JPH06129203A - Vibration suppressing structure for gas turbine rotor blade - Google Patents

Vibration suppressing structure for gas turbine rotor blade

Info

Publication number
JPH06129203A
JPH06129203A JP29800392A JP29800392A JPH06129203A JP H06129203 A JPH06129203 A JP H06129203A JP 29800392 A JP29800392 A JP 29800392A JP 29800392 A JP29800392 A JP 29800392A JP H06129203 A JPH06129203 A JP H06129203A
Authority
JP
Japan
Prior art keywords
blade
gas turbine
platform
shroud
turbine rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP29800392A
Other languages
Japanese (ja)
Inventor
Masamitsu Taniguchi
正充 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP29800392A priority Critical patent/JPH06129203A/en
Publication of JPH06129203A publication Critical patent/JPH06129203A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To provide a blade vibration suppressing structure which can cope with an increase in the height of a blade caused by an increase in the temperature of a gas turbine. CONSTITUTION:A vibration suppressing structure for a gas turbine blade comprises a platform 14, a shank and a blade root 16 which are arranged in that order and which are integrally incorporated with the lower part of a blade profile part 12. A part 17 making press-contact with a circumferential end surface of an adjacent blade platform is formed on a circumferential end surface of the platform 14 so that the surface pressure is generated at the press contact part 17 by twist-back during operation in order to form a group of blades. Thereby it is possible to eliminate the necessity of formation of a shroud in the upper part of the blade profile part 12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガスタービン動翼、特
にシャンク部が長い又は翼全長に対してシャンク部長さ
の割合が大きいガスタービン動翼に適用して最適な防振
構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas turbine rotor blade, particularly to a gas turbine rotor blade having a long shank portion or a large ratio of the shank portion length to the blade total length, and to an optimum vibration damping structure.

【0002】[0002]

【従来の技術】ガスタービンの後段側動翼は、翼が長く
なって振動数が低下し、翼固有振動数がタービン回転数
のハーモニックスに一致又は近傍にあるときには疲労し
て折損する。そこで、この対策として、従来はガスター
ビン動翼としてインテグラルシュラウド翼が使用されて
いる。
2. Description of the Related Art A gas turbine rear-stage rotor blade is fatigued and broken when the blade lengthens and the frequency decreases, and when the blade natural frequency matches or is close to the harmonics of the turbine speed. Therefore, as a countermeasure against this, conventionally, an integral shroud blade is used as a gas turbine blade.

【0003】図3は従来のインテグラルシュラウド翼1
を示す斜視図で、翼プロフィル部2の上部にはシュラウ
ド3が一体に形成され、また翼プロフィル部2の下部に
は順次プラットホーム4、シャンク5及び翼根6が一体
に形成されて、インテグラルシュラウド翼1が構成され
ている。そして、シャンク5の側面には冷却空気が流
れ、応力の高い翼根6の部分が高温となるのが防止され
る。
FIG. 3 shows a conventional integral shroud blade 1
In the perspective view of FIG. 2, a shroud 3 is integrally formed on the upper portion of the blade profile portion 2, and a platform 4, a shank 5 and a blade root 6 are sequentially formed integrally on the lower portion of the blade profile portion 2. The shroud wing 1 is configured. Then, the cooling air flows on the side surface of the shank 5, and the portion of the blade root 6 having a high stress is prevented from reaching a high temperature.

【0004】次に、図4は図3のIV−IV線に沿うシュラ
ウド部分の平面展開図で、シュラウド3の円周方向端面
に、隣接翼シュラウド3′との圧接部7が設けられてい
る。これは、予めインテグラルシュラウド翼1の高さ方
向重心線をずらしておき、ロータが回転すると矢印方向
A,Bのねじりモーメントを発生させて、符号7で示し
た部分を圧接させるものである。このとき、隣接翼はグ
ループ翼を形成して固有振動数が高くなり、また減衰構
造となって耐振強度が向上する。この構造は、一般に、
ツイストバック構造と呼ばれる。
Next, FIG. 4 is a plan development view of the shroud portion taken along the line IV-IV of FIG. 3, in which the pressure contact portion 7 with the adjacent blade shroud 3'is provided on the circumferential end surface of the shroud 3. . In this, the center of gravity line of the integral shroud blade 1 in the height direction is shifted in advance, and when the rotor rotates, torsional moments in the directions A and B of the arrows are generated to press the portion indicated by reference numeral 7 into pressure contact. At this time, the adjacent blades form a group blade and have a high natural frequency, and a damping structure improves the vibration resistance. This structure is generally
It is called a twist back structure.

【0005】[0005]

【発明が解決しようとする課題】ところで、最近は、ガ
スタービンの高温化と大容量化に伴ってインテグラルシ
ュラウド翼1のシャンク5の長さlは逐次長くなり、そ
の冷却効果の増大が図られている。そして、今後も冷却
空気の都合等からシャンク5の部分がより長くなる可能
性が大である。
By the way, recently, the length l of the shank 5 of the integral shroud blade 1 is gradually increased with the increase in the temperature and the capacity of the gas turbine, and the cooling effect is increased. Has been. Further, in the future, there is a great possibility that the shank 5 portion will be longer due to the convenience of the cooling air or the like.

【0006】このように、最近は、ガスタービンの高温
化と大容量化に伴って翼高さも増大する傾向にあるもの
であるが、図3、図4に示した従来のインテグラルシュ
ラウド翼1にあっては、動翼に加わる遠心力の大きさに
対してシュラウド3,3′の肉厚は比較的薄いものにな
っている。このため、遠心力とツイストバックによって
シュラウド3,3′にめくりあがりが発生し、その応力
と振動吸収力の低下が、ガスタービンの高温化と大容量
化に伴う翼高さの増大につれて問題となってきている。
As described above, recently, the blade height tends to increase as the temperature and the capacity of the gas turbine increase, but the conventional integral shroud blade 1 shown in FIGS. 3 and 4 is used. In this case, the wall thickness of the shrouds 3, 3'is relatively thin with respect to the magnitude of the centrifugal force applied to the moving blade. Therefore, the centrifugal force and the twist back cause the shrouds 3 and 3'to be turned up, and the stress and the decrease in the vibration absorbing force become a problem as the blade height increases as the gas turbine temperature increases and the capacity increases. It has become to.

【0007】本発明は、このような従来技術の課題を解
決するためになされたもので、ガスタービンの高温化と
大容量化に伴う翼高さの増大に充分に対処できる動翼防
振構造を提供することを目的とする。
The present invention has been made in order to solve the problems of the prior art as described above, and a rotor blade anti-vibration structure capable of sufficiently coping with an increase in blade height due to an increase in temperature and capacity of a gas turbine. The purpose is to provide.

【0008】[0008]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明は、翼プロフィル部の下部に順次プラット
ホーム、シャンク及び翼根を一体に形成したガスタービ
ン動翼の防振構造において、前記プラットホームの円周
方向端面に、隣接翼プラットホーム端面との圧接部を設
け、ツイストバックによって運転中上記圧接部に面圧を
発生させて、グループ翼を形成するようにしたものであ
る。
In order to solve the above-mentioned problems, the present invention provides a vibration isolating structure for a gas turbine blade in which a platform, a shank, and a blade root are integrally formed in a lower portion of a blade profile section in order. A pressure contact portion with an end surface of an adjacent blade platform is provided on a circumferential end surface of the platform, and a surface pressure is generated at the pressure contact portion during operation by a twist back to form a group blade.

【0009】[0009]

【作用】上記の手段によれば、シュラウドに比べて厚さ
が厚いプラットホームの円周方向端面に、隣接翼プラッ
トホーム端面との圧接部を設けて、ツイストバックによ
って運転中上記圧接部に面圧を発生させ、グループ翼を
形成するようにしているので、プラットホームにシュラ
ウドの場合のようなめくりあがりが発生することはな
い。
According to the above means, a pressure contact portion with the end face of the adjacent blade platform is provided on the circumferential end surface of the platform thicker than the shroud, and the surface pressure is applied to the pressure contact portion during operation by the twistback. Since they are generated to form a group wing, there is no turning up of the platform as in the case of a shroud.

【0010】[0010]

【実施例】以下、図1,図2を参照して本発明の一実施
例について詳細に説明する。図1は本発明を実施したガ
スタービン動翼の一例を示す斜視図、図2は図1のII−
II線に沿うプラットホーム部分の平面展開図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to FIGS. FIG. 1 is a perspective view showing an example of a gas turbine rotor blade embodying the present invention, and FIG. 2 is II- of FIG.
It is a plane development view of the platform part which follows the II line.

【0011】図1において、ガスタービン動翼11は翼
プロフィル部12を包含し、この翼プロフィル部12の
下部には順次プラットホーム14、シャンク15及び翼
根16が一体に形成されている。
In FIG. 1, a gas turbine moving blade 11 includes a blade profile portion 12, and a platform 14, a shank 15 and a blade root 16 are integrally formed in the lower portion of the blade profile portion 12 in order.

【0012】そして、本発明によれば、特に図2に良く
示されているように、プラットホーム14の円周方向端
面に、隣接翼プラットホーム14′との圧接部17が設
けられている。ガスタービン動翼11は従来技術と同じ
ように高さ方向の重心線がずらされており、ロータの回
転により矢印方向A,Bにねじりモーメントを発生させ
ることによって、ツイストバックにより圧接部17に面
圧を発生させ、グループ翼を形成するようにしている。
According to the present invention, as best shown in FIG. 2, a pressure contact portion 17 with an adjacent wing platform 14 'is provided on the circumferential end surface of the platform 14. The center of gravity of the gas turbine rotor blade 11 in the height direction is displaced in the same manner as in the prior art, and a twisting moment is generated in the arrow directions A and B by the rotation of the rotor, so that the pressure contact portion 17 is brought into contact with the pressure contact portion 17 by twist back. Pressure is generated to form group wings.

【0013】すなわち、本発明は、前述のようにガスタ
ービンの高温化と大容量化に伴う冷却の強化により、最
近のガスタービン動翼11のシャンク15の長さlが逐
次増大していることに鑑み、翼根16を固定してプラッ
トホーム14をねじり変形させることが最近のガスター
ビンでは十分に可能であることに着目し、プラットホー
ム14の円周方向端面に隣接翼プラットホーム14′の
端面との圧接部17を設け、ツイストバックによるねじ
りモーメントにより、上記圧接部17を圧接させ、グル
ープ翼を形成するようにしたものである。
That is, according to the present invention, as described above, the length l of the shank 15 of the gas turbine rotor blade 11 has been gradually increased due to the enhancement of cooling accompanying the increase in temperature and the increase in capacity of the gas turbine. In view of the above, it is noted that it is sufficiently possible to fix the blade root 16 and torsionally deform the platform 14 in the recent gas turbines, and the circumferential end face of the platform 14 and the end face of the adjacent blade platform 14 ′ are connected to each other. A pressure contact portion 17 is provided, and the pressure contact portion 17 is pressure contacted by a twisting moment due to a twist back to form a group blade.

【0014】そして、プラットホーム14,14′はシ
ュラウドに比べて厚さが厚いため、シュラウドの場合の
ようなめくりあがりは発生しない。また、シュラウドを
廃止して、低コストのフリースタンディング長翼を得る
ことができる。
Since the platforms 14 and 14 'are thicker than the shroud, the turning up unlike the case of the shroud does not occur. Also, the shroud can be eliminated and a low-cost freestanding long wing can be obtained.

【0015】[0015]

【発明の効果】以上述べたように、本発明によれば、翼
プロフィル部の下部に順次プラットホーム、シャンク及
び翼根を一体に形成したガスタービン動翼の防振構造に
おいて、シュラウドに比べて厚さが厚いプラットホーム
の円周方向端面に、隣接翼プラットホーム端面との圧接
部を設けて、ツイストバックによって運転中上記圧接部
に面圧を発生させ、グループ翼を形成するようにしてい
るので、プラットホームにシュラウドの場合のようなめ
くりあがりは発生せず、したがって最近のガスタービン
の高温化と大容量化に伴う翼高さの増大に充分に対処で
きる動翼防振構造を提供することができる。
As described above, according to the present invention, in the vibration isolating structure of the gas turbine blade in which the platform, the shank, and the blade root are integrally formed in the lower portion of the blade profile portion, the thickness is larger than that of the shroud. A thick contact platform is provided on the circumferential end face of the adjacent blade platform with a pressure contact part with the end face of an adjacent wing platform, and a twist wing is used to generate a surface pressure on the pressure contact part during operation to form a group wing. Therefore, it is possible to provide a rotor blade vibration isolating structure capable of sufficiently dealing with the increase in blade height due to the recent increase in temperature and capacity of gas turbines, unlike the case of a shroud.

【0016】また、本発明によれば、シュラウドを廃止
できるので、従来コストの高いインテグラルシュラウド
翼を使用していたガスタービン長翼を、耐振強度を変え
ることなく、コストの安いフリースタンディング翼に改
造することが可能となり、かつシュラウドがないため、
そのめくりあがりの問題も発生せず、信頼性が向上す
る。
Further, according to the present invention, since the shroud can be eliminated, the gas turbine long blade, which has conventionally used the integral shroud blade of high cost, can be replaced with the free standing blade of low cost without changing the vibration resistance strength. Since it can be modified and there is no shroud,
The problem of turning up does not occur and reliability is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施したガスタービン動翼の一例を示
す斜視図である。
FIG. 1 is a perspective view showing an example of a gas turbine rotor blade embodying the present invention.

【図2】図1のII−II線に沿うプラットホーム部分の平
面展開図である。
FIG. 2 is a plan development view of a platform portion taken along the line II-II in FIG.

【図3】従来のガスタービン動翼を示す斜視図である。FIG. 3 is a perspective view showing a conventional gas turbine rotor blade.

【図4】図3のIV−IV線に沿うシュラウド部分の平面展
開図である。
FIG. 4 is a plan development view of a shroud portion taken along line IV-IV in FIG.

【符号の説明】[Explanation of symbols]

11 ガスタービン動翼 12 翼プロフィル部 14 プラットホーム 14′ 隣接翼プラットホーム 15 シャンク 16 翼根 17 圧接部 11 Gas Turbine Blade 12 Blade Profile Section 14 Platform 14 'Adjacent Blade Platform 15 Shank 16 Blade Root 17 Pressure Contact Section

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】翼プロフィル部の下部に順次プラットホー
ム、シャンク及び翼根を一体に形成したガスタービン動
翼の防振構造において、前記プラットホームの円周方向
端面に、隣接翼プラットホーム端面との圧接部を設け、
ツイストバックによって運転中上記圧接部に面圧を発生
させて、グループ翼を形成することを特徴とするガスタ
ービン動翼の防振構造。
1. A vibration isolating structure for a gas turbine rotor blade, in which a platform, a shank and a blade root are integrally formed in a lower portion of a blade profile portion, and a circumferential end face of the platform is press-contacted with an end face of an adjacent blade platform. Is provided
A vibration isolation structure for a gas turbine rotor blade, wherein a surface pressure is generated in the pressure contact portion during operation by a twistback to form a group blade.
JP29800392A 1992-10-09 1992-10-09 Vibration suppressing structure for gas turbine rotor blade Withdrawn JPH06129203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29800392A JPH06129203A (en) 1992-10-09 1992-10-09 Vibration suppressing structure for gas turbine rotor blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29800392A JPH06129203A (en) 1992-10-09 1992-10-09 Vibration suppressing structure for gas turbine rotor blade

Publications (1)

Publication Number Publication Date
JPH06129203A true JPH06129203A (en) 1994-05-10

Family

ID=17853871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29800392A Withdrawn JPH06129203A (en) 1992-10-09 1992-10-09 Vibration suppressing structure for gas turbine rotor blade

Country Status (1)

Country Link
JP (1) JPH06129203A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6343914B1 (en) * 1999-02-10 2002-02-05 Alstom (Switzerland) Ltd Fluid-flow machine component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6343914B1 (en) * 1999-02-10 2002-02-05 Alstom (Switzerland) Ltd Fluid-flow machine component

Similar Documents

Publication Publication Date Title
EP1451446B1 (en) Turbine blade pocket shroud
CA2327850C (en) Swept barrel airfoil
US5435694A (en) Stress relieving mount for an axial blade
US7955054B2 (en) Internally damped blade
CA2614406C (en) Methods and apparatus for fabricating a fan assembly for use with turbine engines
US5160242A (en) Freestanding mixed tuned steam turbine blade
US6102664A (en) Blading system and method for controlling structural vibrations
US6341941B1 (en) Steam turbine
JP3017477B2 (en) Hollow blades for axial gas turbine engines
EP1867837A2 (en) Bucket vibration damper system
US5913661A (en) Striated hybrid blade
JP2002188404A (en) Row of flow directing elements
GB2405186A (en) A hollow turbine blade with internal damping element
JP2002339704A (en) Method and device for damping vibration of rotor assembly
JPH02115596A (en) Radial flow rotor
US4460315A (en) Turbomachine rotor assembly
US5540551A (en) Method and apparatus for reducing vibration in a turbo-machine blade
US7931443B1 (en) High twist composite blade
EP1167692A2 (en) Fan blade configuration
US6338611B1 (en) Conforming platform fan blade
JPH06129203A (en) Vibration suppressing structure for gas turbine rotor blade
JPH10184305A (en) Turbine having shroud moving blade
JP2567044B2 (en) Turbine rotor blade coupling device
JP2000220472A (en) Fan case liner
US11725520B2 (en) Fan rotor for airfoil damping

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000104