JPH06129724A - Pulse tube refrigerating machine - Google Patents

Pulse tube refrigerating machine

Info

Publication number
JPH06129724A
JPH06129724A JP30460692A JP30460692A JPH06129724A JP H06129724 A JPH06129724 A JP H06129724A JP 30460692 A JP30460692 A JP 30460692A JP 30460692 A JP30460692 A JP 30460692A JP H06129724 A JPH06129724 A JP H06129724A
Authority
JP
Japan
Prior art keywords
rotary
way valve
pulse tube
rotary type
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30460692A
Other languages
Japanese (ja)
Other versions
JPH0772651B2 (en
Inventor
Masayoshi Yanai
正誼 柳井
Tomio Nishitani
富雄 西谷
Etsuji Kawaguchi
悦治 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwatani Industrial Gases Corp
Iwatani International Corp
Original Assignee
Iwatani Plantech Corp
Iwatani International Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwatani Plantech Corp, Iwatani International Corp filed Critical Iwatani Plantech Corp
Priority to JP30460692A priority Critical patent/JPH0772651B2/en
Publication of JPH06129724A publication Critical patent/JPH06129724A/en
Publication of JPH0772651B2 publication Critical patent/JPH0772651B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1408Pulse-tube cycles with pulse tube having U-turn or L-turn type geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1411Pulse-tube cycles characterised by control details, e.g. tuning, phase shifting or general control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1418Pulse-tube cycles with valves in gas supply and return lines
    • F25B2309/14181Pulse-tube cycles with valves in gas supply and return lines the valves being of the rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1421Pulse-tube cycles characterised by details not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1424Pulse tubes with basic schematic including an orifice and a reservoir
    • F25B2309/14241Pulse tubes with basic schematic including an orifice reservoir multiple inlet pulse tube

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Multiple-Way Valves (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PURPOSE:To obtain a pulse tube refrigerating machine, having small size and weight and requiring no buffer tank, low in achieving temperature, high in cooling efficiency and very much reduced in the vibration thereof. CONSTITUTION:Two sets of rotary three-way valves 12, 13 are arranged in parallel to the high-pressure refrigerant gas passage 15 of a compressor 7. The high temperature terminal of a cold heat accumulator 2 is connected to one of the rotary three-way valve 12 through a main gas passage 19 while the high-temperature terminal of a pulse tube 1 is connected to the other rotary three-way valve 13 through a sub gas passage 20. The low pressure ports of respective rotary three-way valves 12, 13 are communicated with the low- pressure refrigerant gas returning passage 18 of the compressor 7 respectively. A flow rate regulating device 21 is interposed in the sub gas passage 20. Both of the rotary three-way valves 12, 13 are constituted so as to be turned synchronizedly. The opening and closing timing of one of the rotary three-way valves 12, 13 is constituted so as to be changeable with respect to the valve opening and closing timing of the other rotary three-way valves 13, 12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、蓄冷器とパルス管とを
接続し、圧縮機からのガスを出し入れすることにより吸
熱部に冷熱を発生させるパルス管冷凍機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pulse tube refrigerator in which a regenerator and a pulse tube are connected to each other and a gas from a compressor is taken in and out to generate cold heat in an endothermic portion.

【0002】[0002]

【従来技術】従来、低い到達温度を得られるパルス管冷
凍機として、図4に示すダブルインレット型のパルス管
冷凍機が提案されている(学術誌「クライオジェニック
ス」1990年9月号)。このダブルインレット型パル
ス管冷凍機は、パルス管(50)の低温端(51)と蓄冷器(52)
の低温端(53)とをコールドヘッドとなる吸熱用連結管(5
4)を介して連通し、圧縮機(55)から冷媒ガス通路(56)を
介して蓄冷器(52)の高温端(57)に供給されるガスを蓄冷
器(52)、吸熱用連結管(54)を介してパルス管(50)の低温
端(51)から高温端(58)側に向けて導入し、パルス管(50)
の高温端(58)にニードル弁(59)とバッファタンク(60)と
で構成したフェーズシフタを配置し、パルス管(50)の高
温端とバッファタンク(60)との間の通路部分に冷媒ガス
通路(56)から分岐導出した分岐ガス通路(61)を接続し、
この分岐ガス通路(61)にニードル弁(62)を配置し、蓄冷
器(52)及びパルス管(50)の高温端部にウォータクーラ(6
3)(64)を配置して蓄冷器及びパルス管の高温端部を水冷
する構造になっている。
2. Description of the Related Art Conventionally, a double inlet type pulse tube refrigerator shown in FIG. 4 has been proposed as a pulse tube refrigerator capable of obtaining a low ultimate temperature (Academic Journal "Cryogenics", September 1990 issue). This double inlet type pulse tube refrigerator has a low temperature end (51) of the pulse tube (50) and a regenerator (52).
The cold end (53) and the endothermic connecting pipe (5
4), the gas supplied from the compressor (55) to the high temperature end (57) of the regenerator (52) through the refrigerant gas passage (56) is connected to the regenerator (52) and a heat absorbing connecting pipe. The pulse tube (50) is introduced from the low temperature end (51) of the pulse tube (50) toward the high temperature end (58) through the (54).
A phase shifter composed of a needle valve (59) and a buffer tank (60) is arranged at the high temperature end (58) of the pulse tube (50), and a refrigerant is provided in a passage portion between the high temperature end of the pulse tube (50) and the buffer tank (60). Connect the branch gas passage (61) branched from the gas passage (56),
A needle valve (62) is arranged in this branch gas passage (61), and a water cooler (6) is provided at the high temperature end of the regenerator (52) and the pulse tube (50).
3) (64) is arranged to cool the high temperature end of the regenerator and pulse tube with water.

【0003】[0003]

【発明が解決しようとする課題】ところが、前記ダブル
インレット型のパルス管冷凍機では、パルス管(50)の高
温端(58)と連通する状態にバッファタンク(60)を配置し
ていることから、冷凍機全体が大型化するという問題が
あるうえ、パルス管(50)の高温端とバッファタンク(60)
との間にニードル弁(59)を配置するとともに、パルス管
(50)の高温端とバッファタンク(60)との間の通路部分と
冷媒ガス通路(56)とを接続する分岐ガス通路(61)にニー
ドル弁(62)を配置していることから、このニードル弁(5
9)(62)によってガス流を乱すという問題もあった。本発
明はこのような点に着目して、バッファタンクが不用の
小型軽量で、到達温度が低く冷却効率の高い、振動の極
めて少ないパルス管冷凍機を提供することを目的とす
る。
However, in the double-inlet type pulse tube refrigerator, the buffer tank (60) is arranged so as to communicate with the high temperature end (58) of the pulse tube (50). In addition to the problem that the entire refrigerator becomes larger, the high temperature end of the pulse tube (50) and the buffer tank (60)
Place the needle valve (59) between the
Since the needle valve (62) is arranged in the branch gas passage (61) which connects the passage portion between the high temperature end of (50) and the buffer tank (60) and the refrigerant gas passage (56), Needle valve (5
9) There was also the problem of disturbing the gas flow due to (62). It is an object of the present invention to provide a pulse tube refrigerator that does not require a buffer tank, is small and lightweight, has a low ultimate temperature, has a high cooling efficiency, and has an extremely small vibration.

【0004】[0004]

【課題を解決するための手段】上述の目的を達成するた
めに、本発明は、圧縮機の高圧冷媒ガス通路に2つのロ
ータリ式三方弁を並列に配置し、一方のロータリ式三方
弁に蓄冷器の高温端部をメインガス通路で連通させると
ともに、他方のロータリ式三方弁にパルス管の高温端を
サブガス通路で連通させ、各ロータリ式三方弁の低圧ポ
ートをそれぞれ圧縮機の低圧冷媒ガス戻し路に連通さ
せ、サブガス通路に流量調整具を介装し、両ロータリ式
三方弁を同期して回転作動するように構成し、一方のロ
ータリ式三方弁に対する他方のロータリ式三方弁の弁開
閉タイミングを調節変更可能に構成したことを特徴とし
ている。
In order to achieve the above object, the present invention has two rotary type three-way valves arranged in parallel in a high pressure refrigerant gas passage of a compressor, and one rotary type three-way valve stores cold energy. The high temperature end of the reactor is communicated with the main gas passage, the high temperature end of the pulse tube is communicated with the other rotary three-way valve through the sub gas passage, and the low pressure port of each rotary three way valve is returned to the low pressure refrigerant gas of the compressor. It is connected to the passage, a flow rate adjuster is installed in the sub gas passage, and both rotary type three-way valves are configured to rotate synchronously, and the valve opening / closing timing of one rotary type three-way valve to the other rotary type three-way valve It is characterized in that it can be adjusted and changed.

【0005】[0005]

【作用】本発明では、圧縮機の高圧冷媒ガス通路に2つ
のロータリ式三方弁を並列に配置し、一方のロータリ式
三方弁に蓄冷器の高温端部をメインガス通路で連通させ
るとともに、他方のロータリ式三方弁にパルス管の高温
端をサブガス通路で連通させ、各ロータリ式三方弁の低
圧ポートをそれぞれ圧縮機の低圧冷媒ガス戻し路に連通
させ、サブガス通路に流量調整具を介装し、両ロータリ
式三方弁を同期して回転作動するように構成し、一方の
ロータリ式三方弁に対する他方のロータリ式三方弁の弁
開閉タイミングを調節変更可能に構成しているので、バ
ッファタンクを配置することなく、到達温度を下げるこ
とができ、小型で冷凍発生効率の高いパルス管冷凍機を
提供することができる。
According to the present invention, two rotary three-way valves are arranged in parallel in the high-pressure refrigerant gas passage of the compressor, and the high temperature end of the regenerator is connected to one rotary three-way valve through the main gas passage, while the other is The high temperature end of the pulse tube is connected to the rotary three-way valve of the sub gas passage, the low pressure port of each rotary three way valve is connected to the low pressure refrigerant gas return passage of the compressor, and a flow rate adjuster is installed in the sub gas passage. Since both rotary type three-way valves are configured to rotate synchronously and the valve opening / closing timing of one rotary type three-way valve to the other rotary type three-way valve can be adjusted and changed, a buffer tank is arranged. It is possible to provide a small-sized pulse tube refrigerator with high refrigeration generation efficiency without lowering the reached temperature.

【0005】[0005]

【実施例】図1及び図2は本発明の実施例を示し、図1
はパルス管冷凍機の概略構成図、図2は冷熱発生部の概
略構成図である。このパルス管冷凍機は、パルス管(1)
と蓄冷器(2)とをその一端部同士を吸熱用連結路(3)を
介して連通させることにより構成した冷熱発生部(4)
と、圧縮機ユニット(5)と、この圧縮機ユニット(5)で
発生した高圧ガスの冷熱発生部(4)への給排を切り換え
制御するロータリ弁ユニット(6)とで構成してある。
1 and 2 show an embodiment of the present invention.
Is a schematic configuration diagram of a pulse tube refrigerator, and FIG. 2 is a schematic configuration diagram of a cold heat generating unit. This pulse tube refrigerator has a pulse tube (1)
And a regenerator (2), one end of which is made to communicate with each other through a heat absorption connecting path (3)
A compressor unit (5), and a rotary valve unit (6) for switching and controlling the supply and discharge of high-pressure gas generated in the compressor unit (5) to the cold heat generating section (4).

【0006】圧縮機ユニット(5)は圧縮機(7)、冷却器
(8)、油分離器(9)、油吸着器(10)及び保圧弁(11)とで
構成してあり、ロータリ弁ユニット(6)は2つのロータ
リ式三方弁(12)(13)とそれぞれの弁駆動用モータ(14)と
で構成してある。そして、吸着器(10)から導出されてい
る高圧冷媒ガス通路(15)がフレキシブルホース(16)で各
ロータリ式三方弁(12)(13)の第1ポートに接続され、ロ
ータリ式三方弁(12)(13)の第2ポートから導出したフレ
キシブルホース(17)が低圧冷媒ガス戻し路(18)を介して
圧縮機(7)に連通接続してある。
The compressor unit (5) includes a compressor (7) and a cooler.
(8), an oil separator (9), an oil adsorber (10) and a pressure-holding valve (11), and the rotary valve unit (6) includes two rotary three-way valves (12) and (13). Each of them is composed of a valve driving motor (14). Then, the high pressure refrigerant gas passage (15) led out from the adsorber (10) is connected to the first port of each rotary type three-way valve (12) (13) by the flexible hose (16), and the rotary type three-way valve ( A flexible hose (17) led out from the second ports (12) and (13) is communicatively connected to the compressor (7) through a low pressure refrigerant gas return path (18).

【0007】第1ロータリ式三方弁(12)の第3ポートは
可撓性連結管製メインガス通路(19)により蓄冷器(2)の
高温端に連通接続しており、第2ロータリ式三方弁(13)
の第3ポートは可撓性連結管製サブガス通路(20)でパル
ス管(1)の高温端に流量調整具(21)となるニードル弁を
介して連通接続してある。また、各ロータリ式三方弁(1
2)(13)の弁駆動用モータ(14)はそれぞれステッピングモ
ータで構成してあり、各弁駆動用モータ(14)はそれぞれ
モータ電源(22)(22)で個々に駆動されるように構成して
あり、それぞれのモータ電源(22)(22)をパルス発生器(2
3)に接続して駆動回路(24)を構成している。これによ
り、両ロータリ式三方弁(12)(13)は同期して作動するこ
とになる。
The third port of the first rotary type three-way valve (12) is connected to the high temperature end of the regenerator (2) by a main gas passage (19) made of a flexible connecting pipe so as to communicate with the second rotary type three-way valve. Valve (13)
The third port is a sub gas passage (20) made of a flexible connecting pipe, which is connected to the high temperature end of the pulse pipe (1) through a needle valve serving as a flow rate adjusting device (21). In addition, each rotary three-way valve (1
2) The valve drive motor (14) of (13) is composed of a stepping motor, and each valve drive motor (14) is configured to be individually driven by the motor power supply (22) (22). Each motor power source (22) (22) is connected to the pulse generator (2
The drive circuit (24) is configured by connecting to 3). As a result, the two rotary three-way valves (12) and (13) operate in synchronization.

【0008】そして、パルス管(1)の高温端に第3ポー
トを接続している第2ロータリ式三方弁(13)を作動させ
る弁駆動用モータ(14)の駆動回路(24)におけるパルス発
生器(23)とモータ電源(22)との間には位相シフタ(25)が
配置してあり、蓄冷器(2)に接続されている第1ロータ
リ式三方弁(12)とパルス管(1)に接続されている第2ロ
ータリ三方弁(13)でのバルブ開閉の位相角(弁開閉タイ
ミング)を調整変更可能に構成してある。
Then, pulse generation in the drive circuit (24) of the valve drive motor (14) for operating the second rotary three-way valve (13) connecting the third port to the high temperature end of the pulse tube (1) A phase shifter (25) is arranged between the regenerator (23) and the motor power source (22) and is connected to the regenerator (2) with a first rotary three-way valve (12) and a pulse tube (1). ) Is connected to the second rotary three-way valve (13) so that the phase angle (valve opening / closing timing) of valve opening / closing can be adjusted and changed.

【0009】冷熱発生部(4)は2本のステンレスパイプ
(26)(27)を平行に配置し、その下端部を銅製エンドキャ
ップ(28)に嵌着し、上端部を放熱兼用の取付フランジ(2
9)に嵌着して形成してあり、一方のステンレスパイプ(2
6)の内部にステンレス製又は銅製のメッシュ体(30)を積
層配置するとともに、上下両端部に整流板(31)を配置す
ることにより蓄冷器(2)に構成し、他方のステンレスパ
イプ(27)の上下両端部に整流板(32)を配置してパルス管
(1)に構成してある。そして、銅製エンドキャップ(28)
にはガス分配板とスペーサを装着することにより吸熱用
連通路(3)を形成して、蓄冷器(2)とパルス管(1)とを
連通するようになっている。
The cold heat generating section (4) is composed of two stainless pipes.
(26) (27) are arranged in parallel, the lower end is fitted to the copper end cap (28), and the upper end is a mounting flange (2
It is formed by fitting it to the stainless steel pipe (2
The stainless steel or copper mesh body (30) is laminated inside the 6), and the straightening vanes (31) are arranged at the upper and lower ends to form the regenerator (2) and the other stainless pipe (27). ) Of the pulse tube.
It is configured in (1). And copper end caps (28)
A gas distribution plate and a spacer are attached to form a heat absorbing communication passage (3) to connect the regenerator (2) and the pulse tube (1).

【0010】パルス管(1)に連通している第2ロータリ
式三方弁(13)の切替作動でサブガス通路(20)が圧縮機
(7)の高圧ガス通路(15)に連通すると、高圧冷媒ガスが
流量調整具(21)で流量制御されてパルス管(1)に高温端
より供給されることになり、パルス管内の圧力は上昇を
始める。そして、サブガス通路(20)の連通時点から少し
時間差をおいて、蓄冷器(2)に連通する第1ロータリ式
三方弁(12)が切り替わってメインガス通路(19)が高圧ガ
ス通路(15)に連通する。このため、高圧冷媒ガスは蓄冷
器(2)の高温端に供給され、供給された高圧冷媒ガスは
蓄冷器(2)を経てパルス管(1)の低温端に至り、パルス
管(1)内はサブガス通路(20)から供給される高圧冷媒ガ
スとメインガス通路(19)から供給される高圧冷媒ガスと
により、高圧へと圧力上昇する。
When the second rotary type three-way valve (13) communicating with the pulse tube (1) is switched, the sub gas passage (20) is compressed.
When communicating with the high pressure gas passage (15) of (7), the flow rate of the high pressure refrigerant gas is controlled by the flow rate adjuster (21) to be supplied to the pulse tube (1) from the high temperature end, and the pressure in the pulse tube is Start climbing. Then, with a slight time lag from the point of communication of the sub gas passage (20), the first rotary type three-way valve (12) communicating with the regenerator (2) is switched so that the main gas passage (19) becomes the high pressure gas passage (15). Communicate with. Therefore, the high-pressure refrigerant gas is supplied to the high temperature end of the regenerator (2), and the supplied high-pressure refrigerant gas reaches the low temperature end of the pulse tube (1) via the regenerator (2) and the inside of the pulse tube (1). Is increased in pressure to high pressure by the high pressure refrigerant gas supplied from the sub gas passage (20) and the high pressure refrigerant gas supplied from the main gas passage (19).

【0011】そして、パルス管(1)内の圧力が最大圧力
になる前に第2ロータリ式三方弁(13)が切り替わり、サ
ブガス通路(20)が低圧ガス戻し路(18)に連通するが、サ
ブガス通路(20)には流量調整具(21)が介装してあること
から、パルス管(1)から流出する冷媒ガス量が制限さ
れ、パルス管(1)内の高圧ガスは最大圧力に上昇すると
ともに低温端から高温端へとガス移動することになる。
The second rotary three-way valve (13) is switched before the pressure in the pulse tube (1) reaches the maximum pressure, and the sub gas passage (20) communicates with the low pressure gas return passage (18). Since the flow rate adjuster (21) is provided in the sub gas passage (20), the amount of the refrigerant gas flowing out from the pulse tube (1) is limited, and the high pressure gas in the pulse tube (1) reaches the maximum pressure. As it rises, gas will move from the low temperature end to the high temperature end.

【0012】次いで、蓄冷器(2)に連通している第1ロ
ータリ式三方弁(12)の切り替え作動でメインガス通路(1
9)が低圧冷媒ガス戻し路(18)に連通し、パルス管(1)内
の高圧ガスは低圧ガスへと膨張し、低温を発生しつつ、
圧縮機(7)の低圧系へ戻される。以上の作動が繰り返し
行われる。この動作はスターリング冷凍サイクルに匹敵
する。
Next, the main gas passage (1) is switched by the switching operation of the first rotary type three-way valve (12) communicating with the regenerator (2).
9) communicates with the low pressure refrigerant gas return path (18), the high pressure gas in the pulse tube (1) expands to low pressure gas, generating low temperature,
It is returned to the low pressure system of the compressor (7). The above operation is repeated. This operation is comparable to the Stirling refrigeration cycle.

【0013】このように構成したパルス管冷凍機では、
冷熱発生部(4)には可動部分がなく、また、蓄冷器(2)
に冷媒ガスを給排制御するロータリ弁ユニット(6)と冷
熱発生部(4)とを連通するメインガス通路(19)を可撓性
連結管で形成してあることから、無振動の冷凍機を提供
することができる。
In the pulse tube refrigerator thus constructed,
The cold heat generating part (4) has no moving parts, and the regenerator (2)
Since the main gas passage (19) that connects the rotary valve unit (6) for controlling the supply and discharge of the refrigerant gas to the cold heat generating portion (4) is formed by the flexible connecting pipe, the refrigerator does not vibrate. Can be provided.

【0014】そして、パルス管(1)の高温端に連通する
第2ロータリ式三方弁(13)の駆動回路(24)に位相シフタ
(25)を配置して、パルス管(1)に連通する第2ロータリ
式三方弁(13)と蓄冷器(2)の高温端に連通する第1ロー
タリ式三方弁(12)とを位相差をもって作動するように構
成し、この位相差を調整可能に構成してあるから、目的
温度域による理想位相差を容易に得ることができる。
Then, a phase shifter is provided in the drive circuit (24) of the second rotary type three-way valve (13) communicating with the high temperature end of the pulse tube (1).
(25) is arranged so that the phase difference between the second rotary three-way valve (13) communicating with the pulse tube (1) and the first rotary three-way valve (12) communicating with the high temperature end of the regenerator (2) is increased. Since it is configured so as to operate with the above, and the phase difference is adjustable, it is possible to easily obtain the ideal phase difference depending on the target temperature range.

【0015】また、両ロータリ式三方弁(12)(13)を駆動
している駆動モータ(14)の回転速度を変速可能に構成す
ることにより、ロータリ式三方弁(12)(13)の切り替え作
動速度を変更して、ガス給排サイクルを変更調整するよ
うにしてもよい。また、上記実施例では、第2ロータリ
式三方弁(13)の駆動回路に位相シフタ(25)を配置したば
あいに付いて述べたが、第1ロータリ式三方弁(12)の駆
動回路に位相シフタ(25)を配置するようにしてもよい。
Further, by changing the rotational speed of the drive motor (14) which drives the two rotary type three-way valves (12) and (13), the rotary type three-way valves (12) and (13) are switched. The operating speed may be changed to change and adjust the gas supply / discharge cycle. Further, in the above-mentioned embodiment, the case where the phase shifter (25) is arranged in the drive circuit of the second rotary type three-way valve (13) has been described, but in the drive circuit of the first rotary type three-way valve (12). The phase shifter (25) may be arranged.

【0016】図3は、本発明の別実施例を示し、これ
は、2つのロータリ式三方弁(12)(13)を同一の駆動モー
タ(14)で駆動するように構成したものであり、蓄冷器
(2)の高温端に連通している第1ロータリ式弁(12)のバ
ルブプレート(33)を固定するとともに、パルス管(1)の
高温端に連通している第2ロータリ式三方弁(13)のバル
ブプレート(34)をロータリ弁子(35)の回転軸芯回りに回
動調整可能に配置し、第2ロータリ式三方弁(13)の開閉
弁作動タイミングを第1ロータリ式三方弁(12)の開閉弁
作動タイミングに対して位相調整可能に構成したもので
ある。そして、サブガス通路(20)には流量調整具(21)と
してオリィフィスが介装してある。
FIG. 3 shows another embodiment of the present invention in which two rotary type three-way valves (12) and (13) are driven by the same drive motor (14). Regenerator
The valve plate (33) of the first rotary valve (12) communicating with the high temperature end of (2) is fixed, and the second rotary three-way valve ((2) communicating with the high temperature end of the pulse tube (1) ( The valve plate (34) of 13) is arranged so as to be rotatable around the rotary shaft core of the rotary valve element (35), and the opening / closing valve actuation timing of the second rotary type three-way valve (13) is set to the first rotary type three-way valve. The phase can be adjusted with respect to the opening / closing valve operation timing of (12). An orifice is provided in the sub gas passage (20) as a flow rate adjuster (21).

【0017】なお、上記別実施例では、第1ロータリ式
三方弁(12)のバルブプレート(33)を固定し、第2ロータ
リ式三方弁(13)のバルブプレート(34)を回動調整可能に
構成したが、第1ロータリ式三方弁(12)のバルブプレー
ト(33)を回動調整可能に構成し、第2ロータリ式三方弁
(13)のバルブプレート(34)を固定するように構成しても
よい。
In the other embodiment, the valve plate (33) of the first rotary type three-way valve (12) is fixed and the valve plate (34) of the second rotary type three-way valve (13) can be rotationally adjusted. However, the valve plate (33) of the first rotary type three-way valve (12) is configured to be adjustable in rotation, and the second rotary type three-way valve is configured.
The valve plate (34) of (13) may be fixed.

【0018】[0018]

【発明の効果】本発明では、パルス管の高温端を第2ロ
ータリ式三方弁を介して圧縮機の高圧冷媒ガス通路と低
圧冷媒ガス通路に切り替え連通可能に構成し、パルス管
から第2ロータリ式三方弁までの間のサブガス通路に流
量調整具を配置してあることから、ロータリ弁の回転作
動で、パルス管内が低圧冷媒ガス通路と高圧冷媒ガス通
路とに切り換え接続されることになり、この切換に伴う
圧力変化がダブルインレット型パルス管冷凍機に相当す
る役割を果たすことになるから、バッファタンクを省略
して小型軽量で冷凍発生効率の高い、かつ振動の極めて
少ないパルス管冷凍機を得ることができる。
According to the present invention, the high temperature end of the pulse tube can be switched and communicated with the high pressure refrigerant gas passage and the low pressure refrigerant gas passage of the compressor via the second rotary three-way valve. Since the flow rate adjuster is arranged in the sub gas passage between the three-way valve, the rotary operation of the rotary valve will switch and connect the inside of the pulse tube to the low pressure refrigerant gas passage and the high pressure refrigerant gas passage. Since the pressure change due to this switching plays a role equivalent to that of a double-inlet type pulse tube refrigerator, a buffer tank is omitted and a pulse tube refrigerator with a small size and light weight, high refrigeration generation efficiency, and extremely low vibration is used. Obtainable.

【0019】また、蓄冷器とパルス管とを同期作動する
2つのロータリ式三方弁を介してそれぞれ圧縮機の高圧
冷媒ガス通路と低圧冷媒ガス戻し路とに切り替え連通可
能に構成し、パルス管側を制御しているロータリ三方弁
と蓄冷器側を制御しているロータリ式三方弁との開閉作
動タイミングを変更可能に構成していることから、冷凍
機としての目的温度域による理想位相差を容易に得るこ
とができる。
Further, the regenerator and the pulse tube are configured so as to be switchably connected to the high pressure refrigerant gas passage and the low pressure refrigerant gas return passage of the compressor via two rotary type three-way valves which operate in synchronism with each other. Since the rotary three-way valve that controls the regenerator and the rotary three-way valve that controls the regenerator side can be changed in opening and closing operation timing, the ideal phase difference depending on the target temperature range as a refrigerator can be easily Can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】パルス管冷凍機の概略構成図である。FIG. 1 is a schematic configuration diagram of a pulse tube refrigerator.

【図2】冷熱発生部の縦断面図である。FIG. 2 is a vertical cross-sectional view of a cold heat generating portion.

【図3】ロータリ式三方弁駆動機構の別実施例を示す概
略構成図である。
FIG. 3 is a schematic configuration diagram showing another embodiment of a rotary type three-way valve drive mechanism.

【図4】従来のダブルインレットタイプのパルス管冷凍
機の概略構成図である。
FIG. 4 is a schematic configuration diagram of a conventional double-inlet type pulse tube refrigerator.

【符号の説明】[Explanation of symbols]

1…パルス管、 2…蓄冷器、3
…吸熱用連結路、 7…圧縮機、12・
13…ロータリ式三方弁、 14…ロータリ弁
駆動モータ、15…高圧冷媒ガス通路、 18
…低圧冷媒ガス戻し路、19…メインガス通路、
20…サブガス通路、21…流量調整具、
23…パルス発生器、24…ロータリ弁駆動回
路、 33・34…バルブプレート、35…ロータリ弁
子。
1 ... Pulse tube, 2 ... Regenerator, 3
… Heat absorption connection, 7… Compressor, 12 ・
13 ... Rotary three-way valve, 14 ... Rotary valve drive motor, 15 ... High pressure refrigerant gas passage, 18
… Low-pressure refrigerant gas return path, 19… Main gas path,
20 ... Sub gas passage, 21 ... Flow rate adjusting tool,
23 ... Pulse generator, 24 ... Rotary valve drive circuit, 33/34 ... Valve plate, 35 ... Rotary valve.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川口 悦治 滋賀県守山市勝部町1095番地 イワタニプ ランテック株式会社滋賀工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Etsuji Kawaguchi 1095 Katsube Town, Moriyama City, Shiga Prefecture Iwatanipran Tech Co., Ltd. Shiga Plant

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 パルス管(1)の低温端と蓄冷器(2)の低
温端とを吸熱用連結路(3)を介して連通し、圧縮機(7)
から蓄冷器(2)の高温端に供給される冷媒ガスを蓄冷器
(2)、吸熱用連結路(3)を介してパルス管(1)の低温端
から高温端側に向けて導入するように構成したパルス管
冷凍機において、 圧縮機(7)の高圧冷媒ガス通路(15)に2つのロータリ式
三方弁(12)(13)を並列に配置し、一方のロータリ式三方
弁(12)に蓄冷器(2)の高温端部をメインガス通路(19)で
連通させるとともに、他方のロータリ式三方弁(13)にパ
ルス管(1)の高温端をサブガス通路(20)で連通させ、各
ロータリ式三方弁(12)(13)の低圧ポートをそれぞれ圧縮
機(7)の低圧冷媒ガス戻し路(18)に連通させ、サブガス
通路(20)に流量調整具(21)を介装し、両ロータリ式三方
弁(12)(13)を同期して回転作動するように構成し、一方
のロータリ式三方弁(12)(13)に対する他方のロータリ式
三方弁(13)(12)の弁開閉タイミングを調節変更可能に構
成したことを特徴とするパルス管冷凍機。
1. A compressor (7) comprising a low temperature end of a pulse tube (1) and a low temperature end of a regenerator (2) which are communicated with each other through a heat absorption connecting path (3).
Refrigerant gas supplied to the high temperature end of the regenerator (2) from the regenerator
(2) In a pulse tube refrigerator configured to be introduced from the low temperature end of the pulse tube (1) to the high temperature end side via the heat absorption connecting path (3), high pressure refrigerant gas of the compressor (7) The two rotary three-way valves (12) (13) are arranged in parallel in the passage (15), and the high temperature end of the regenerator (2) is connected to the main gas passage (19) in one rotary three-way valve (12). In addition to communicating with each other, the high temperature end of the pulse tube (1) is communicated with the other rotary three-way valve (13) through the sub gas passage (20), and the low pressure ports of each rotary three-way valve (12) (13) are respectively compressed. The low pressure refrigerant gas return path (18) of (7) is communicated, the flow rate adjusting tool (21) is provided in the sub gas path (20), and both rotary type three-way valves (12) and (13) are operated in synchronization. And a rotary type three-way valve (12) (13) for one rotary type three-way valve (13) (12) is adjustable to change the opening and closing timing of the rotary type three-way valve (13) (12) Refrigerator.
【請求項2】 各ロータリ式三方弁(12)(13)を駆動モー
タ(14)でそれぞれ個別に駆動するように構成し、この各
駆動モータ(14)をパルス発生器(23)での発生パルスによ
り作動するステッピングモータで構成し、各ステッピン
グモータ(14)へ伝達パルスを調整することにより両ロー
タリ式三方弁(12)(13)の作動タイミングを調節変更可能
に構成した請求項1に記載のパルス管冷凍機。
2. Each rotary type three-way valve (12) (13) is configured to be individually driven by a drive motor (14), and each drive motor (14) is generated by a pulse generator (23). The stepping motor which is operated by a pulse, and the operation timing of both rotary type three-way valves (12) (13) can be adjusted and changed by adjusting the transmission pulse to each stepping motor (14). Pulse tube refrigerator.
【請求項3】 ロータリ式三方弁(12)(13)の各駆動用モ
ータ(14)の回転数を変速可能に構成した請求項1又は請
求項2に記載のパルス管冷凍機。
3. The pulse tube refrigerator according to claim 1, wherein the rotational speed of each drive motor (14) of the rotary type three-way valve (12) (13) is variable.
【請求項4】 両ロータリ式三方弁(12)(13)を1つの駆
動モータ(14)で同期作動させるように構成し、一方のロ
ータリ式三方弁(12)(13)のバルブプレート(33)(34)を固
定するとともに、他方のロータリ式三方弁(13)(12)のバ
ルブプレート(34)(33)をロータリ弁子(35)の回転軸芯を
中心として回動変位させることにより、両ロータリ式三
方弁(12)(13)の作動タイミングを調節変更可能に構成し
た請求項1に記載のパルス管冷凍機。
4. A rotary type three-way valve (12) (13) is configured to be operated synchronously by one drive motor (14), and a valve plate (33) of one rotary type three-way valve (12) (13). ) (34) is fixed, and the valve plates (34) and (33) of the other rotary three-way valve (13) (12) are rotationally displaced about the rotary shaft core of the rotary valve element (35). The pulse tube refrigerator according to claim 1, wherein the operation timings of the two rotary type three-way valves (12) (13) are adjustable.
JP30460692A 1992-10-16 1992-10-16 Pulse tube refrigerator Expired - Fee Related JPH0772651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30460692A JPH0772651B2 (en) 1992-10-16 1992-10-16 Pulse tube refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30460692A JPH0772651B2 (en) 1992-10-16 1992-10-16 Pulse tube refrigerator

Publications (2)

Publication Number Publication Date
JPH06129724A true JPH06129724A (en) 1994-05-13
JPH0772651B2 JPH0772651B2 (en) 1995-08-02

Family

ID=17935033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30460692A Expired - Fee Related JPH0772651B2 (en) 1992-10-16 1992-10-16 Pulse tube refrigerator

Country Status (1)

Country Link
JP (1) JPH0772651B2 (en)

Also Published As

Publication number Publication date
JPH0772651B2 (en) 1995-08-02

Similar Documents

Publication Publication Date Title
US5515685A (en) Pulse tube refrigerator
EP1188025B1 (en) Hybrid-two-stage pulse tube refrigerator
US8783045B2 (en) Reduced input power cryogenic refrigerator
EP2964941B1 (en) A thermodynamic machine
CN107328130B (en) Multi-stage pulse tube refrigerator system adopting active phase modulation mechanism and adjusting method thereof
KR20130041395A (en) Fast cool down cryogenic refrigerator
US20130285663A1 (en) Cryogenic refrigerator and cooling method
US20110030392A1 (en) Expander speed control
JPH04506862A (en) Cryogen freezing equipment
US6351954B1 (en) Pulse tube refrigerator
JPH06129724A (en) Pulse tube refrigerating machine
US6393845B1 (en) Pulse tube refrigerator
CN1278088C (en) Built in film type bidirection air inlet structure vessel refrigerator
CN215373025U (en) Pulse tube refrigerator with low-temperature cavity structure
CN108775724B (en) A kind of pulse tube type refrigeration system with four-way reversing valve
JP2844444B2 (en) Pulse tube refrigerator
CN113074470A (en) Pulse tube refrigerator with low-temperature cavity structure
JPH10332215A (en) Cold heat storage type refrigerator
JP6909167B2 (en) Active buffer pulse tube refrigerator
JPH0734297Y2 (en) Pulse tube refrigerator
KR101041839B1 (en) Pulse tube refrigerator having flow controller
JP3862631B2 (en) Power generation and absorption cold / hot water equipment
WO2019230419A1 (en) Pulse tube refrigerator
JP2004163083A (en) Rotary valve for refrigerator and refrigerator
JP2002286312A (en) Pulse tube refrigerating machine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees