JPH061251B2 - Silane gas detection element - Google Patents

Silane gas detection element

Info

Publication number
JPH061251B2
JPH061251B2 JP31813391A JP31813391A JPH061251B2 JP H061251 B2 JPH061251 B2 JP H061251B2 JP 31813391 A JP31813391 A JP 31813391A JP 31813391 A JP31813391 A JP 31813391A JP H061251 B2 JPH061251 B2 JP H061251B2
Authority
JP
Japan
Prior art keywords
gas
silane
gas detection
sih
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31813391A
Other languages
Japanese (ja)
Other versions
JPH05113422A (en
Inventor
義昭 岡山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nohmi Bosai Ltd
Original Assignee
Nohmi Bosai Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP58157931A external-priority patent/JPS6050446A/en
Application filed by Nohmi Bosai Ltd filed Critical Nohmi Bosai Ltd
Priority to JP31813391A priority Critical patent/JPH061251B2/en
Publication of JPH05113422A publication Critical patent/JPH05113422A/en
Publication of JPH061251B2 publication Critical patent/JPH061251B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、空気などの他の気体
と接触混合すると数%の濃度で自然発火する特殊ガスを
選択的に検出するガス検出素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas detecting element for selectively detecting a special gas that spontaneously ignites at a concentration of several% when contact-mixed with another gas such as air.

【0002】[0002]

【従来の技術および課題】半導体工場、化学工場や研究
所などで、空気などの他の気体と接触あるいは混合する
と数%の濃度でも自然発火して燃焼する、モノシラン
(SiH4)、ジクロルシラン(SiH2Cl2)、トリクロ
ルシラン(SiHCl3)、ホスフィン(PH3)、ジボラ
ン(B26)やアルシン(AsH3)などの特殊ガスが多
量に使用されるようになるにつれて、これら特殊ガスが
空気中に漏洩するなどして自然発火し火災となる事故が
増加している。このため、このような特殊ガスを低濃度
で検出できるガス検出素子が望まれているが、現状では
このようなガス検出素子が見当たらない。
2. Description of the Related Art Monosilane (SiH 4 ), dichlorosilane (SiH 4 ) which spontaneously ignites and burns at a concentration of several% when contacted or mixed with other gases such as air in semiconductor factories, chemical factories and laboratories. 2 Cl 2 ), trichlorosilane (SiHCl 3 ), phosphine (PH 3 ), diborane (B 2 H 6 ), arsine (AsH 3 ), etc. are used in large quantities, and these special gases are being used. Accidents that spontaneously ignite and become a fire by leaking into the air are increasing. Therefore, a gas detecting element capable of detecting such a special gas at a low concentration is desired, but such a gas detecting element is not found at present.

【0003】このような点にかんがみ、本発明者はシラ
ン系ガスなどの特殊ガスを検出できるガス検出素子を得
るべく種々の実験を行った。この実験の結果、先に出願
した特願昭57−226510号の発明に基づくガス検
出素子にヒータなどの加熱手段を設け、この加熱手段で
ガス検出素子を加熱したところ、シラン系ガスに対し高
い選択性を有するガス検出素子が得られることが判明し
た。つまり、酸化第2スズ(SnO2)と塩化白金酸(H
2PtCl6)とオキシ塩化アンチモン(SbOCl)とをP
t/Sn=4モル%、Sb/Sn=6モル%の組成比で混合
したものを、1対の電極が設けられたアルミナ磁器管上
に塗布し、700±5℃にセットされた空気雰囲気なら
びにSbOClを4.0mg焼成して得られたアンチモン酸
化ガス雰囲気の石英管内で15分間焼成して素子を製作
し、この素子のアルミナ磁器管内に加熱手段としてのヒ
ータを挿入した。そしてヒータに通電してガス検出素子
を260℃に加熱し、25℃の清浄空気中ならびにそれ
ぞれ濃度が100ppmの一酸化炭素(CO)、メタン
(CH4)、エチレン(C24)、エタン(C26)、
水素(H2)、アンモニア(NH3)、エチルアルコール
(EtOH)ならびにモノシラン(SiH4)の各ガス中
にさらして空気中の抵抗値(Ro)ならびに各ガス中の
抵抗値(Rg)を測定し、Ro/RgつまりSN比を求め
た。この結果の1例を、空気雰囲気中で焼成し初期抵抗
値Roが135KΩのガス検出素子(素子A)、ならび
にアンチモン酸化ガス雰囲気中で焼成し初期抵抗値Ro
が74KΩのガス検出素子(素子B)について表1に示
す。
In view of these points, the present inventor has conducted various experiments to obtain a gas detection element capable of detecting a special gas such as a silane-based gas. As a result of this experiment, when the gas detecting element based on the invention of Japanese Patent Application No. 57-226510 previously applied was provided with a heating means such as a heater and the gas detecting element was heated by this heating means, it was higher than the silane-based gas. It has been found that a gas detection element having selectivity can be obtained. In other words, stannous oxide (SnO 2 ) and chloroplatinic acid (H
2 PtCl 6 ) and antimony oxychloride (SbOCl) as P
A mixture of t / Sn = 4 mol% and Sb / Sn = 6 mol% was applied on an alumina porcelain tube provided with a pair of electrodes, and the air atmosphere was set at 700 ± 5 ° C. Also, a device was manufactured by firing for 15 minutes in a quartz tube in an antimony oxidizing gas atmosphere obtained by firing 4.0 mg of SbOCl, and a heater as a heating means was inserted into the alumina porcelain tube of this device. Then, the heater is energized to heat the gas detection element to 260 ° C., and the concentration of carbon monoxide (CO), methane (CH 4 ), ethylene (C 2 H 4 ), ethane in clean air at 25 ° C. and 100 ppm, respectively. (C 2 H 6 ),
Measure the resistance value (Ro) in air and the resistance value (Rg) in each gas by exposing it to each gas of hydrogen (H 2 ), ammonia (NH 3 ), ethyl alcohol (EtOH) and monosilane (SiH 4 ). Then, Ro / Rg, that is, the SN ratio was determined. An example of these results is shown in Table 1. A gas detection element (element A) having an initial resistance value Ro of 135 KΩ was fired in an air atmosphere, and an initial resistance value Ro was fired in an antimony oxidizing gas atmosphere.
Table 1 shows the gas detection element (element B) having a value of 74 KΩ.

【0004】[0004]

【表1】 [Table 1]

【0005】なお、SiH4ガスにさらした後のこれらの
ガス検出素子の清浄空気中での抵抗値は素子Aは28K
Ωまた素子Bは16.5KΩに低下した。さらにこれら
のガス検出素子を上記各ガス中にさらしてRo/Rgの特
性を調べたところ、2回目のRo/Rgは、素子AではS
iH4ガスに対し36を、EtOHガスに対し5.8を、そ
の他のガスに対し1.1〜3.6をそれぞれ示し、素子B
ではSiH4ガスに対し33を、EtOHガスに対し6.3
を、その他のガスに対し1.1〜3.8をそれぞれ示し
た。また3回目以降では素子Aならびに素子Bとも、清
浄空気中での抵抗値は多少の増減がみられるだけでほと
んど変化せず、SiH4ガスに対するRo/Rgは27〜1
8を示し、これ以外のガスに対するRo/Rgは上記とほ
ぼ同様な、あるいは上記より低下する傾向を示した。ま
た素子の組成比と焼成温度を変えて素子を製作し、素子
温度を変えて実験を行ったところ、SiH4ガスに対する
Ro/Rgは1回目は110〜300、2回目は30〜5
0、3回目以降は16〜35を示し、他のガスに対する
Ro/RgはSiH4ガスの1/4〜1/6以下を示した。
Incidentally, the resistance value of these gas detecting elements in the clean air after being exposed to SiH 4 gas is 28 K for the element A.
Ω Further, the element B dropped to 16.5 KΩ. Further, when these gas detection elements were exposed to the above gases to examine the characteristics of Ro / Rg, the second Ro / Rg was S in element A.
36 for iH 4 gas, 5.8 for EtOH gas, and 1.1-3.6 for other gases.
Then, 33 for SiH 4 gas and 6.3 for EtOH gas.
And 1.1 to 3.8 for the other gases, respectively. In addition, after the third time, the resistance values in both the element A and the element B in the clean air show a slight increase or decrease and hardly change, and Ro / Rg for SiH 4 gas is 27 to 1
No. 8 and Ro / Rg for other gases showed a tendency similar to or lower than the above. Further, the element was manufactured by changing the composition ratio of the element and the firing temperature, and an experiment was conducted by changing the element temperature. The Ro / Rg for SiH 4 gas was 110 to 300 for the first time and 30 to 5 for the second time.
From the 0th and 3rd times onward, 16 to 35 were shown, and Ro / Rg for other gases was 1/4 to 1/6 or less of SiH 4 gas.

【0006】以上の実験から、酸化第2スズとオキシ塩
化アンチモンと白金とをSb/Sn=2〜8モル%、Pt
/Sn=2〜10モル%の組成比で混合し600〜85
0℃の空気雰囲気中またはアンチモン酸化ガス雰囲気中
で焼成した素子に加熱手段を設け、加熱手段により素子
を200〜400℃に加熱して用いれば、シラン系ガス
を高い選択性で検出できる性質を基本的に有するガス検
出素子が得られることが判明した。また、このガス検出
素子は、シラン系ガスに対するRo/RgつまりSN比の
経時変化が大きいことが判明したが、その一方で、シラ
ン系ガスに1度さらした後のガス検出素子は、その素子
の抵抗値自体は低下するが、SN比の経時変化が少なく
なり、安定する傾向があることが判明した。本発明者
は、以上の実験結果から判明した点をふまえ、経時変化
の少ないガス検出素子を得るべくさらに実験を行ったと
ころ、酸化第2スズとオキシ塩化アンチモンと白金とを
Sb/Sn=2〜8モル%、Pt/Sn=2〜10モル%の
組成比で混合し、600〜850℃の空気雰囲気中また
はアンチモン酸化ガス雰囲気中で焼成してなる素子を、
さらにシラン系ガス雰囲気中にさらし、シラン化合物か
らのシランを素子表面に分散担持させ、次いで空気中で
200〜400℃に加熱エージングを行うことにより、
素子表面にケイ素酸化物を不連続に担持させ、シラン系
ガスに対し高い選択性を有し、かつSN比の経時変化の
良好なガス検出素子が得られた。
From the above experiment, stannic oxide, antimony oxychloride and platinum were added to Sb / Sn = 2 to 8 mol%, Pt
/ Sn = 2 to 10 mol% and mixed at a composition ratio of 600 to 85
If a heating means is provided to the element fired in an air atmosphere at 0 ° C. or in an antimony oxidizing gas atmosphere, and the element is heated to 200 to 400 ° C. by the heating means and used, the silane-based gas can be detected with high selectivity. It has been found that a gas detection element basically having is obtained. Further, it was found that this gas detection element had a large change with time in Ro / Rg, that is, the SN ratio with respect to the silane-based gas. On the other hand, the gas detection element after being exposed to the silane-based gas once It was found that although the resistance value itself of No. 1 decreased, the change with time of the S / N ratio decreased and it tended to be stable. The present inventor, based on the points found from the above experimental results, further conducted an experiment to obtain a gas detection element with little change over time. As a result, stannic oxide, antimony oxychloride and platinum were mixed with Sb / Sn = 2. ˜8 mol%, Pt / Sn = 2 to 10 mol%, and mixed and burned in an air atmosphere at 600 to 850 ° C. or in an antimony oxidizing gas atmosphere.
Furthermore, by exposing to a silane-based gas atmosphere to disperse and support silane from the silane compound on the device surface, and then performing heat aging at 200 to 400 ° C. in air,
A gas detection element was obtained in which silicon oxide was discontinuously supported on the element surface, had a high selectivity for silane-based gas, and had a good SN ratio change over time.

【0007】以下、本発明を実施例によりさらに説明す
る。
The present invention will be further described below with reference to examples.

【実施例】実施例 1 SnO2に塩化白金酸(H2PtCl6)水溶液をPt/Sn=
4モル%となるように加えて超音波により良く分散させ
る。この分散水溶液を−40℃で急速凍結させた後、真
空凍結乾燥器にセットして乾燥させる。次にこの乾燥さ
れた試料にSbOClをSb/Sn=4モル%となるように
加えて乳鉢で30分間混合する。この混合した試料にイ
ソプロピルアルコールを加えてペースト状にしたものを
電極が取り付けられたアルミナ磁器管に塗布して自然乾
燥させる。この乾燥させた素子を700℃±5℃にセッ
トされた空気雰囲気の石英管内に入れて30分間焼成す
る。次にこの焼成した素子のアルミナ磁器管内にヒータ
を挿入して取り付け、このヒータに通電して素子を30
0℃±50℃に加熱し、この加熱状態のまま空気中で1
2時間エージングする。次にエージングの終了した素子
をヒータにより325℃±5℃に加熱し、モノシラン
(SiH4)ガス濃度が100ppmのシランガスを表面に
吸着させて分散的に担持させることにより、素子の安定
化をはかる。その後、ヒータで素子を300℃±50℃
に加熱し空気中で12時間エージングを行う。得られた
素子の表面には、ケイ素酸化物が不連続に担持されてい
る。このようにして製作されたガス検出素子を、その素
子温度が325℃となるようにヒータに通電して加熱
し、25℃の清浄空気中ならびにそれぞれ濃度が100
ppmのモノシラン(SiH4)、エチルアルコール(EtO
H)、一酸化炭素(CO)、ならびに1000ppmの水
素(H2)、メタン(CH4)、エチレン(C24)、エ
タン(C26)、アンモニア(NH3)の各ガス中にさ
らして抵抗値を測定し、空気中の抵抗値(Ro)と各ガ
ス中の抵抗値(Rg)との比Ro/RgつまりSN比を求
めたところ表2に示す結果となった。
EXAMPLES Example 1 SnO 2 was treated with an aqueous solution of chloroplatinic acid (H 2 PtCl 6 ) to obtain Pt / Sn =
Add 4 mol% and disperse well by ultrasonic wave. This dispersion aqueous solution is rapidly frozen at -40 ° C, then set in a vacuum freeze dryer and dried. Next, SbOC1 is added to the dried sample so that Sb / Sn = 4 mol%, and mixed in a mortar for 30 minutes. Isopropyl alcohol is added to this mixed sample to form a paste, which is applied to an alumina porcelain tube to which an electrode is attached and naturally dried. The dried element is put in a quartz tube in an air atmosphere set at 700 ° C. ± 5 ° C. and baked for 30 minutes. Next, a heater was inserted into the alumina porcelain tube of this fired element and attached, and the heater was energized to remove the element
Heat to 0 ° C ± 50 ° C, and in this heated state, in air 1
Aging for 2 hours. Next, the element which has been aged is heated to 325 ° C. ± 5 ° C. by a heater, and a silane gas having a monosilane (SiH 4 ) gas concentration of 100 ppm is adsorbed on the surface to dispersively carry it to stabilize the element. . Then, heat the element to 300 ℃ ± 50 ℃.
And aging in air for 12 hours. Silicon oxide is discontinuously supported on the surface of the obtained device. The gas detection element manufactured in this manner is heated by energizing a heater so that the element temperature becomes 325 ° C., and the concentration is 100% in clean air at 25 ° C.
ppm monosilane (SiH 4 ), ethyl alcohol (EtO
H), carbon monoxide (CO), and 1000 ppm of hydrogen (H 2 ), methane (CH 4 ), ethylene (C 2 H 4 ), ethane (C 2 H 6 ), and ammonia (NH 3 ) in each gas. Then, the resistance value was measured by exposure to air, and the ratio Ro / Rg, that is, the SN ratio, of the resistance value (Ro) in air and the resistance value (Rg) in each gas was obtained. The results shown in Table 2 were obtained.

【0008】[0008]

【表2】 [Table 2]

【0009】またこのガス検出素子のSiH4ガス濃度に
対する抵抗変化特性を測定したところ、図1に(A)で示
す特性となった。次にこのガス検出素子の有効な成分比
ならびに焼成温度の範囲を得るために、上記製造方法に
より成分比をPt/Sn=1,2,4,8,10,12モ
ル%、Sb/Sn=1,2,4,6,8,10モル%、空
気雰囲気中での焼成温度を550,600,700,8
50,900℃、シランガス雰囲気にさらす際の素子温
度を150,200,325,500,850℃、また
シランガス濃度を10,25,100,500,100
0,1500ppmにそれぞれ変化させてガス検出素子を
製作した。そしてこれらのガス検出素子について、ヒー
タで素子温度が325℃となるように加熱した状態で、
25℃の空気中での抵抗値(Ro)とSiH4ガス中での
抵抗値(Rg)をそれぞれ測定し、測定結果よりRo/R
gつまりSN比を求めた。また各ガス検出素子を25℃
の空気中から100ppmのSiH4ガス中に繰り返してさ
らし、SiH4ガスに1回目にさらした時の抵抗値Rgと
10回目にさらした時の抵抗値R10とから経時変化比R
10/Rgを求めた。この成分比と焼成温度ならびに測定
結果を表3に示す。
When the resistance change characteristic of this gas detecting element with respect to the SiH 4 gas concentration was measured, the characteristic shown in FIG. 1 (A) was obtained. Next, in order to obtain an effective component ratio and a firing temperature range of this gas detecting element, the component ratios were set to Pt / Sn = 1,2,4,8,10,12 mol% and Sb / Sn = by the above manufacturing method. 1,2,4,6,8,10 mol%, calcination temperature in air atmosphere is 550,600,700,8
50,900 ° C., element temperature when exposed to silane gas atmosphere is 150,200,325,500,850 ° C., and silane gas concentration is 10,25,100,500,100.
A gas detection element was manufactured by changing the amount to 0.1 and 1500 ppm, respectively. Then, with respect to these gas detection elements, in a state where the element temperature is heated to 325 ° C. by a heater,
The resistance value (Ro) in air at 25 ° C and the resistance value (Rg) in SiH 4 gas were measured respectively, and from the measurement results, Ro / R
g, that is, the SN ratio was obtained. In addition, each gas detection element
Repeatedly exposed to 100 ppm SiH 4 gas from the above air, and the resistance value Rg after the first exposure to SiH 4 gas and the resistance value R 10 after the 10th exposure, the change ratio with time R
10 / Rg was determined. Table 3 shows this component ratio, the firing temperature, and the measurement results.

【0010】[0010]

【表3】 [Table 3]

【0011】またこれらのガス検出素子のうち、Pt/
Sn=4モル%、Sb/Sn=6モル%、空気雰囲気焼成
温度700℃30分間、シランガス雰囲気素子温度32
5℃10分間、シランガス濃度100ppmで製作したガ
ス検出素子を、100ppmのSiH4に繰り返しさらした
時の経時変化を図2に示す。なお、図2において(a)は
25℃の清浄空気中における抵抗値、(b)は25℃の1
00ppmのSiH4ガス中における抵抗値である。
Of these gas detection elements, Pt /
Sn = 4 mol%, Sb / Sn = 6 mol%, air atmosphere firing temperature 700 ° C. for 30 minutes, silane gas atmosphere element temperature 32
FIG. 2 shows changes with time when a gas detection element manufactured at a silane gas concentration of 100 ppm at 5 ° C. for 10 minutes was repeatedly exposed to 100 ppm of SiH 4 . In addition, in FIG. 2, (a) is a resistance value in clean air at 25 ° C., and (b) is 1 at 25 ° C.
It is a resistance value in 00 ppm SiH 4 gas.

【0012】実施例 2 SnO2にH2PtCl6水溶液をPt/Sn=4モル%となる
ように加えて超音波により良く分散させる。この分散水
溶液を−40℃で急速凍結させた後、真空凍結乾燥器に
セットして乾燥させる。次にこの乾燥された試料にSb
OClをSb/Sn=4モル%となるように加えて乳鉢で
30分間混合する。この混合した試料にイソプロピルア
ルコールを加えてペースト状にしたものを電極が取り付
けられたアルミナ磁器管に塗布して自然乾燥させる。一
方、700℃±5℃にセットされた内径40mm、電気炉
挿入部分50cmの石英管内にSbOClを2.5mg載置し
たアルミナボートを30分間封入して石英管内をアンチ
モン酸化ガス雰囲気にする。次にこの700±5℃にセ
ットされたアンチモン酸化ガス雰囲気の石英管内に上記
の自然乾燥させた素子を封入して30分間焼成する。次
に焼成した素子のアルミナ磁器管内にヒータを挿入して
取り付け、このヒータに通電して素子を300℃±50
℃に加熱し、加熱状態のまま空気中で12時間エージン
グする。次にエージングの終了した素子をヒータで32
5℃±5℃に加熱し、モノシラン(SiH4)ガス濃度が
100ppm のシランガスを表面に吸着させて分散的に担
持させることにより、素子の安定化をはかる。その後、
素子をヒータで300℃±50℃に加熱し空気中で12
時間エージングを行う。得られた素子の表面には、ケイ
素酸化物が不連続に担持されている。このようにして製
作されたガス検出素子を、その素子温度が325℃とな
るようにヒータで加熱し、25℃の雰囲気で空気中なら
びにそれぞれ濃度が100ppmのSiH4,EtOH,C
O,H2,CH4,C24,C26,NH3の各ガス中に
さらして抵抗値を測定し、Ro/Rgを求めたところ表4
に示す結果となった。
Example 2 An aqueous solution of H 2 PtCl 6 was added to SnO 2 so that Pt / Sn = 4 mol%, and well dispersed by ultrasonic waves. This dispersion aqueous solution is rapidly frozen at -40 ° C, then set in a vacuum freeze dryer and dried. Then add Sb to this dried sample
OCl was added to Sb / Sn = 4 mol% and mixed in a mortar for 30 minutes. Isopropyl alcohol is added to this mixed sample to form a paste, which is applied to an alumina porcelain tube to which an electrode is attached and naturally dried. On the other hand, an alumina boat on which 2.5 mg of SbOC1 is placed is placed in a quartz tube having an inner diameter of 40 mm and an electric furnace insertion portion of 50 cm set at 700 ° C. ± 5 ° C. for 30 minutes to make the quartz tube an antimony oxidizing gas atmosphere. Next, the above naturally dried element is sealed in the quartz tube in the antimony oxidizing gas atmosphere set at 700 ± 5 ° C. and baked for 30 minutes. Next, a heater was inserted into the alumina porcelain tube of the fired element and attached, and the heater was energized to turn the element at 300 ° C. ± 50.
The mixture is heated to 0 ° C. and aged in the air for 12 hours in the heated state. Next, use a heater to remove the element that has been aged.
The device is stabilized by heating at 5 ° C. ± 5 ° C. and adsorbing silane gas having a monosilane (SiH 4 ) gas concentration of 100 ppm on the surface in a dispersed manner. afterwards,
Heat the element to 300 ° C ± 50 ° C with a heater and
Time aging. Silicon oxide is discontinuously supported on the surface of the obtained device. The gas detection element manufactured in this way is heated by a heater so that the element temperature becomes 325 ° C., and in the atmosphere of 25 ° C., the concentration of SiH 4 , EtOH, C in each of 100 ppm is 100%.
The resistance value was measured by exposing to O, H 2 , CH 4 , C 2 H 4 , C 2 H 6 , and NH 3 gases, and Ro / Rg was determined.
The results are shown in.

【0013】[0013]

【表4】 [Table 4]

【0014】またこのガス検出素子のSiH4ガス濃度に
対する抵抗特性を測定したところ、図1に(B)で示す特
性となった。次に石英管内をアンチモン酸化ガス雰囲気
とするのに上記製造方法においてSbOClの量を0.2
5,0.5,1.0,2.5,5.0,7.5mgに変化させ
てガス検出素子を製作し、このガス検出素子の25℃雰
囲気における清浄空気中での抵抗値(Ro)と100ppm
のSiH4ガス中での抵抗値(Rg)を測定し、Ro/Rg
を求めた。その結果を表5に示す。
When the resistance characteristic of this gas detecting element with respect to the SiH 4 gas concentration was measured, the characteristic shown in FIG. 1 (B) was obtained. Next, in order to make the inside of the quartz tube an atmosphere of antimony oxidizing gas, the amount of SbOCl in the above manufacturing method was set to 0.2.
5, 0.5, 1.0, 2.5, 5.0, 7.5 mg to produce a gas detection element, the resistance value (Ro of the gas detection element in clean air at 25 ℃ atmosphere ) And 100 ppm
Resistance value (Rg) in SiH 4 gas was measured, and Ro / Rg
I asked. The results are shown in Table 5.

【0015】[0015]

【表5】 [Table 5]

【0016】また石英管内をアンチモン酸化ガス雰囲気
とするのにSbOClの代わりに三二酸化アンチモン(S
b23)を用い、Sb23の分量を0.25,0.5,1.
0,2.5,5.0,7.5mgに変化させて上記と同様の
製造方法でガス検出素子を製作し、これらのガス検出素
子を上記と同様の方法でRo,Rgを測定し、Ro/Rgを
求めた。この結果を表6に示す。
In order to create an atmosphere of antimony oxidizing gas in the quartz tube, antimony trioxide (S) is used instead of SbOC1.
b 2 O 3 ) and the amount of Sb 2 O 3 is 0.25, 0.5, 1.
Gas detection elements were manufactured by the same manufacturing method as described above by changing to 0, 2.5, 5.0, 7.5 mg, and Ro and Rg of these gas detection elements were measured by the same method as described above. Ro / Rg was determined. The results are shown in Table 6.

【0017】[0017]

【表6】 [Table 6]

【0018】さらに上記製造方法において成分比をPt
/Sn=1,2,4,8,10モル%、Sb/Sn=1,
2,4,6,8,10モル%、アンチモン酸化ガス雰囲
気中での焼成温度を550,600,700,850,
900℃、シランガス雰囲気中での素子温度を150,
200,325,500,850℃、またシランガス濃
度を10,25,100,500,1000,1500
ppmにそれぞれ変化させてガス検出素子を製作した。な
お石英管内にアンチモン酸化ガス雰囲気を作成するのに
SbOClの分量は、2.5mgとし、各焼成温度と同じ温
度で作成した。そしてこれらのガス検出素子について、
素子温度が325℃となるようにヒータで加熱した状態
で、25℃の清浄空気中での抵抗値Roと100ppmのS
iH4ガス中での抵抗値Rgをそれぞれ測定し、測定結果
よりRo/Rg(SN比)を求めた。また各ガス検出素子
を25℃の清浄空気中から100ppmのSiH4ガス中に
繰り返してさらし、SiH4ガスに1回目にさらした時の
上記抵抗値Rgと10回目の時の抵抗値R10とから経時
変化比R10/Rgを求めた。この測定結果を表7に示
す。
Further, in the above manufacturing method, the component ratio is Pt.
/ Sn = 1,2,4,8,10 mol%, Sb / Sn = 1,
2,4,6,8,10 mol%, firing temperature in an antimony oxidizing gas atmosphere is 550,600,700,850,
900 ° C, element temperature 150 in silane gas atmosphere,
200,325,500,850 ° C, and silane gas concentration of 10,25,100,500,1000,1500
A gas detection element was manufactured by changing each to ppm. The amount of SbOC1 was set to 2.5 mg to create an antimony oxidizing gas atmosphere in the quartz tube, and it was created at the same temperature as each firing temperature. And for these gas detection elements,
Resistance value Ro in clean air at 25 ° C and S of 100ppm in the state heated by the heater so that the element temperature becomes 325 ° C.
The resistance value Rg in iH 4 gas was measured, and Ro / Rg (SN ratio) was determined from the measurement results. Further, each gas detection element was repeatedly exposed to 100 ppm SiH 4 gas from clean air at 25 ° C., and the above resistance value Rg when exposed to SiH 4 gas for the first time and resistance value R 10 at the 10th time The change ratio with time R 10 / Rg was determined from. The results of this measurement are shown in Table 7.

【0019】[0019]

【表7】 [Table 7]

【0020】またこれらのガス検出素子のうち、Pt/
Sn=4モル%、Sb/Sn=6モル%、SbOCl2.5mg
を700℃で30分間焼成して作成したアンチモン酸化
ガス雰囲気中で700℃で30分間焼成、さらに325
℃の素子温度でシランガス濃度100ppmの雰囲気中に
10分間さらしてで製作したガス検出素子を、100pp
mのSiH4に繰り返しさらした時の経時変化を図3に示
す。なお、図3において(a)は25℃の清浄空気中にお
ける抵抗値、(b)は25℃の100ppmのSiH4ガス中に
おける抵抗値である。なお上記実施例では素子表面にシ
ラン化合物を分散担持させるため、焼成後の素子をシラ
ンガス雰囲気にさらすのに素子をヒーターで加熱して行
ったが、素子をヒータで加熱する代わりにシランガス雰
囲気を150〜850℃の温度にして加熱していない素
子をさらすようにしても、上記各実験例と同様の特性の
ガス検出素子が得られた。また、素子を空気雰囲気中ま
たはアンチモン酸化ガス中で焼成する時間は5〜60分
間ならびに焼成後の素子をシランガス雰囲気中にさらす
時間は2〜60分間の範囲でそれぞれ行えばよく、素子
の乾燥は恒温槽などで行ってもよく、素子のエージング
もヒータで加熱する代わりに恒温槽で行うようにしても
よい。さらに、混合した試料をペースト状にするための
溶剤としてはイソプロピルアルコールのほかβ−ターピ
ネオール25wt%、ブチルカルビトールアセテート72
wt%、エチルセルロース3%などの有機溶剤を用いれば
よく、ペースト状の試料を塗布するベースとしては磁器
管のほか焼成に耐えうる管状や板状などの絶縁体を用い
ればよく、加熱手段としては赤外線電球などを用いても
よい。またアンチモン酸化ガス雰囲気は三塩化アンチモ
ン(SbCl3)の固体またはガスやアンチモン化水素
(SbH3)ガスなどを用いて作成してもよく、シランガ
ス雰囲気はジクロルシラン(SiH2Cl2)、エトキシシ
ラン((C25O)4Si)、四塩化ケイ素(SiC
l4)、クロルメチルシラン((CH32SiCl2)など
を用いて作成してもよい。
Among these gas detecting elements, Pt /
Sn = 4 mol%, Sb / Sn = 6 mol%, SbOCl 2.5 mg
Is fired at 700 ° C. for 30 minutes in an antimony oxidizing gas atmosphere, and is fired at 700 ° C. for 30 minutes, and then 325
A gas detection element manufactured by exposing it to an atmosphere with a silane gas concentration of 100 ppm for 10 minutes at an element temperature of ℃
FIG. 3 shows the change with time when repeatedly exposed to m of SiH 4 . In FIG. 3, (a) is a resistance value in clean air at 25 ° C., and (b) is a resistance value in 100 ppm SiH 4 gas at 25 ° C. In the above examples, the element was heated with a heater to expose the element after firing to the silane gas atmosphere in order to disperse and support the silane compound on the element surface. However, instead of heating the element with the heater, the silane gas atmosphere was changed to 150 Even if the element which was not heated was exposed to a temperature of up to 850 ° C., a gas detection element having the same characteristics as those of the above-mentioned experimental examples was obtained. Further, the time for firing the element in the air atmosphere or the antimony oxidizing gas may be 5 to 60 minutes, and the time for exposing the element after firing to the silane gas atmosphere may be 2 to 60 minutes. It may be performed in a constant temperature bath or the like, and aging of the element may be performed in a constant temperature bath instead of heating with a heater. Further, as a solvent for making the mixed sample into a paste, 25 wt% of β-terpineol, butyl carbitol acetate 72 as well as isopropyl alcohol were used.
An organic solvent such as wt% or ethyl cellulose 3% may be used. As a base for applying the paste-like sample, a porcelain tube or a tubular or plate-like insulator that can withstand firing may be used. An infrared light bulb or the like may be used. The atmosphere of the antimony oxidizing gas may be created by using a solid or gas of antimony trichloride (SbCl 3 ) or hydrogen antimonide (SbH 3 ) gas, and the atmosphere of the silane gas is dichlorosilane (SiH 2 Cl 2 ) or ethoxysilane (SiH 2 Cl 2 ). (C 2 H 5 O) 4 Si), silicon tetrachloride (SiC
l 4 ), chloromethylsilane ((CH 3 ) 2 SiCl 2 ) or the like.

【0021】[0021]

【発明の効果】以上説明したように、この発明によれ
ば、酸化第2スズとオキシ塩化アンチモンと白金とをS
b/Sn=2〜8モル%、Pt/Sn=2〜10モル%の組
成比で混合したものを600〜850℃の空気雰囲気中
またはアンチモン酸化ガス雰囲気中で焼成し、さらにシ
ランガス雰囲気中からシラン化合物を分散担持させ、こ
の素子を空気中で200〜400℃に加熱して、その表
面にシリコン酸化物を不連続に担持させたので、シラン
系ガスに対し高い選択性を有し、かつ経時変化の良好な
ガス検出素子を提供することができる。
As described above, according to the present invention, stannic oxide, antimony oxychloride and platinum are mixed with S.
b / Sn = 2 to 8 mol% and Pt / Sn = 2 to 10 mol% were mixed and burned in an air atmosphere at 600 to 850 ° C. or in an antimony oxidizing gas atmosphere. Since the silane compound was dispersed and supported, and this element was heated to 200 to 400 ° C. in air to discontinuously support silicon oxide on the surface, it has high selectivity for silane-based gas, and It is possible to provide a gas detection element having a favorable change over time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例によるシランガス検出素子のS
iH4ガス濃度対抵抗変化特性を示すグラフである。
FIG. 1 is an S of a silane gas detection element according to an embodiment of the present invention.
iH 4 is a graph showing a gas concentration versus resistance change characteristic.

【図2】本発明の実施例1によるシランガス検出素子の
経時変化特性を示すグラフである。
FIG. 2 is a graph showing aging characteristics of the silane gas detection element according to Example 1 of the present invention.

【図3】本発明の実施例2によるシランガス検出素子の
経時変化特性を示すグラフである。
FIG. 3 is a graph showing aging characteristics of a silane gas detection element according to Example 2 of the present invention.

【符号の説明】[Explanation of symbols]

A:実施例1により製造した素子。 B:実施例2により製造した素子。 a:25℃の清浄空気中における抵抗値。 b:25℃の100ppmSiH4ガス中における抵抗値。A: Device manufactured according to Example 1. B: Device manufactured according to Example 2. a: Resistance value in clean air at 25 ° C. b: Resistance value in 100 ppm SiH 4 gas at 25 ° C.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】酸化第2スズとオキシ塩化アンチモンと白
金との組成比がSb/Sn=2〜8モル%、Pt/Sn=2
〜10モル%であり、600〜800℃の温度で焼成し
た素子に、シラン系ガスからのシラン化合物を素子表面
に分散担持させ、この素子を空気中で200〜400℃
に加熱して、シリコン酸化物を不連続に担持したことを
特徴とするシランガス検出素子。
1. The composition ratio of stannic oxide, antimony oxychloride and platinum is Sb / Sn = 2 to 8 mol%, Pt / Sn = 2.
10 to 10 mol%, a silane compound from a silane-based gas is dispersed and carried on the surface of the element in an element that has been baked at a temperature of 600 to 800 ° C., and the element is heated to 200 to 400 ° C. in air.
A silane gas detection element, characterized in that the silicon oxide is discontinuously supported by being heated to the temperature.
JP31813391A 1983-08-31 1991-12-02 Silane gas detection element Expired - Lifetime JPH061251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31813391A JPH061251B2 (en) 1983-08-31 1991-12-02 Silane gas detection element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP58157931A JPS6050446A (en) 1983-08-31 1983-08-31 Gas detecting element and manufacture thereof
JP31813391A JPH061251B2 (en) 1983-08-31 1991-12-02 Silane gas detection element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP58157931A Division JPS6050446A (en) 1983-08-31 1983-08-31 Gas detecting element and manufacture thereof

Publications (2)

Publication Number Publication Date
JPH05113422A JPH05113422A (en) 1993-05-07
JPH061251B2 true JPH061251B2 (en) 1994-01-05

Family

ID=26485208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31813391A Expired - Lifetime JPH061251B2 (en) 1983-08-31 1991-12-02 Silane gas detection element

Country Status (1)

Country Link
JP (1) JPH061251B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6076177B2 (en) * 2013-04-01 2017-02-08 理研計器株式会社 Semiconductor gas sensor for phosphine detection

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title

Also Published As

Publication number Publication date
JPH05113422A (en) 1993-05-07

Similar Documents

Publication Publication Date Title
WO1983001339A1 (en) Humidity sensor
JPS59119249A (en) Detecting element of carbon monoxide and its production
JPH0468587B2 (en)
CA1227384A (en) Antimony-doped stannic oxide thick film gas sensor
JPH061251B2 (en) Silane gas detection element
JPH0418258B2 (en)
EP0261275B1 (en) A hydrogen gas detecting element and method of producing same
JPH0415907B2 (en)
JPH0458906B2 (en)
JP2000180397A (en) Nox measuring element for exhaust gas
JPH0473543B2 (en)
JPH0458907B2 (en)
EP0206839A2 (en) Gas sensors and methods of their fabrication
JPS6267437A (en) Gas detection element and manufacture thereof
JPS60242356A (en) Gas detecting element and its manufacture
JPS6082954A (en) Gas sensing element and its preparation
JPS59105553A (en) Gas detecting element
JPS61223643A (en) Gaseous hydrogen detecting element and its production
JPH05240820A (en) Carbon monoxide gas sensor
JP2525858B2 (en) Gas sensor
JPS5950352A (en) Detection element for nox
SU1485115A1 (en) Method of manufacturing of thermocatalytic transducer sensor
JPH0318933Y2 (en)
JPH03220448A (en) Humidity sensor
JPS6154175B2 (en)