JPH06129808A - Magnetic sensor - Google Patents

Magnetic sensor

Info

Publication number
JPH06129808A
JPH06129808A JP30462192A JP30462192A JPH06129808A JP H06129808 A JPH06129808 A JP H06129808A JP 30462192 A JP30462192 A JP 30462192A JP 30462192 A JP30462192 A JP 30462192A JP H06129808 A JPH06129808 A JP H06129808A
Authority
JP
Japan
Prior art keywords
output
voltage
magnetoresistive element
circuit
magnetic sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30462192A
Other languages
Japanese (ja)
Inventor
Nobuhiro Ito
信宏 伊藤
Kenji Matsuo
研志 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP30462192A priority Critical patent/JPH06129808A/en
Publication of JPH06129808A publication Critical patent/JPH06129808A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE:To provide a magnetic sensor with high resolution and at low cost without increasing the number of gears of a rotary body and the number of magnetic resistance elements. CONSTITUTION:A first and a second magnetic resistance element bridge 18, 19 are arranged with the phase difference of 90 degrees. An output Va=Asinomegat, Vb=Asin(omegat pi/2) from the bridges 18, 19 is added to a reduction circuit 4 having an oscillation or amplitude control means R1-R9, an adding circuits 5, 6, 7 to output a voltage Vc=Asin(omega t-pi/4), Ve=Asin(omegat+pi/4). These voltages Vc, Ve have the phase difference of 45 degrees with respect to the voltages Va, Vb. The output waveform of four phases with the same amplitude is obtained accordingly from two pairs of bridges which provide the same resolution as four pairs of bridges. It is thus possible to have high resolution with the minimum number of magnetic resistance elements, and to thereby provide a low current consumption and low cost magnetic sensor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気抵抗素子を利用し
て磁性体の例えば回転速度や回転方向を検出する磁気セ
ンサ装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic sensor device for detecting a rotational speed or a rotational direction of a magnetic body using a magnetoresistive element.

【0002】[0002]

【従来の技術】図7には従来の一般的な磁気センサ装置
が歯車回転の検出を行う態様で模式図の状態で示されて
いる。この磁気センサ装置は磁気バイアスマグネットの
上側に1対の磁気抵抗素子MR1 ,MR2 を直列に接続
したものを配設し、この直列接続回路の一端側を電源V
dcに接続し、他端側をグランドに接続し、磁気抵抗素子
MR1 とMR2 の接続部から出力電圧Vout を取り出す
ようにしている。
2. Description of the Related Art FIG. 7 is a schematic diagram showing a conventional general magnetic sensor device for detecting gear rotation. This magnetic sensor device is provided with a pair of magnetoresistive elements MR 1 and MR 2 connected in series above a magnetic bias magnet, and one end side of this series connection circuit is connected to a power supply V.
The output voltage V out is taken out from the connection portion of the magnetoresistive elements MR 1 and MR 2 by connecting to the dc and the other end side to the ground.

【0003】被検出体としての磁性体からなる歯車16に
磁気抵抗素子MR1 ,MR2 側を対向配置し、歯車16の
山が例えば磁気抵抗素子MR1 に対向するときに歯車の
谷が磁気抵抗素子MR2 を通過するように磁気抵抗素子
MR1 ,MR2 の配列ピッチを設定することにより、歯
車16の回転が磁気抵抗素子MR1 ,MR2 の差動出力と
して図8に示すような出力波形で得られる。この出力波
形を基準電圧でレベル弁別してパルス信号に変換して単
位時間あたりのパルス数を数えれば回転速度が検出でき
る。
The magnetoresistive elements MR 1 and MR 2 are arranged opposite to a gear 16 made of a magnetic material as an object to be detected. When the crests of the gear 16 oppose to the magnetoresistive element MR 1 , for example, the valleys of the gears become magnetic. By setting the arrangement pitch of the magnetoresistive elements MR 1 and MR 2 so as to pass through the resistive element MR 2 , the rotation of the gear 16 is shown as a differential output of the magnetoresistive elements MR 1 and MR 2 as shown in FIG. Obtained with the output waveform. The rotation speed can be detected by discriminating the level of this output waveform with a reference voltage, converting it into a pulse signal, and counting the number of pulses per unit time.

【0004】また、上記のように1対の磁気抵抗素子M
1 とMR2 よりなる磁気センサ装置では歯車16の回転
速度は検出できるが、回転方向は検出できない。図5に
示すように磁気センサ装置として1対の磁気抵抗素子M
a1とMRa2を直列接続してなる第1の磁気抵抗素子ブ
リッジ18と、別の1対の磁気抵抗素子MRb1とMRb2
直列接続してなる第2の磁気抵抗素子ブリッジ19とを電
気的に出力位相差をもたせて配設することにより、2相
出力型回転磁気センサとして、図6に示すような出力波
形が得られ、回転方向の検出が可能となる。すなわち、
第1の磁気抵抗素子ブリッジ18からの出力電圧Va と第
2の磁気抵抗素子ブリッジ19からの出力電圧Vb との位
相の進相関係を調べることにより回転方向が検出でき
る。
Further, as described above, a pair of magnetoresistive elements M
The magnetic sensor device composed of R 1 and MR 2 can detect the rotation speed of the gear 16, but cannot detect the rotation direction. As shown in FIG. 5, as a magnetic sensor device, a pair of magnetoresistive elements M
A first magnetoresistive element bridge 18 in which R a1 and MR a2 are connected in series and a second magnetoresistive element bridge 19 in which another pair of magnetoresistive elements MR b1 and MR b2 are connected in series are provided. By electrically arranging the output phase difference, a two-phase output type rotary magnetic sensor can obtain an output waveform as shown in FIG. 6 and detect the rotation direction. That is,
It can be detected rotational direction by examining the phase advance relationship between the phase of the output voltage V b of the output voltage V a and the second magnetoresistive element bridges 19 from the first magnetoresistive element bridges 18.

【0005】[0005]

【発明が解決しようとする課題】最近では、機器制御の
高精度要求に伴い、回転検出の分解能向上が求められて
いる。それには次の2通りの方策が考えられる。第1に
は歯車16の歯間ピッチIを小さくして歯数を増やすこ
と、第2には磁気抵抗素子ブリッジ数を増やして、それ
ぞれに細分化した位相差をもたせること(例えば、磁気
抵抗素子ブリッジを4対用意して、それぞれのブリッジ
に45度の電気的位相差をもたせれば磁気抵抗素子ブリッ
ジが2対のものよりも分解能は2倍になる)である。
Recently, as the precision of equipment control is required to be high, the resolution of rotation detection is required to be improved. There are two possible ways to do this. Firstly, the inter-tooth pitch I of the gear 16 is reduced to increase the number of teeth, and secondly, the number of bridges of the magnetoresistive element is increased so as to have a subdivided phase difference (for example, the magnetoresistive element). If four pairs of bridges are prepared and each bridge has an electrical phase difference of 45 degrees, the resolution will be twice as high as that of two pairs of magnetoresistive element bridges).

【0006】しかしながら、分解能を高める第1の方策
では歯間ピッチIが小さくなるので、誘起磁界変化量が
減少し、磁気抵抗素子ブリッジ出力振幅が低下する。し
たがって、パルス変換するときのレベル弁別基準電位を
下げるか、磁気抵抗素子MR1 ,MR2 を歯車16の至近
距離内に配設しなければならない。レベル弁別基準電位
を下げるとノイズを出力する虞があり、一方、磁気抵抗
素子MR1 ,MR2 と歯車16を近接させることは素子M
1 ,MR2 が接触により破壊するという物理的危険が
ある。
However, in the first measure for improving the resolution, the inter-tooth pitch I becomes small, so that the induced magnetic field change amount decreases and the magnetoresistive element bridge output amplitude decreases. Therefore, the level discrimination reference potential at the time of pulse conversion must be lowered, or the magnetoresistive elements MR 1 and MR 2 must be arranged within a close range of the gear 16. If the level discrimination reference potential is lowered, noise may be output. On the other hand, if the magnetoresistive elements MR 1 and MR 2 and the gear 16 are placed close to each other, the element M is
There is a physical risk that R 1 and MR 2 will be destroyed by contact.

【0007】また、第2の方策では磁気抵抗素子ブリッ
ジ数を増やすと、当然、素子数や配線の数が増え、組み
立てが容易でなく、組み立てコストが増大し、かつ、磁
気抵抗素子は低インピーダンスなので素子数に比例して
消費電流が増大する。さらに、歯間ピッチIを小さくし
た場合には、歯間ピッチIに対応する磁気抵抗素子の面
積が小さくなり、素子感度が弱くなり、素子インピーダ
ンスも小さくなって磁気抵抗素子ブリッジからの出力電
圧の振幅が減少することとなり、一層多くの消費電流を
必要とするという問題があった。
In the second measure, if the number of magnetoresistive element bridges is increased, the number of elements and the number of wirings are naturally increased, the assembly is not easy, the assembly cost is increased, and the magnetoresistive element has a low impedance. Therefore, current consumption increases in proportion to the number of elements. Further, when the inter-tooth pitch I is reduced, the area of the magnetoresistive element corresponding to the inter-tooth pitch I is reduced, the element sensitivity is weakened, the element impedance is also reduced, and the output voltage from the magnetoresistive element bridge is reduced. Since the amplitude is reduced, there is a problem that more current consumption is required.

【0008】本発明は、上記従来の課題を解決するため
になされたものであり、その目的は、磁気抵抗素子ブリ
ッジ数や歯車の歯数を増やすことなく、低コスト、低消
費電流で、高分解能のもとでの磁気検出が可能な磁気セ
ンサを提供することである。
The present invention has been made in order to solve the above-mentioned conventional problems, and an object thereof is to achieve low cost, low current consumption, high power consumption without increasing the number of magnetic resistance element bridges and the number of gear teeth. An object of the present invention is to provide a magnetic sensor capable of magnetic detection under the resolution.

【0009】[0009]

【課題を解決するための手段】本発明は上記目的を達成
するために、次のように構成されている。すなわち、本
発明の磁気センサは、磁気抵抗素子を直列接続してなる
第1の磁気抵抗素子ブリッジと第2の磁気抵抗素子ブリ
ッジとを電気的に90度の出力位相差をもって配設し、第
1の磁気抵抗素子ブリッジの出力と第2の磁気抵抗素子
ブリッジの出力との加算回路および減算回路を設け、加
算回路の出力と減算回路の出力と前記第1および第2の
磁気抵抗素子の出力を等しくする振幅調整手段が設けら
れていることを特徴としている。
In order to achieve the above object, the present invention is constructed as follows. That is, in the magnetic sensor of the present invention, the first magnetoresistive element bridge and the second magnetoresistive element bridge formed by connecting magnetoresistive elements in series are electrically arranged with an output phase difference of 90 degrees. An adding circuit and a subtracting circuit for the output of the first magnetoresistive element bridge and the output of the second magnetoresistive element bridge are provided, and the output of the adding circuit and the output of the subtracting circuit and the outputs of the first and second magnetoresistive elements. It is characterized in that an amplitude adjusting means for equalizing is provided.

【0010】[0010]

【作用】上記構成の本発明において、電気的に90度の出
力位相差をもつ第1の磁気抵抗素子ブリッジと第2の磁
気抵抗素子ブリッジとのそれぞれの出力電圧を加算回路
および減算回路に印加して演算したものは前記それぞれ
の出力電圧と45度の位相差をもつ出力電圧が得られ、つ
まり、2対の磁気抵抗素子ブリッジで4対の磁気抵抗素
子ブリッジを設けた場合と同様の4相の電圧波形が得ら
れる。
In the present invention having the above-mentioned structure, the respective output voltages of the first magnetoresistive element bridge and the second magnetoresistive element bridge having an electrical output phase difference of 90 degrees are applied to the adding circuit and the subtracting circuit. The output voltage having a phase difference of 45 degrees with each of the output voltages obtained by the above calculation is obtained, that is, the same as when four pairs of magnetoresistive element bridges are provided by two pairs of magnetoresistive element bridges. The voltage waveform of the phase is obtained.

【0011】[0011]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。なお、本実施例の説明において、従来例と同一の
部分には同一符号を付し、その重複説明は省略する。本
実施例による磁気センサ装置の一実施例が図1に示され
ている。磁気センサ部分26は従来と同様に第1の磁気抵
抗素子ブリッジ18と第2の磁気抵抗素子ブリッジ19との
2対から構成され、各ブリッジ18,19には90度の位相差
をもたせており、従来と同様にバイアスマグネット(図
示せず)によってバイアス磁界が印加されている。
Embodiments of the present invention will be described below with reference to the drawings. In the description of the present embodiment, the same parts as those in the conventional example are designated by the same reference numerals, and the duplicate description thereof will be omitted. An embodiment of the magnetic sensor device according to this embodiment is shown in FIG. The magnetic sensor portion 26 is composed of two pairs of a first magnetoresistive element bridge 18 and a second magnetoresistive element bridge 19 as in the conventional case, and each of the bridges 18 and 19 has a phase difference of 90 degrees. A bias magnetic field is applied by a bias magnet (not shown) as in the conventional case.

【0012】従来との相違は、前記第1の磁気抵抗素子
ブリッジ18からの出力電圧Va =Asin ωtと第2の磁
気抵抗素子ブリッジ19からの出力電圧Vb =A(sin ω
t+π/2)を従来はそのままパルス変換して出力した
が、本実施例では、図1に示すような減算回路、加算回
路等の演算回路を内蔵しており、前記出力電圧をこの演
算回路に加えてからパルス変換することにある。
The difference from the prior art is that the output voltage V a = A sin ωt from the first magnetic resistance element bridge 18 and the output voltage V b = A (sin ω) from the second magnetic resistance element bridge 19.
Conventionally, t + π / 2) was directly pulse-converted and output, but in the present embodiment, an arithmetic circuit such as a subtraction circuit and an addition circuit as shown in FIG. 1 is built in, and the output voltage is supplied to this arithmetic circuit. In addition, it is in pulse conversion.

【0013】図1に示される本実施例で使用される演算
回路は減算回路としての演算増幅器4と加算回路として
の演算増幅器5,6,7や振幅調整手段としての抵抗体
1〜R9 等を有して構成されている。この減算回路4
から出力される電圧VC は、VC =Va −Vb =Asin
ωt−Asin (ωt+π/2)=√2Asin (ωt−π
/4)となり、加算回路5,6,7から出力される電圧
e は、Ve =Va +Vb =√2Asin (ωt+π/
4)となり、これら両電圧Vc ,Ve は振幅が√2Aの
出力波形であるので、電圧Va とVb の振幅Aと等しく
するために振幅調整手段が設けられている。振幅調整手
段としてのR1 〜R9 の抵抗値はR1 =R2 ,R3 =R
4 =R1 /√2,R5 =R6 ,R7 =R5 /√2,R8
=R9 となるよう設定すれば電圧Vc ,Ve は電圧Va
とVb の振幅Aに等しく揃えられて出力される。
The arithmetic circuit used in this embodiment shown in FIG. 1 is an operational amplifier 4 as a subtracting circuit, operational amplifiers 5, 6, 7 as an adding circuit, and resistors R 1 to R 9 as amplitude adjusting means. And so on. This subtraction circuit 4
The voltage V C output from V C = V a −V b = A sin
ωt−Asin (ωt + π / 2) = √2Asin (ωt−π)
/ 4), and the voltage V e output from the adding circuits 5, 6, 7 is V e = V a + V b = √2A sin (ωt + π /
4) and both of these voltages V c and V e have output waveforms with an amplitude of √2 A, and therefore an amplitude adjusting means is provided in order to make them equal to the amplitude A of the voltages V a and V b . The resistance values of R 1 to R 9 as the amplitude adjusting means are R 1 = R 2 and R 3 = R.
4 = R 1 / √2, R 5 = R 6 , R 7 = R 5 / √2, R 8
= R 9 , the voltages V c and V e are equal to the voltage V a
And the amplitude A of V b is equalized and output.

【0014】減算回路としての演算増幅器4の非反転入
力端子には、抵抗体R1 を介して第1の磁気抵抗素子ブ
リッジ18からの電圧Va =Asin ωtと、抵抗体R3
介して電源3からの基準電圧Fとが加わり、反転入力端
子には抵抗体R2 を介して第2の磁気抵抗素子ブリッジ
19からの電圧Vb =Asin (ωt+π/2)が加わる。
演算増幅器4の出力側から電圧Vc =Va −Vb =Asi
n ωt−Asin (ωt+π/2)=√2Asin (ωt−
π/4)を振幅調整したVc =Asin (ωt−π/4)
が出力される。
To the non-inverting input terminal of the operational amplifier 4 as a subtraction circuit, the voltage V a = Asin ωt from the first magnetoresistive element bridge 18 via the resistor R 1 and the resistor R 3 are applied. The reference voltage F from the power source 3 is applied, and the second magnetoresistive element bridge is connected to the inverting input terminal via the resistor R 2.
The voltage V b = A sin (ωt + π / 2) from 19 is applied.
Voltage from the output of the operational amplifier 4 V c = V a -V b = Asi
n ωt−Asin (ωt + π / 2) = √2Asin (ωt−
V c = A sin (ωt−π / 4) in which the amplitude of (π / 4) is adjusted
Is output.

【0015】反転型加算回路としての演算増幅器5の非
反転入力端子には基準電圧Fが加わり、反転入力端子に
は抵抗体R6 を介した電圧Va と抵抗体R5 を介した電
圧Vb とが加わり、出力側から反転型加算回路出力電圧
d =−(Va +Vb )=−√2Asin (ωt+π/
4)を振幅調整したVd =−Asin (ωt+π/4)を
出力し、この電圧Vd は演算増幅器6の非反転入力端子
に加えられる。この演算増幅器6の反転入力端子には、
この演算増幅器6からの出力電圧が負帰還しており、バ
ッファ(緩衝増幅器)となっている。バッファ6からの
出力電圧は抵抗体R8 を介して反転回路としての演算増
幅器7の反転入力端子側に加わり、この演算増幅器7の
非反転入力端子には基準電圧Fが加わる。この演算増幅
器7の出力側は電圧Vd を反転させた電圧Ve =Asin
(ωt+π/4)を出力する。
A reference voltage F is applied to a non-inverting input terminal of an operational amplifier 5 as an inverting type addition circuit, and a voltage V a via a resistor R 6 and a voltage V via a resistor R 5 are applied to an inverting input terminal. b is added, and the output voltage of the inverting addition circuit from the output side is V d = − (V a + V b ) = − √2A sin (ωt + π /
4) outputs the V d = -Asin that amplitude adjustment (ωt + π / 4), the voltage V d is applied to the non-inverting input terminal of the operational amplifier 6. At the inverting input terminal of this operational amplifier 6,
The output voltage from the operational amplifier 6 is negatively fed back and serves as a buffer (buffer amplifier). The output voltage from the buffer 6 is applied to the inverting input terminal side of the operational amplifier 7 as an inverting circuit via the resistor R 8 , and the reference voltage F is applied to the non-inverting input terminal of the operational amplifier 7. Voltage output of the operational amplifier 7 inverts the voltage V d V e = Asin
(Ωt + π / 4) is output.

【0016】したがって、本実施例によれば、電圧Va
とVb は90度の位相差をもち、さらに電圧Vc とVe
前記電圧Va とVb に対して45度の位相差をもつことに
なり、図3に示すような同振幅の4相の出力波形が得ら
れ、4相出力型回転磁気センサとなり、2対の磁気抵抗
素子ブリッジ18,19から4対の磁気抵抗素子ブリッジか
ら得られると同様の出力波形が得られることとなる。す
なわち、歯車の歯数を増やすことなく、回転体の方向を
検知するのに必要最低限の2対の磁気抵抗素子ブリッジ
18,19を用いるだけで従来の2倍の分解能をもたせるこ
とができる。しかも、磁気抵抗素子数も必要最低限のま
まであるので、消費電流も最低に抑えられ、かつ、組み
立ても容易であり、組み立てコストが低減され、低コス
トの磁気センサが得られる。
Therefore, according to this embodiment, the voltage V a
And V b have a phase difference of 90 degrees, and the voltages V c and V e have a phase difference of 45 degrees with respect to the voltages V a and V b , and have the same amplitude as shown in FIG. A four-phase output waveform can be obtained, and a four-phase output type rotary magnetic sensor can be obtained. Similar output waveforms can be obtained from two pairs of magnetoresistive element bridges 18 and 19. . That is, the minimum two pairs of magnetoresistive element bridges required to detect the direction of the rotating body without increasing the number of gear teeth.
By using only 18 and 19, the resolution can be doubled compared to the conventional one. Moreover, since the number of magnetoresistive elements is also kept to the required minimum, current consumption can be kept to a minimum, assembly is easy, assembly cost is reduced, and a low-cost magnetic sensor can be obtained.

【0017】また、抵抗体R1 〜R9 の抵抗値を前記の
ように設定する振幅調整手段を設けたので、電圧Va
b ,Vc ,Ve の振幅はすべて等しくなり、パルス変
換するときに使用される基準電圧設定も1種類でよい
等、回路構成が簡易となる。
Further, since the amplitude adjusting means for setting the resistance values of the resistors R 1 to R 9 as described above is provided, the voltage V a ,
The amplitudes of V b , V c , and V e are all equal, and the number of reference voltage settings used for pulse conversion may be one, which simplifies the circuit configuration.

【0018】以上のように図1で出力された電圧Va
b ,Vc ,Ve は図2に示すパルス変換回路と論理回
路に加えられる。比較器8〜11のすべての反転入力端子
には基準電圧Eを加える電源15が接続されており、電圧
a は比較器8の、電圧Vbは比較器9の、電圧Vc
比較器10の、電圧Ve は比較器11のそれぞれ非反転入力
端子側に接続され、それぞれの電圧Va ,Vb ,Vc
e は基準電圧Eと比較される。比較器8から出力され
るパルス波形の電圧Vapと比較器9から出力されるパル
ス波形の電圧Vbpとはそれぞれ排他的論理和の演算器で
あるEXORゲート12の入力端子側に加えられて出力側
から電圧Vf が出力される。この電圧Vf は図4に示す
ように前記電圧Va ,Vb に対して2倍の分解能をもっ
ている。比較器10から出力されるパルス波形の電圧Vcp
と比較器11から出力されるパルス波形の電圧Vepとは共
にEXORゲート13の入力端子側に加えられ、出力側か
らは電圧Vg が出力される。さらに電圧Vg と電圧Vf
とは共にEXORゲート14の入力端子側に加えられ、出
力側からは電圧Vh が取り出される。この電圧Vhは前
記電圧Vg ,Vf に対して2倍の分解能をもっており、
さらに電圧Va ,Vb に対しては4倍の分解能をもって
いる。
As described above, the voltage V a output in FIG.
V b, V c, V e is applied to the pulse conversion circuit and a logic circuit shown in FIG. A power supply 15 for applying a reference voltage E is connected to all the inverting input terminals of the comparators 8 to 11, the voltage V a of the comparator 8, the voltage V b of the comparator 9, and the voltage V c of the comparator. The voltage V e of 10 is connected to the non-inverting input terminal side of the comparator 11, and the respective voltages V a , V b , V c ,
V e is compared with the reference voltage E. The voltage V ap of the pulse waveform output from the comparator 8 and the voltage V bp of the pulse waveform output from the comparator 9 are applied to the input terminal side of the EXOR gate 12 which is an exclusive OR operator. The voltage V f is output from the output side. As shown in FIG. 4, this voltage V f has a resolution twice that of the voltages V a and V b . Voltage V cp of pulse waveform output from comparator 10
And the voltage V ep of the pulse waveform output from the comparator 11 are applied to the input terminal side of the EXOR gate 13, and the voltage V g is output from the output side. Further, the voltage V g and the voltage V f
Are applied to the input terminal side of the EXOR gate 14, and the voltage V h is taken out from the output side. This voltage V h has twice the resolution of the above voltages V g and V f ,
Further, it has four times the resolution for the voltages V a and V b .

【0019】このように各出力信号を排他的論理和演算
器に通すことにより、分解能を2倍ずつアップすること
ができる。
By passing each output signal through the exclusive OR calculator in this way, the resolution can be doubled.

【0020】なお、本発明は上記実施例に限定されるこ
とはなく、様々な実施の態様を採り得る。例えば、演算
増幅器4〜7の代わりにコンパレータ(比較器)等の回
路を用いてもよく、逆に比較器8〜11の代わりに演算増
幅器等の回路を用いてもよい。また、上記実施例では、
被検出体として歯車16を対象に説明したが、この被検出
体は、例えば、磁気式リニアスケール等によって形成し
て、このリニアスケールの直線移動検出を行うようにし
てもよく、その種類は限定されない。
The present invention is not limited to the above-mentioned embodiment, and various embodiments can be adopted. For example, a circuit such as a comparator (comparator) may be used instead of the operational amplifiers 4 to 7, and a circuit such as an operational amplifier may be used instead of the comparators 8 to 11. Further, in the above embodiment,
Although the gear 16 has been described as the object to be detected, the object to be detected may be formed by, for example, a magnetic linear scale or the like to detect linear movement of the linear scale, and the type thereof is limited. Not done.

【0021】さらに、磁気抵抗素子MRa1,MRa2,M
b1,MRb2の代わりにホール素子等の磁電変換素子を
用いてもよい。
Further, the magnetoresistive elements MR a1 , MR a2 , M
A magnetoelectric conversion element such as a Hall element may be used instead of R b1 and MR b2 .

【0022】[0022]

【発明の効果】本発明の磁気センサは第1および第2の
磁気抵抗素子ブリッジからのそれぞれの出力を減算回
路、加算回路に加えることにより、これらの回路から出
力される波形は前記それぞれのブリッジから出力される
波形より45度位相がずれる。さらに振幅調整手段が設け
られているので、減算回路、加算回路を経た出力電圧の
振幅は前記ブリッジからの出力電圧と同振幅になる。
According to the magnetic sensor of the present invention, the respective outputs from the first and second magnetoresistive element bridges are added to the subtraction circuit and the addition circuit, so that the waveforms output from these circuits are applied to the respective bridges. 45 degrees out of phase from the waveform output from. Further, since the amplitude adjusting means is provided, the amplitude of the output voltage that has passed through the subtraction circuit and the addition circuit becomes the same amplitude as the output voltage from the bridge.

【0023】したがって、回転体の歯数を増加すること
なく、かつ、磁気抵抗素子ブリッジ数が2対のままでも
ブリッジ数を4対設置したものと同様の4相の振幅の等
しい出力波形が得られ、4相出力型回転磁気センサとな
る。そのため、磁気抵抗素子数が最少数で済み、低消費
電流であり、組み立ても容易で組み立てコストも安価で
ある。したがって、高分解能で低コストの磁気センサが
得られる。
Therefore, without increasing the number of teeth of the rotating body, and even if the number of bridges of the magnetoresistive element is 2 pairs, an output waveform of the same amplitude of 4 phases is obtained as in the case where 4 pairs of bridges are installed. And becomes a four-phase output type rotary magnetic sensor. Therefore, the number of magnetoresistive elements is the minimum, the current consumption is low, the assembling is easy, and the assembling cost is low. Therefore, a magnetic sensor with high resolution and low cost can be obtained.

【0024】また、振幅調整手段が設けられているの
で、前記各ブリッジからの出力電圧と減算回路や加算回
路からの出力電圧の振幅は等しくなり、パルス変換させ
るときに使用する基準電圧等も1種類で済む等、回路構
成が容易となる。
Further, since the amplitude adjusting means is provided, the amplitude of the output voltage from each of the bridges becomes equal to the amplitude of the output voltage from the subtracting circuit or the adding circuit, and the reference voltage used for pulse conversion is 1 or the like. The circuit configuration is easy because the number of types is sufficient.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の磁気センサの一実施例の演算回路図で
ある。
FIG. 1 is an arithmetic circuit diagram of an embodiment of a magnetic sensor of the present invention.

【図2】本発明の磁気センサの一実施例に用いられるパ
ルス変換回路と論理回路とを示す回路構成図である。
FIG. 2 is a circuit configuration diagram showing a pulse conversion circuit and a logic circuit used in one embodiment of the magnetic sensor of the present invention.

【図3】図1の演算回路から出力される波形図である。FIG. 3 is a waveform chart output from the arithmetic circuit of FIG.

【図4】図2のパルス変換回路と論理回路から出力され
るパルス波形図である。
4 is a pulse waveform diagram output from the pulse conversion circuit and the logic circuit of FIG.

【図5】2対の磁気抵抗素子ブリッジを用いた磁気セン
サ装置の模式構成図である。
FIG. 5 is a schematic configuration diagram of a magnetic sensor device using two pairs of magnetoresistive element bridges.

【図6】図5の磁気センサ装置から出力される電圧波形
図である。
FIG. 6 is a voltage waveform diagram output from the magnetic sensor device of FIG.

【図7】従来における1対の磁気抵抗素子ブリッジを用
いた磁気センサ装置の模式構成図である。
FIG. 7 is a schematic configuration diagram of a conventional magnetic sensor device using a pair of magnetoresistive element bridges.

【図8】図7の磁気センサ装置から出力される電圧波形
図である。
FIG. 8 is a voltage waveform diagram output from the magnetic sensor device of FIG. 7.

【符号の説明】[Explanation of symbols]

4 減算回路(演算増幅器) 5,6,7 加算回路(演算増幅器) 18 第1の磁気抵抗素子ブリッジ 19 第2の磁気抵抗素子ブリッジ MRa1,MRa2,MRb1,MRb2 磁気抵抗素子 R1 〜R9 抵抗体(振幅調整手段)4 Subtraction circuit (operational amplifier) 5, 6, 7 Addition circuit (operational amplifier) 18 First magnetoresistive element bridge 19 Second magnetoresistive element bridge MR a1 , MR a2 , MR b1 , MR b2 magnetoresistive element R 1 ~ R 9 resistor (amplitude adjusting means)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 磁気抵抗素子を直列接続してなる第1の
磁気抵抗素子ブリッジと第2の磁気抵抗素子ブリッジと
を電気的に90度の出力位相差をもって配設し、第1の磁
気抵抗素子ブリッジの出力と第2の磁気抵抗素子ブリッ
ジの出力との加算回路および減算回路を設け、加算回路
の出力と減算回路の出力と前記第1および第2の磁気抵
抗素子の出力を等しくする振幅調整手段が設けられてい
る磁気センサ。
1. A first magnetoresistive element bridge formed by connecting magnetoresistive elements in series and a second magnetoresistive element bridge are electrically arranged with an output phase difference of 90 degrees to form a first magnetoresistive element. An amplitude circuit for providing an output of the element bridge and an output of the second magnetoresistive element bridge with an addition circuit and a subtraction circuit for equalizing the output of the addition circuit and the output of the subtraction circuit with the outputs of the first and second magnetoresistive elements A magnetic sensor provided with adjusting means.
JP30462192A 1992-10-16 1992-10-16 Magnetic sensor Pending JPH06129808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30462192A JPH06129808A (en) 1992-10-16 1992-10-16 Magnetic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30462192A JPH06129808A (en) 1992-10-16 1992-10-16 Magnetic sensor

Publications (1)

Publication Number Publication Date
JPH06129808A true JPH06129808A (en) 1994-05-13

Family

ID=17935233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30462192A Pending JPH06129808A (en) 1992-10-16 1992-10-16 Magnetic sensor

Country Status (1)

Country Link
JP (1) JPH06129808A (en)

Similar Documents

Publication Publication Date Title
US4490674A (en) Rotational angle detection device having two magnetoresistive sensing elements
US7694200B2 (en) Integrated circuit having built-in self-test features
US6300758B1 (en) Magnetoresistive sensor with reduced output signal jitter
US5941122A (en) Liquid level sensor incorporating a capacitive rotary position encoder
EP0235750B1 (en) Apparatus for magnetically detecting position or speed of moving body
US5019776A (en) Magnetic position detection apparatus having two magnetic recording medium tracks with magnetoresistors arranged in a bridge circuit so as to eliminate even order harmonic distortion
US5680042A (en) Magnetoresistive sensor with reduced output signal jitter
JPH01224669A (en) Wheel speed sensor
JPS63245117A (en) Circuit converting analog signal into logic signal
EP0338559A3 (en) Torque detecting apparatus with abnormality signal
EP1894020A1 (en) Sensor system for determining a position or a rotational speed of an object
JPH06129808A (en) Magnetic sensor
US6307366B1 (en) Object position sensor using magnetic effect device
JP3598984B2 (en) Rotation detection device
JP3323446B2 (en) Magnetic sensor circuit
USRE34443E (en) Apparatus magnetically detecting position or speed of moving body utilizing bridge circuit with series connected MR elements
JPS5868615A (en) Output circuit of magnetic type rotary encoder
JP2650169B2 (en) Magnetic sensor
JPH052925B2 (en)
JP3595914B2 (en) Magnetic rotation detector
JP3039223B2 (en) Magnetic encoder
JP3182880B2 (en) Rotation detection device
JPS60117108A (en) Magnetic rotary sensor
JPH0723691Y2 (en) Magnetic rotary encoder
JPH04125089A (en) Rotating speed detecting pulse generator for motor