JPH0612978A - Manufacture of tungsten powder sintered body for impregnation type cathode - Google Patents

Manufacture of tungsten powder sintered body for impregnation type cathode

Info

Publication number
JPH0612978A
JPH0612978A JP4190070A JP19007092A JPH0612978A JP H0612978 A JPH0612978 A JP H0612978A JP 4190070 A JP4190070 A JP 4190070A JP 19007092 A JP19007092 A JP 19007092A JP H0612978 A JPH0612978 A JP H0612978A
Authority
JP
Japan
Prior art keywords
tungsten powder
tungsten
sintered body
type cathode
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4190070A
Other languages
Japanese (ja)
Other versions
JP2910426B2 (en
Inventor
Yasuhiro Akiyama
泰宏 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4190070A priority Critical patent/JP2910426B2/en
Publication of JPH0612978A publication Critical patent/JPH0612978A/en
Application granted granted Critical
Publication of JP2910426B2 publication Critical patent/JP2910426B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To decrease a work function of a cathode formed of a tungsten powder sintered body for the impregnation type cathode. CONSTITUTION:By setting a grain size of tungsten powder to 1 to 4mum to simultaneously perform press work and sintering, hole of 1 to 3mum is formed in a primary crystal grain boundary 10, and then by resintering a tungsten crystal at 1600 deg.C or more, a hole rate is controlled to 20%. Simultaneously, crystal growth is performed of tungsten, and a hole 12 is formed by a secondary crystal grain boundary 9. Thus by improving a diffusion area of barium to an impregnation type cathode surface and further by providing uniformity of the hole, an electron emitting characteristic of an impregnation type cathode is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、含浸型陰極用タングス
テン粉末焼結体の製造方法に関し、特に高電流密度用の
含浸型陰極用タングステン粉末焼結体の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a tungsten powder sintered body for an impregnated cathode, and more particularly to a method for producing a tungsten powder sintered body for an impregnated cathode for high current density.

【0002】[0002]

【従来の技術】従来の含浸型陰極タングステン粉末焼結
体(以下、ポーラスW棒という)は、平均粒径が4〜5
μmのタングステン粉末を1ton/平方cmの圧力で
プレス成形した後、水素雰囲気中、又は真空雰囲気中に
おいて約2000℃で加熱、焼結させ製作されている。
2. Description of the Related Art A conventional impregnated type cathode tungsten powder sintered body (hereinafter referred to as a porous W rod) has an average particle size of 4-5.
It is manufactured by pressing tungsten powder of μm at a pressure of 1 ton / cm 2 and then heating and sintering at about 2000 ° C. in a hydrogen atmosphere or a vacuum atmosphere.

【0003】このポーラスW棒を用いて製作される含浸
型陰極は、マトリックス状のタングステン焼結体の中に
酸化バリウム、酸化カルシウム、及び酸化アルミニウム
が含浸された構造であるため、その基体金属であるポー
ラス棒も空孔率が約20%のマトリックス状にする必要
がある。上記方法によって製作されたポーラスW棒はタ
ングステン粒の大きさが4〜8μm、空孔径が3〜6μ
mのマトリックスを形成する。
The impregnated cathode manufactured using this porous W rod has a structure in which barium oxide, calcium oxide, and aluminum oxide are impregnated in a matrix-shaped tungsten sintered body, so that the base metal is used. Certain porous rods also need to be matrixed with a porosity of about 20%. The porous W rod manufactured by the above method has a tungsten grain size of 4 to 8 μm and a pore diameter of 3 to 6 μm.
form a matrix of m.

【0004】[0004]

【発明が解決しようとする課題】上述したように従来の
ポーラスW棒は、タングステン粉末の粒径が4〜8μ
m、空孔径が3〜6μmとなるため、次のような問題点
があった。すなわち、
As described above, in the conventional porous W rod, the particle size of the tungsten powder is 4 to 8 μm.
Since m and the pore diameter are 3 to 6 μm, there are the following problems. That is,

【0005】含浸型陰極は、空孔に含浸されたバリウ
ムの表面拡散により仕事関数を低下させ電子を取り出し
ている。このため、空孔からしみだしたバリウムが陰極
全体に均一に拡散すれば最も仕事関数の低い良好な含浸
型陰極が得られる。
In the impregnated cathode, the work function is lowered by the surface diffusion of barium impregnated in the holes and electrons are taken out. Therefore, if barium exuding from the holes diffuses uniformly throughout the cathode, an excellent impregnated cathode with the lowest work function can be obtained.

【0006】しかし、タングステン粉末の平均粒径が4
〜5μmと大きいと、バリウムが陰極表面全体に拡散す
る前に蒸発してしまい、バリウムの拡散していないタン
グステン表面の領域が発生し、含浸型陰極表面の仕事関
数を増加させてしまう。又、タングステン粉末同士が2
次焼結し、タングステン粒が6〜8μmになった場合
は、バリウムの拡散面積がさらに減少し、仕事関数の低
下が顕著となる。
However, the average particle size of the tungsten powder is 4
If it is as large as ˜5 μm, barium is evaporated before it is diffused over the entire surface of the cathode, a region of the tungsten surface in which barium is not diffused is generated, and the work function of the impregnated cathode surface is increased. Also, if the tungsten powder is 2
In the case where the tungsten particles are 6 to 8 μm after the subsequent sintering, the diffusion area of barium is further reduced, and the work function is significantly reduced.

【0007】このように空孔からのバリウムの拡散が含
浸型陰極表面上で不均一となると、含浸型陰極からの電
子放出分布が不均一となるため、進行波管などではヘリ
ックス電流の増加など異常電流が発生する。
When the diffusion of barium from the holes becomes non-uniform on the surface of the impregnated cathode as described above, the electron emission distribution from the impregnated cathode becomes non-uniform, so that the helix current increases in a traveling wave tube or the like. Abnormal current occurs.

【0008】従来の方法で上記問題点を解決するため
にタングステン粉末の粒径を1〜4μmに小さくする
と、タングステン粒子が密に詰まるため、空孔率が17
%以下になってしまい、上記同様仕事関数が増加し、含
浸型陰極として使用することができない。
When the particle size of the tungsten powder is reduced to 1 to 4 μm in order to solve the above problems by the conventional method, the tungsten particles are closely packed and the porosity is 17
%, The work function increases as in the above case, and it cannot be used as an impregnated cathode.

【0009】本発明の目的は、含浸型陰極の仕事関数を
低下させ、電子放出特性を向上させる含浸型陰極用タン
グステン粉末焼結体の製造方法を提供することにある。
An object of the present invention is to provide a method for producing a tungsten powder sintered body for an impregnated cathode, which lowers the work function of the impregnated cathode and improves electron emission characteristics.

【0010】[0010]

【課題を解決するための手段】前記目的を達成するた
め、本発明に係る含浸型陰極用タングステン粉末焼結体
の製造方法は、タングステン粉末を円柱形状にプレス加
工し、同時に焼結して含浸型陰極用タングステン粉末焼
結体を製造する方法であって、タングステン粉末の平均
粒径は、1〜4μmであり、タングステン粉末のプレス
加工は、高温等方圧プレスにより行うものである。
In order to achieve the above object, a method of manufacturing a tungsten powder sintered body for an impregnated type cathode according to the present invention comprises a step of pressing a tungsten powder into a cylindrical shape, and at the same time sintering and impregnation. A method for producing a tungsten powder sintered body for a mold cathode, wherein the average particle diameter of the tungsten powder is 1 to 4 μm, and the pressing of the tungsten powder is performed by a high temperature isotropic pressing.

【0011】また、前記高温等方圧プレスのプレス温度
は、900〜1200℃であり、プレス圧は、1000
〜1500気圧である。
The pressing temperature of the high temperature isotropic press is 900 to 1200 ° C., and the pressing pressure is 1000.
~ 1500 atm.

【0012】また、水素雰囲気中又は真空雰囲気中にて
1600℃以上で焼結体の再焼結を行うものである。
The sintered body is re-sintered at 1600 ° C. or higher in a hydrogen atmosphere or a vacuum atmosphere.

【0013】[0013]

【作用】本発明の含浸型陰極用タングステン粉末焼結体
は、HIPによりプレスと焼結とを同時に行い、その後
1600℃以上で再焼結させることにより、空孔率を約
20%に制御することが可能であり、従来のような空孔
率の低下を防止する。
The porosity of the tungsten powder sintered body for impregnated cathodes of the present invention is controlled to about 20% by simultaneously pressing and sintering by HIP and then re-sintering at 1600 ° C. or higher. It is possible to prevent the decrease in porosity as in the conventional case.

【0014】[0014]

【実施例】次に、本発明の実施例について図面を用いて
説明する。図1は、本発明の製造方法を実施するHIP
装置の縦断面図、図2は、本発明によるポーラスW棒の
断面図である。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 shows a HIP for carrying out the manufacturing method of the present invention.
FIG. 2 is a vertical sectional view of the device, and FIG. 2 is a sectional view of a porous W rod according to the present invention.

【0015】まず、平均粒径1〜4μmのタングステン
粉末を約1〜3ton/平方cmの水圧プレスにより1
次プレスし、所定の円柱形状に成形する。次に、図1に
示すように成形したタングステン粉末成形体1をガラス
管2に挿入し、酸化アルミニウム3中に埋め込む。次に
埋め込んだガラス管2を1×10-6の真空度まで排気
し、気密封止する。
First, a tungsten powder having an average particle size of 1 to 4 μm is pressed with a hydraulic press of about 1 ton ton / cm 2 to a pressure of 1.
Next, it is pressed to form a predetermined cylindrical shape. Next, the tungsten powder compact 1 molded as shown in FIG. 1 is inserted into the glass tube 2 and embedded in the aluminum oxide 3. Next, the embedded glass tube 2 is evacuated to a vacuum degree of 1 × 10 −6 and hermetically sealed.

【0016】ガラス管2中に真空気密したタングステン
粉末成形体1と酸化アルミニウム3をプレス容器4中の
酸化アルミニウム5に埋め込む。これをHIPの圧力室
6に配置し、周囲の加熱ヒータ7により約1000℃に
加熱しながらアルゴンガス8により1500気圧の圧力
を90分間かけ、プレス加工と焼結とを同時に行う。
A vacuum-tight tungsten powder compact 1 and aluminum oxide 3 are embedded in a glass tube 2 in an aluminum oxide 5 in a press container 4. This is placed in the pressure chamber 6 of the HIP, and the pressure of 1500 atm is applied for 90 minutes by the argon gas 8 while heating it to about 1000 ° C. by the heater 7 in the periphery, and the press working and the sintering are performed simultaneously.

【0017】さらに空孔率を20%にあわせるため、水
素雰囲気中で1600℃、10分の再焼結を行う。
Further, in order to adjust the porosity to 20%, re-sintering is performed at 1600 ° C. for 10 minutes in a hydrogen atmosphere.

【0018】このように製作されたポーラスWの断面は
図2に示すように4〜8μmに結晶成長したタングステ
ン2次結晶9の中に1〜3μmの1次結晶10により形
成された空孔11があり、さらにタングステン2次結晶
により形成された3〜4μmの空孔12が空孔11の周
囲に形成されている。
As shown in FIG. 2, the cross section of the porous W produced in this manner has holes 11 formed by the primary crystal 10 having a thickness of 1 to 3 μm in the tungsten secondary crystal 9 having a crystal growth of 4 to 8 μm. In addition, the holes 12 of 3 to 4 μm formed by the secondary crystal of tungsten are formed around the holes 11.

【0019】従来の方法によるポーラスWの断面図を図
4に示す。このように4〜5μmのタングステン粉末で
はタングステン粒径が大きいため、結晶全体で結晶成長
が起こりにくいため、2次結晶が均一に形成されない。
このために1次結晶粒界19により形成された3〜4μ
mの空孔20しか形成されない。
A cross-sectional view of the porous W according to the conventional method is shown in FIG. As described above, since the tungsten powder having a particle size of 4 to 5 μm has a large tungsten grain size, crystal growth hardly occurs in the entire crystal, so that secondary crystals are not uniformly formed.
For this reason, 3 to 4 μ formed by the primary grain boundaries 19
Only m holes 20 are formed.

【0020】図3は本発明の別の実施例に係るポーラス
W棒を示す縦断面図である。1〜3μmのタングステン
粉末と0.1〜2μmのイリジウム粉末を4:1の割合
で良く混合した後、前記実施例と同様にHIP、再結晶
を行いポーラスWを作製すると、図3に示す通り、タン
グステン13とイリジウム14との1次結晶粒界15に
0.5〜3μmの空孔16が形成され、さらに2次結晶
粒界17に3〜4μmの空孔18が形成される。
FIG. 3 is a vertical sectional view showing a porous W rod according to another embodiment of the present invention. After thoroughly mixing 1 to 3 μm of tungsten powder and 0.1 to 2 μm of iridium powder in a ratio of 4: 1, HIP and recrystallization are performed in the same manner as in the above-described example to produce a porous W, as shown in FIG. , 0.5 to 3 μm of pores 16 are formed in the primary crystal grain boundaries 15 of the tungsten 13 and the iridium 14, and further 3 to 4 μm of pores 18 are formed in the secondary crystal grain boundaries 17.

【0021】以上説明したようにHIPによりプレス加
工と焼結とを同時に行なうことにより、1次結晶粒界に
空孔を形成した後、再結晶により結晶成長を起こさせ、
2次結晶粒界による空孔を形成するため、含浸型陰極表
面全体に均一で、小さい空孔を形成することが可能とな
った。
As described above, the press working and the sintering are simultaneously performed by HIP to form the pores in the primary crystal grain boundaries, and then the crystal growth is caused by the recrystallization,
Since the voids are formed by the secondary crystal grain boundaries, it becomes possible to form uniform and small voids on the entire surface of the impregnated type cathode.

【0022】さらに本発明による含浸型陰極用タングス
テン粉末焼結体により含浸型陰極を製作した場合、含浸
工程が同一でも図5に示すように仕事関数が0.02〜
0.05eV小さくなるという結果を得た。
Furthermore, when an impregnated cathode is manufactured from the tungsten powder sintered body for impregnated cathode according to the present invention, the work function is 0.02 to 0.02 as shown in FIG.
The result was 0.05 eV smaller.

【0023】[0023]

【発明の効果】以上説明したように本発明は、1〜4μ
mのタングステン粉末を使用し、HIP、再焼結するこ
とによって空孔率を20%に制御し、小さい空孔を陰極
表面全体に均一に形成することによって、含浸型陰極の
仕事関数を図5のように0.02〜0.05eV低下さ
せ、電子放出特性を向上させることができるという効果
がある。
As described above, the present invention is 1 to 4 μm.
The work function of the impregnated cathode is shown in FIG. 5 by controlling the porosity to 20% by HIP and re-sintering using tungsten powder of m, and forming small pores uniformly on the entire cathode surface. As described above, there is an effect that the electron emission characteristic can be improved by lowering 0.02 to 0.05 eV.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の製造方法を実施するHIP装置を示す
縦断面図である。
FIG. 1 is a vertical sectional view showing a HIP device for carrying out a manufacturing method of the present invention.

【図2】本発明によるポーラスW棒を示す断面図であ
る。
FIG. 2 is a sectional view showing a porous W rod according to the present invention.

【図3】本発明の別の実施例に係るポーラスW棒を示す
断面図である。
FIG. 3 is a sectional view showing a porous W rod according to another embodiment of the present invention.

【図4】従来の方法によるポーラスW棒を示す断面図で
ある。
FIG. 4 is a sectional view showing a porous W rod according to a conventional method.

【図5】本発明と従来例との特性を示す図である。FIG. 5 is a diagram showing characteristics of the present invention and a conventional example.

【符号の説明】[Explanation of symbols]

1 タングステン粉末成形体 2 ガラス管 3,5 酸化アルミニウム 4 プレス容器 6 HIP圧力室 7 加熱ヒータ 8 アルゴンガス 9 タングステン2次結晶 10,19 タングステン1次結晶 11,12,16,18,20 空孔 13 タングステン 14 イリジウム 15 1次結晶粒界 17 2次結晶粒界 DESCRIPTION OF SYMBOLS 1 Tungsten powder compact 2 Glass tube 3,5 Aluminum oxide 4 Press container 6 HIP pressure chamber 7 Heater 8 Argon gas 9 Tungsten secondary crystal 10,19 Tungsten primary crystal 11, 12, 16, 18, 20 Vacancy 13 Tungsten 14 Iridium 15 Primary grain boundary 17 Secondary grain boundary

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 タングステン粉末を円柱形状にプレス加
工し、同時に焼結して含浸型陰極用タングステン粉末焼
結体を製造する方法であって、 タングステン粉末の平均粒径は、1〜4μmであり、 タングステン粉末のプレス加工は、高温等方圧プレスに
より行うものであることを特徴とする含浸型陰極用タン
グステン粉末焼結体の製造方法。
1. A method for manufacturing a tungsten powder sintered body for an impregnated cathode by pressing tungsten powder into a cylindrical shape and simultaneously sintering the tungsten powder, wherein the average particle diameter of the tungsten powder is 1 to 4 μm. A method for producing a tungsten powder sintered body for an impregnated cathode, characterized in that the pressing of the tungsten powder is performed by a high temperature isotropic pressing.
【請求項2】 前記高温等方圧プレスのプレス温度は、
900〜1200℃であり、 プレス圧は、1000〜1500気圧であることを特徴
とする請求項1に記載の含浸型陰極用タングステン粉末
焼結体の製造方法。
2. The press temperature of the high temperature isotropic press is:
It is 900-1200 degreeC, Pressing pressure is 1000-1500 atmospheres, The manufacturing method of the tungsten powder sintered compact for impregnation type cathodes of Claim 1 characterized by the above-mentioned.
【請求項3】 水素雰囲気中又は真空雰囲気中にて16
00℃以上で焼結体の再焼結を行うことを特徴とする請
求項1に記載の含浸型陰極用タングステン粉末焼結体の
製造方法。
3. 16 in a hydrogen atmosphere or a vacuum atmosphere
The method for producing a tungsten powder sintered body for an impregnated cathode according to claim 1, wherein the sintered body is re-sintered at a temperature of 00 ° C or higher.
JP4190070A 1992-06-24 1992-06-24 Manufacturing method of tungsten powder sintered body for impregnated cathode Expired - Lifetime JP2910426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4190070A JP2910426B2 (en) 1992-06-24 1992-06-24 Manufacturing method of tungsten powder sintered body for impregnated cathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4190070A JP2910426B2 (en) 1992-06-24 1992-06-24 Manufacturing method of tungsten powder sintered body for impregnated cathode

Publications (2)

Publication Number Publication Date
JPH0612978A true JPH0612978A (en) 1994-01-21
JP2910426B2 JP2910426B2 (en) 1999-06-23

Family

ID=16251862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4190070A Expired - Lifetime JP2910426B2 (en) 1992-06-24 1992-06-24 Manufacturing method of tungsten powder sintered body for impregnated cathode

Country Status (1)

Country Link
JP (1) JP2910426B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007194020A (en) * 2006-01-18 2007-08-02 Matsushita Electric Ind Co Ltd Cathode material for flash discharge tube and flash discharge tube equipped with the cathode material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007194020A (en) * 2006-01-18 2007-08-02 Matsushita Electric Ind Co Ltd Cathode material for flash discharge tube and flash discharge tube equipped with the cathode material

Also Published As

Publication number Publication date
JP2910426B2 (en) 1999-06-23

Similar Documents

Publication Publication Date Title
JPS58154131A (en) Impregnation type cathode
US3584253A (en) Getter structure for electrical discharge and method of making the same
JPH0558207B2 (en)
US4146497A (en) Supported getter
EP0409275A2 (en) Method for fabricating an impregnated type cathode
US4310603A (en) Dispenser cathode
EP0299126A1 (en) Impregnated thermionic cathode
EP0390269B1 (en) Scandate cathode
JPH0612978A (en) Manufacture of tungsten powder sintered body for impregnation type cathode
US5294399A (en) Preparation of cathode structures for impregnated cathodes
US2874077A (en) Thermionic cathodes
US3688150A (en) Degassing arrangement for electron beam tube including an mk dispenser cathode
CA1150763A (en) Method of fabricating a dispenser cathode
JP2710700B2 (en) Method for producing impregnated cathode and cathode obtained by this method
JP2001006521A (en) Cathode body structure and color picture tube
US3010826A (en) Method of making dispenser type cathodes
JPS59203343A (en) Impregnated cathode
US3166836A (en) Manufacture of electron tube cathodes
KR100259298B1 (en) Impregnation-type cathode for crt
JPH0630214B2 (en) Impregnated cathode and manufacturing method thereof
US4424044A (en) Method of fabricating cathode electrodes
JP3068160B2 (en) Impregnated cathode and method for producing the same
JPH0574337A (en) Manufacture of impregnation-type cathode
SU590085A1 (en) Method of making tungsten-based porous thermal cathode
KR920004551B1 (en) Dispensor cathode