出する熱伝導
性のケーシングに温接点が埋設されるように熱電対を配
置することにより、該熱電対に精度良く熱起電力を発生
させることが出来る。従って、その熱起電力の分布によ
ってトレッド部に対する摩擦エネルギー分布を知ること
が出来るようになる。
The present invention is constructed as described above, and frictional heat is generated on the tread surface when the tire under test contacts the ground while rolling. Therefore, the frictional heat is transmitted to the thermocouple arranged at the grounding portion. As a result, it is possible to generate a thermoelectromotive force according to the magnitude of frictional heat (that is, the height of temperature) of each tread portion. Further, by disposing the thermocouple so that the hot junction is embedded in the thermally conductive casing exposed on the tire tread surface of the grounding portion, it is possible to accurately generate thermoelectromotive force in the thermocouple. Therefore, it is possible to know the friction energy distribution with respect to the tread portion from the distribution of the thermoelectromotive force.

【0007】[0007]

【実施例】以下、添付図面に基づいて本発明の実施例を
説明する。図1において、1は被試験タイヤTのトレッ
ド部が接地される接地部であり、この接地部1は矢印a
の方向に往復移動可能に構成されている。接地部1の上
方には、被試験タイヤTを保持する保持装置2が設置さ
れている。被試験タイヤTに装着されたホイールWを介
して該被試験タイヤTを回転自在に支持する軸部3が昇
降可能に配設され、この軸部3が降下することにより被
試験タイヤTを接地部1に接地させることが出来る。
Embodiments of the present invention will be described below with reference to the accompanying drawings. In FIG. 1, reference numeral 1 is a grounding portion to which a tread portion of a tire T under test is grounded, and this grounding portion 1 is indicated by an arrow a.
It is configured to be able to reciprocate in the direction of. A holding device 2 that holds the tire T under test is installed above the ground contact portion 1. A shaft portion 3 for rotatably supporting the tire T to be tested is provided through a wheel W mounted on the tire T to be tested so as to be able to move up and down, and the tire T to be tested is grounded by descending the shaft portion 3. The part 1 can be grounded.

【0008】また接地部1の被試験タイヤT走行位置に
は、被試験タイヤTが接地部1上を転動しながら接地走
行した時にトレッド面に発生する摩擦熱を測定するため
のセンサー埋込板4が設置されている。このセンサー埋
込板4はタイヤ踏面として十分な強度を有し、その上面
(タイヤ踏面)は接地部1のタイヤ踏面と同じ平面上に
あり、トレッド面に発生する摩擦熱を熱起電力に変換す
る熱電対5が埋込まれている。この熱電対5の構成は、
一般に公知のものを使用することが出来、2種の金属の
組み合わせは、例えば銅ーコンスタンタン等である。
A sensor embedded for measuring the frictional heat generated on the tread surface when the tire T under test travels on the grounding part 1 while rolling on the grounding part 1 at the running position of the tire T under test on the grounding part 1. A board 4 is installed. The sensor embedding plate 4 has sufficient strength as a tire tread surface, and its upper surface (tire tread surface) is on the same plane as the tire tread surface of the ground contact portion 1 and converts frictional heat generated on the tread surface into thermoelectromotive force. The thermocouple 5 is embedded. The structure of this thermocouple 5 is
Generally known ones can be used, and a combination of two kinds of metals is, for example, copper-constantan.

【0009】熱電対5は銅やアルミ等の熱伝導性の良い
金属から構成された中実のケーシング6に温接点t1
埋設され、この温接点t1 を有するケーシング6の上面
がセンサー埋込板4の上面(タイヤ踏面)に露出してい
る。冷接点t2 はセンサー埋込板4の下側に位置し、こ
の冷接点t2 は温度が常に一定となるように、例えば0
℃に保たれるように構成されている。
[0009] Thermocouple 5 is embedded hot junction t 1 to a solid casing 6 formed of a good thermal conductivity metal such as copper or aluminum, embedding sensors upper surface of the casing 6 with the hot junction t 1 It is exposed on the upper surface (tire tread surface) of the insert plate 4. The cold junction t 2 is located below the sensor-embedded plate 4, and the cold junction t 2 is set to, for example, 0 so that the temperature is always constant.
It is designed to be kept at ℃.

【0010】センサー埋込板4の上面に露出するケーシ
ング6のタイヤ踏面の形状は、センサー埋込板4の上面
と同じ平面状、或いは図4(a),(b)に示すように
曲面状(例えば球面状)をなしてセンサー埋込板4の上
面よりも突出して構成されている。ケーシング6のタイ
ヤ踏面を突出させるのは、次の理由による。タイヤの摩
擦エネルギーにより発生する熱だけを選択的に測定しよ
うとした場合、タイヤの内部発熱を起こさないために低
速で被試験タイヤTを回転させることが必要であり、該
被試験タイヤTを低速で回転させた時にタイヤトレッド
面における摩擦エネルギーによる熱の発生量は小さい。
このため、熱電対5の温接点t1 が埋設されたケーシン
グ6のタイヤ踏面を突出させることにより、通常よりも
熱の発生を高めて試験精度をより高めるのである。
The shape of the tire tread surface of the casing 6 exposed on the upper surface of the sensor embedding plate 4 is the same plane shape as the upper surface of the sensor embedding plate 4 or a curved surface as shown in FIGS. 4 (a) and 4 (b). The sensor embedded plate 4 has a (for example, spherical shape) and protrudes from the upper surface of the sensor embedded plate 4. The reason why the tire tread of the casing 6 is projected is as follows. When only the heat generated by the friction energy of the tire is to be selectively measured, it is necessary to rotate the tire T under test at a low speed in order to prevent the internal heat generation of the tire. The amount of heat generated by the frictional energy on the tire tread surface is small when rotated at.
Therefore, by projecting the tire tread surface of the casing 6 in which the hot junction t 1 of the thermocouple 5 is embedded, heat generation is increased more than usual and the test accuracy is further increased.

【0011】接地部1のタイヤ踏面と同じ平面上にある
センサー埋込板4の上面からの突出高さhは0mm≦h≦
5mmであることが好ましい。5mm以下となるようにケー
シング6のタイヤ踏面を上記のように突出させることに
より、被試験タイヤTに発生する摩擦熱を効率よく熱電
対5に伝達することが出来る。5mmを越えると、被試験
タイヤTに対する接地状態が通常と異なるため、正確な
摩擦エネルギーの分布状態を測定することが出来ない。
より好ましくは、1mm≦h≦3mmの範囲であり、この範
囲において、最も効率良くかつ精度を高くして被試験タ
イヤTに発生する摩擦熱を測定することが出来る。
The protrusion height h from the upper surface of the sensor embedding plate 4 on the same plane as the tire tread of the ground contact portion 1 is 0 mm ≦ h ≦
It is preferably 5 mm. By making the tire tread surface of the casing 6 project as described above so as to be 5 mm or less, the friction heat generated in the tire T to be tested can be efficiently transmitted to the thermocouple 5. If it exceeds 5 mm, the ground contact state with respect to the tire T to be tested is different from the normal state, and the accurate distribution state of friction energy cannot be measured.
The range of 1 mm ≦ h ≦ 3 mm is more preferable, and the frictional heat generated in the tire T to be tested can be measured most efficiently and with high accuracy in this range.

【0012】またケーシング6の幅dは1mm≦d≦10
mmであるのが好ましい。1mm未満であると熱電対5の温
接点t1 を埋設してケーシング6を形成することが困難
となり、10mmを越えると、上述同様に被試験タイヤT
に対する接地状態が通常と異なり、被試験タイヤTの摩
擦エネルギーの分布状態を精度良く測定することが出来
ない。より好ましくは3mm≦d≦6mmであり、この範囲
において最も効率良くかつ精度が高く被試験タイヤTに
発生する摩擦熱を測定することが出来る。
The width d of the casing 6 is 1 mm≤d≤10.
mm is preferred. If it is less than 1 mm, it is difficult to embed the hot junction t 1 of the thermocouple 5 to form the casing 6, and if it exceeds 10 mm, the tire T to be tested is similar to the above.
The contact state with respect to is different from usual, and the distribution state of the friction energy of the tire T to be tested cannot be accurately measured. More preferably, 3 mm ≦ d ≦ 6 mm, and the frictional heat generated in the tire T to be tested can be measured most efficiently and highly accurately in this range.

【0013】上述した熱電対5のセンサー埋込板4にお
ける配列は、例えばタイヤの幅方向に対する摩擦エネル
ギーの分布状態を測定する場合は、熱電対5が接地走行
される被試験タイヤTの幅方向となるようにセンサー埋
込板4の幅方向に複数配設される。タイヤの周方向に対
する摩擦エネルギーの分布状態を測定する場合は、熱電
対5が被試験タイヤTの周方向となるようにセンサー埋
込板4に複数配設される。
The arrangement of the thermocouples 5 in the sensor-embedded plate 4 is, for example, when measuring the distribution state of friction energy in the tire width direction, in the width direction of the tested tire T on which the thermocouple 5 runs on the ground. A plurality of sensor embedding plates 4 are arranged in the width direction of the sensor embedding plate 4. When measuring the distribution state of friction energy in the tire circumferential direction, a plurality of thermocouples 5 are arranged on the sensor embedding plate 4 so as to be in the circumferential direction of the tire T to be tested.

【0014】両者を同時に測定する場合には、両方向に
熱電対5を設置するようにすれば良い。当然のことなが
ら、熱電対5をセンサー埋込板4に1個設けて、被試験
タイヤTの測定位置を何度もずらして測定することも可
能である。前記熱電対5の間隔(熱電対密度)は、相互
に約15mm離して設けることが偏摩耗を起こしにくいタ
イヤを開発する上での測定において好ましい。
When both are measured simultaneously, the thermocouples 5 may be installed in both directions. As a matter of course, it is also possible to provide one thermocouple 5 on the sensor embedding plate 4 and measure the tire T under test by shifting the measurement position many times. The distance between the thermocouples 5 (thermocouple density) is preferably set at a distance of about 15 mm from each other in measurement for developing a tire in which uneven wear is unlikely to occur.

【0015】熱電対5は図1に示すように直流増幅器1
0及びアナログ/デジタル(A/D)変換器11を介し
てパソコン等の中央演算処理装置12に接続され、この
中央演算処理装置12により被試験タイヤTのトレッド
各部の摩擦エネルギーの分布状態が求められるようにな
っている。13は表示部であり、求められた摩擦エネル
ギーの分布状態が表示される。
The thermocouple 5 is a DC amplifier 1 as shown in FIG.
0 and an analog / digital (A / D) converter 11 are connected to a central processing unit 12 such as a personal computer, and the central processing unit 12 determines the distribution state of the friction energy of each part of the tread of the tire T to be tested. It is designed to be used. A display unit 13 displays the distribution state of the obtained friction energy.

【0016】次に、上記構成よりなる本発明のタイヤ試
験装置の作用について説明する。接地部1を図1の左方
向に図示せぬ駆動源により低速で移動させると共に、保
持装置2を作動して軸部3を降下させ、被試験タイヤT
のトレッド面を接地部1に所定の圧力で接地させる。被
試験タイヤTは転動しながら接地部1のセンサー埋込板
4上を低速で接地走行する。
Next, the operation of the tire testing apparatus of the present invention having the above structure will be described. The ground contact portion 1 is moved leftward in FIG. 1 at a low speed by a drive source (not shown), the holding device 2 is operated to lower the shaft portion 3, and the tire T
The tread surface of is grounded to the grounding portion 1 with a predetermined pressure. The tire T to be tested runs at low speed on the sensor embedding plate 4 of the grounding portion 1 while rolling.

【0017】この時、被試験タイヤTのトレッド部には
各部の歪みに応じてそれぞれ摩擦熱が発生する。このト
レッド各部の面に生じる摩擦熱は、ケーシング6を介し
てそれぞれに対応する位置の熱電対5の温接点t1 に伝
達されるため、各位置の熱電対5には、そのトレッド各
部に発生した摩擦熱の大きさに応じて熱起電力が発生す
る。
At this time, frictional heat is generated in the tread portion of the tire T to be tested in accordance with the strain of each portion. The frictional heat generated on the surface of each part of the tread is transmitted to the hot junction t 1 of the thermocouple 5 at the corresponding position through the casing 6, so that the thermocouple 5 at each position is generated at each part of the tread. Thermoelectromotive force is generated according to the magnitude of the generated frictional heat.

【0018】従って、この各熱起電力をそれぞれ直流増
幅器10で増幅した後、A/D変換器11でアナログ量
をデジタル量に変換して中央演算処理装置12で処理
し、トレッド各部の摩擦熱に対する摩擦エネルギー分布
が求められる。求められた摩擦エネルギーの分布状態は
表示部13により表示される。このように本発明は接地
部1に熱電対5を設け、該熱電対5に生じる熱起電力の
相違を測定することにより、被試験タイヤTのトレッド
部に対する摩擦エネルギー分布を知ることが出来るので
ある。なお、本発明は前述した実施例に限定されること
なく、例えば接地部1を固定にして、保持装置2を往復
移動させる構成としても良く、他の態様であっても実施
しうるものである。
Therefore, after each thermoelectromotive force is amplified by the DC amplifier 10, the analog amount is converted into a digital amount by the A / D converter 11 and processed by the central processing unit 12, and the friction heat of each part of the tread is The frictional energy distribution for is calculated. The distribution state of the obtained friction energy is displayed on the display unit 13. As described above, according to the present invention, since the thermocouple 5 is provided in the grounding portion 1 and the difference in thermoelectromotive force generated in the thermocouple 5 is measured, the friction energy distribution with respect to the tread portion of the tire T to be tested can be known. is there. It should be noted that the present invention is not limited to the above-described embodiment, and may have a configuration in which the grounding portion 1 is fixed and the holding device 2 is reciprocally moved, for example, and can be implemented in other modes. .

【0019】[0019]

【発明の効果】上述したように本発明のタイヤ試験装置
は、被試験タイヤのトレッド面に生じる摩擦熱を熱起電
力に変換する熱電対を設けたので、各トレッド部の摩擦
熱の大きさに応じた熱起電力を熱電対に発生させること
が出来るため、その熱起電力の分布を測定することによ
ってトレッド部に対する摩擦エネルギー分布を容易に測
定することが出来る。また被試験タイヤの摩擦熱をケー
シングを介して熱電対に伝達するため、精度を高くして
トレッド部に対する摩擦エネルギー分布を測定すること
が出来る。
As described above, since the tire testing apparatus of the present invention is provided with the thermocouple for converting the frictional heat generated on the tread surface of the tire under test into a thermoelectromotive force, the magnitude of the frictional heat of each tread portion is large. Since a thermoelectromotive force corresponding to the above can be generated in the thermocouple, the friction energy distribution with respect to the tread portion can be easily measured by measuring the distribution of the thermoelectromotive force. Further, since the frictional heat of the tire under test is transmitted to the thermocouple through the casing, it is possible to measure the frictional energy distribution with respect to the tread portion with high accuracy.

【0020】また熱電対を小型に構成することが出来る
ため、複数の熱電対を取付けることにより、1回の測定
でトレッド部に対する摩擦エネルギー分布を簡単に知る
ことが出来る。また更に、熱電対を利用することにより
本発明のタイヤ試験装置を比較的安価に作製することが
出来る。
Further, since the thermocouple can be constructed in a small size, the friction energy distribution with respect to the tread portion can be easily known by one measurement by mounting a plurality of thermocouples. Furthermore, the tire testing apparatus of the present invention can be manufactured at a relatively low cost by utilizing a thermocouple.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のタイヤ試験装置の一例を示す概略説明
図である。
FIG. 1 is a schematic explanatory view showing an example of a tire testing apparatus of the present invention.

【図2】本発明の熱電対を有するセンサー埋込板の接地
部における位置を示す説明図である。
FIG. 2 is an explanatory view showing a position in a ground portion of a sensor-embedded plate having a thermocouple of the present invention.

【図3】本発明のセンサー埋込板の断面説明図である。FIG. 3 is a cross-sectional explanatory view of a sensor embedding plate of the present invention.

【図4】(a)は本発明のセンサー埋込板の要部断面図
である。(b)は本発明のケーシングの平面図である。
FIG. 4A is a cross-sectional view of essential parts of a sensor embedding plate of the present invention. (B) is a top view of the casing of this invention.

【符号の説明】[Explanation of symbols]

1 接地部 2 保持装置 4 センサー埋込板 5 熱電対 6 ケーシング T 被試験タイヤ t1 温接点1 Grounding Part 2 Holding Device 4 Sensor Embedded Plate 5 Thermocouple 6 Casing T Tire Under Test t 1 Hot Junction

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 接地部上を被試験タイヤが転動可能に構
成されたタイヤ試験装置において、前記接地部に被試験
タイヤのトレッド面に生じる摩擦熱を熱起電力に変換す
る熱電対を設けたタイヤ試験装置。
1. A tire testing apparatus in which a tire under test is configured to roll on a ground contact portion, and a thermocouple for converting frictional heat generated on a tread surface of the tire under test into thermoelectromotive force is provided in the ground contact portion. Tire testing equipment.
【請求項2】 前記熱電対は接地部のタイヤ踏面に露出
する熱伝導性のケーシングに温接点が埋設された請求項
1記載のタイヤ試験装置。
2. The tire testing apparatus according to claim 1, wherein the thermocouple has a hot junction embedded in a thermally conductive casing exposed at a tire tread of a grounding portion.
JP4281634A 1992-10-20 1992-10-20 Tire testing device Pending JPH06129952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4281634A JPH06129952A (en) 1992-10-20 1992-10-20 Tire testing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4281634A JPH06129952A (en) 1992-10-20 1992-10-20 Tire testing device

Publications (1)

Publication Number Publication Date
JPH06129952A true JPH06129952A (en) 1994-05-13

Family

ID=17641847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4281634A Pending JPH06129952A (en) 1992-10-20 1992-10-20 Tire testing device

Country Status (1)

Country Link
JP (1) JPH06129952A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004226258A (en) * 2003-01-23 2004-08-12 Toyo Tire & Rubber Co Ltd Tire testing apparatus
KR100570144B1 (en) * 2004-10-21 2006-04-11 한국타이어 주식회사 Testing apparatus of durability for controlling surface temperature of tire
CN103076193A (en) * 2012-12-27 2013-05-01 三一重工股份有限公司 Grounding specific pressure testing device and testing method thereof
US8640535B2 (en) 2009-09-30 2014-02-04 Compagnie Generale Des Etablissements Michelin Apparatus and method for tire temperature measurement
CN112179797A (en) * 2020-10-09 2021-01-05 徐丹凤 Detection dynamics adjustable tire wearability detection device that new energy automobile used

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004226258A (en) * 2003-01-23 2004-08-12 Toyo Tire & Rubber Co Ltd Tire testing apparatus
KR100570144B1 (en) * 2004-10-21 2006-04-11 한국타이어 주식회사 Testing apparatus of durability for controlling surface temperature of tire
US8640535B2 (en) 2009-09-30 2014-02-04 Compagnie Generale Des Etablissements Michelin Apparatus and method for tire temperature measurement
CN103076193A (en) * 2012-12-27 2013-05-01 三一重工股份有限公司 Grounding specific pressure testing device and testing method thereof
CN112179797A (en) * 2020-10-09 2021-01-05 徐丹凤 Detection dynamics adjustable tire wearability detection device that new energy automobile used

Similar Documents

Publication Publication Date Title
US6883962B2 (en) Tire wear forecasting method and apparatus
JP2006226778A (en) Ground pressure distribution measuring device of tire
GB1602559A (en) Determining the state of the surface of a moving body by means of eddy currents
Ling et al. Measurement of pointwise juncture condition of temperature at the interface of two bodies in sliding contact
EP0729018A2 (en) Method and apparatus for brake testing
JPH06129952A (en) Tire testing device
CN206656979U (en) It is a kind of to be used to measure rubber and the experimental provision of intermetallic contact thermal resistance
US3526123A (en) Heat flow sensing device
US3404570A (en) Thermoelectric method and apparatus for rapid determination of silicon in cast iron
JPH0763658A (en) Ground-contact part measurement device for wheel tread
CN106679818B (en) Device and method for measuring temperature distribution of smooth surface
CN106885634A (en) Unsteady wall heating heat flux distribution measuring method based on infrared thermal imagery thermometry
Wetenkamp et al. Hot spot heating by composition shoes
JPS5682422A (en) Temperature measuring device
CN207318394U (en) A kind of Measured Results of Thermal Conductivity experimental system
US3592058A (en) Omnidirectional fluid velocity measuring device
JP2524384B2 (en) Cryogenic thermometer
JPS627983B2 (en)
JP2006058226A (en) Temperature sensor and temperature-sensor equipped bearing device
US6348807B2 (en) Method and system for utilizing multiple thermocouples to obtain a temperature contour map
JP3218389B2 (en) Temperature measurement device for heated surface in heating furnace
KR20000043425A (en) Method and apparatus for measuring thickness of brick in bottom part of shaft furnace by measuring thermal flux
SU1086165A1 (en) Bed for determining deformation of rock samples
JPH0325128Y2 (en)
BULLIS Semiconductor measurement technology[Interim Progress Report, 1 Jan.- 30 Jun. 1975]