JPH06124814A - Manufacture of r-tm-b magnet - Google Patents

Manufacture of r-tm-b magnet

Info

Publication number
JPH06124814A
JPH06124814A JP4272677A JP27267792A JPH06124814A JP H06124814 A JPH06124814 A JP H06124814A JP 4272677 A JP4272677 A JP 4272677A JP 27267792 A JP27267792 A JP 27267792A JP H06124814 A JPH06124814 A JP H06124814A
Authority
JP
Japan
Prior art keywords
plating
magnet
layer
chromate
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4272677A
Other languages
Japanese (ja)
Inventor
Tsutomu Nakamura
中村  勉
Takeo Omori
健雄 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP4272677A priority Critical patent/JPH06124814A/en
Publication of JPH06124814A publication Critical patent/JPH06124814A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To improve corrosion-resistance by forming a chromate coating down to the bottom of a pin hole in a plate-film. CONSTITUTION:A plate layer and chromate coating layer are sequentially laminates an the surface of R-TM-B group permanent magnet, consisting of R (here, R is one or more kinds of rare earth elements including Y), TM (here, TM is one or more kinds of transition metal elements) and B (baron), for an R-TM-B magnet to be manufactured. In manufacture of the R-TM-B magnet, supersonic wave vibration is applied at formation of chromate coating layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐食被膜が形成された
R−TM−B系永久磁石に関し、特にNiめっき等のめ
っき層、クロム酸塩被膜層が順次形成されたR−TM−
B系永久磁石の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an R-TM-B type permanent magnet having a corrosion-resistant coating formed thereon, and in particular to an R-TM-B having a plating layer such as Ni plating and a chromate coating layer sequentially formed.
The present invention relates to a method for manufacturing a B-based permanent magnet.

【0002】[0002]

【従来の技術】電気・電子機器の高性能・小型化に伴な
って、その一部品たる永久磁石にも同様の要求が強まっ
てきた。すなわち以前の最強の永久磁石は希土類・コバ
ルト(R−Co)系であったが、近年、より強力なR−
TM−B系永久磁石が台頭してきた(特開昭59−46
008号)。ここにRはYを含む希土類元素の1種又は
2種類以上の組合せであり、TMはFe,Co等の遷移
金属中心として、一部を他の金属元素又は非金属元素で
置換したもの、Bは硼素である。しかし、R−TM−B
系永久磁石は極めて錆やすいという問題点があった。そ
のため、耐食性を改善するために、永久磁石体表面に耐
酸化性の被膜層を設ける手段がとられてきた。被膜層の
種類としては、Niめっき、耐酸化性樹脂、Alイオン
プレーティング等が提案されており、とりわけNiめっ
きは簡易な処理でR−TM−B系永久磁石の耐食性を向
上するものとして注目されている(特開昭60−544
06号)。Niめっきは、耐酸化性樹脂と比較して表面
被膜層の機械的強度に優れており、また被膜層自体の吸
湿性がほとんどないという長所を有している。しかしな
がら、耐酸化性樹脂層と異なり、Niめっき被膜層表面
にはピンホールが存在するという問題点があった。その
ため被膜層自身の吸湿性の有無にかかわらず、経時変化
に伴い水分がピンホールを通じて磁石体に浸透し、腐食
劣化を引き起こすという問題があった。この問題を解決
するため、現在までにNiめっき層の上に更にNiめっ
きを施す2層めっきや、耐酸化性樹脂の被膜によるピン
ホールの埋め込み等の手法が提案されている(特開昭6
3−110707号)。しかしながら、2層めっきや耐
酸化性樹脂の被膜による手法は、下層Niめっき層と上
層Niめっき層あるいは耐酸化性樹脂層との密着性なら
びに上層Niめっき層あるいは耐酸化性樹脂層自身の耐
食性に関する問題点を有していた。そのため、上記手法
では十分な耐食性改善を図ることができず問題となって
いた。この問題を解決する手段として、R−TM−B系
永久磁石の表面に、Niめっき層を設け、更にその上に
強い揆水性を有するクロム酸塩被膜層を設けることが提
案されている。
2. Description of the Related Art As electric and electronic equipments have become higher in performance and smaller in size, the same requirement has been increased for a permanent magnet as one component thereof. That is, the strongest permanent magnet before was a rare earth / cobalt (R-Co) system, but in recent years, a stronger R-co
TM-B permanent magnets have emerged (Japanese Patent Laid-Open No. 59-46).
No. 008). Here, R is one kind or a combination of two or more kinds of rare earth elements including Y, TM is a transition metal center such as Fe or Co, and a part thereof is replaced with another metal element or non-metal element, B Is boron. However, R-TM-B
The system permanent magnet has a problem that it is extremely rusty. Therefore, in order to improve the corrosion resistance, a measure has been taken to provide an oxidation resistant coating layer on the surface of the permanent magnet body. As the type of coating layer, Ni plating, oxidation resistant resin, Al ion plating, etc. have been proposed. In particular, Ni plating is noted as improving the corrosion resistance of the R-TM-B permanent magnet with a simple treatment. (JP-A-60-544)
06). The Ni plating has the advantage that the surface coating layer has excellent mechanical strength as compared with the oxidation resistant resin, and that the coating layer itself has almost no hygroscopicity. However, unlike the oxidation resistant resin layer, there is a problem that pinholes exist on the surface of the Ni plating film layer. Therefore, regardless of whether or not the coating layer itself has hygroscopicity, there is a problem that moisture permeates through the pinholes into the magnet body with time and causes corrosion deterioration. In order to solve this problem, there have been proposed methods such as two-layer plating in which Ni plating is further applied on the Ni plating layer and filling of pinholes with a film of an oxidation resistant resin (Japanese Patent Laid-Open Publication No. Sho 6-96).
3-110707). However, the method using two-layer plating or an oxidation resistant resin coating is related to the adhesion between the lower Ni plating layer and the upper Ni plating layer or the oxidation resistant resin layer, and the corrosion resistance of the upper Ni plating layer or the oxidation resistant resin layer itself. I had a problem. Therefore, the above-mentioned method cannot sufficiently improve the corrosion resistance, which is a problem. As a means for solving this problem, it has been proposed to provide a Ni plating layer on the surface of the R-TM-B system permanent magnet and further provide a chromate film layer having strong water repellent property thereon.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来の技術で
は、R−TM−B磁石の表面粗度が起因となって生成さ
れるめっき膜のピンホールの最底部にまでクロメート被
膜を形成するのは非常に難しく、不完全なクロメート被
膜の為、ピンホールが腐食の起点となり磁石全体に腐食
が進行するという問題が生じた。そこで本発明は、めっ
き膜のピンホールの最底部にまでクロメート被膜を形成
し耐食性を向上させるR−TM−B系永久磁石の製造方
法の提供を課題とする。
However, according to the conventional technique, the chromate film is formed even on the bottom of the pinhole of the plating film generated due to the surface roughness of the R-TM-B magnet. Is very difficult, and the incomplete chromate film causes a problem that the pinhole serves as a starting point of corrosion and the corrosion progresses throughout the magnet. Then, this invention makes it a subject to provide the manufacturing method of the R-TM-B type | system | group permanent magnet which forms a chromate film to the bottom of the pinhole of a plating film, and improves corrosion resistance.

【0004】[0004]

【課題を解決するための手段】以上の問題を解決する為
に、本技術ではめっき後のクロメート被膜形成工程に超
音波発振器を付加した。すなわち本発明は、R(ここで
Rは、Yを含む希土類元素の1種又は2種以上)、TM
(ここでTMは、遷移金属元素の1種又は2種以上)、
B(硼素)からなるR−TM−B系永久磁石の表面にめ
っき層、クロム酸塩被膜層が積層されたR−TM−B磁
石の製造方法において、クロム酸塩被膜層形成時に超音
波振動を付与することを特徴とする。本発明は、ラック
によるクロメート処理又バレルによるクロメート処理等
処理方法によらずクロメート処理中に超音波による微細
振動を被処理物に与えることにより、ピンホール内部の
クロメート効果を高めるものである。超音波の周波数と
しては27KHzあるいは40KHzを用いることがで
きる。
In order to solve the above problems, in the present technology, an ultrasonic oscillator is added to the chromate film forming step after plating. That is, the present invention relates to R (where R is one or more rare earth elements including Y), TM
(Where TM is one or more transition metal elements),
In a method for manufacturing an R-TM-B magnet in which a plating layer and a chromate coating layer are laminated on the surface of an R-TM-B based permanent magnet made of B (boron), ultrasonic vibration is generated when the chromate coating layer is formed. Is given. The present invention enhances the chromate effect inside the pinhole by applying fine vibrations by ultrasonic waves to the object during the chromate treatment regardless of the treatment method such as the chromate treatment by the rack or the chromate treatment by the barrel. As the frequency of ultrasonic waves, 27 KHz or 40 KHz can be used.

【0005】本発明にかる磁石は、Fe,Co,Ni等
のTMの一部をGa,Al,Ti,V,Cr,Mn,Z
r,Hf,Nb,Ta,Mo,Ge,Sb,Sn,B
i,などの元素で置換することができる。その製造方法
は焼結法、溶湯急冷法、あるいはそれらの変形法のいず
れの方法でもよい。
In the magnet according to the present invention, a part of TM of Fe, Co, Ni, etc. is Ga, Al, Ti, V, Cr, Mn, Z.
r, Hf, Nb, Ta, Mo, Ge, Sb, Sn, B
It can be replaced with an element such as i. The manufacturing method thereof may be a sintering method, a melt quenching method, or a modification thereof.

【0006】めっきは、有機溶剤による脱脂の後に行い
電流密度は1〜2A/dm2が良く、めっき層の厚さは
5〜20μmが好ましい。めっき前処理に関しては、加
工変質層の除去及びめっき前活性化を図る上で、酸性溶
液を用いるのが良い。硫酸や塩酸等の強酸がめっき前活
性化にとって有効であるが、めっき前処理の材質への影
響を極力避けるためには、2〜10vol%の硝酸によ
ル第1エッチング、その後過酸化水素5〜10vol
%、酢酸10〜30vol%の混酸による第2エッチン
グが最も望ましい。次いでめっき処理を行なう。めっき
の種類は限定されないが、上述のようにNiめっきが最
も好ましい。この場合の種類としてはワット浴、スルフ
ァミン酸浴、アンモン浴いずれでもよいが光沢めっきが
良い。無光沢めっきは柱状晶組織を有する為、好ましく
ない。ただし密着性が良く、応力も少ないことから、多
層めっきの下地としては有効である。めっき層は、1層
に限らず2層以上の多層めっき層であってもよい。
The plating is performed after degreasing with an organic solvent, the current density is preferably 1 to 2 A / dm 2 , and the thickness of the plating layer is preferably 5 to 20 μm. Regarding the pre-plating treatment, it is preferable to use an acidic solution in order to remove the work-affected layer and activate the pre-plating. A strong acid such as sulfuric acid or hydrochloric acid is effective for pre-plating activation, but in order to avoid the influence on the material of the pre-plating treatment as much as possible, the first etching with 2 to 10% by volume of nitric acid and then hydrogen peroxide 5 -10vol
%, And the second etching with a mixed acid of 10 to 30 vol% acetic acid is most desirable. Next, a plating process is performed. The type of plating is not limited, but Ni plating is most preferable as described above. In this case, any of the Watts bath, the sulfamic acid bath, and the ammonium bath may be used, but bright plating is preferable. Matte plating is not preferable because it has a columnar crystal structure. However, since it has good adhesion and little stress, it is effective as a base for multilayer plating. The plating layer is not limited to one layer and may be a multilayer plating layer having two or more layers.

【0007】最後に、クロム酸塩処理を行ないクロム酸
塩被膜を形成するが、本発明はこのときに超音波振動を
付与することによりめっき層にピンホールがあった場合
でもその底部まで処理液を浸透させる。クロム酸塩処理
の条件等は下記の通りである。めっき処理後の水洗の後
に、クロム酸溶液中で浸漬処理を行う。クロム酸塩温度
は20〜80℃が良く、浸漬時間は1〜10分が良い。
クロム酸溶液の種類としては、酸性度の高い無水クロム
酸、あるいは重クロム酸を用いるのが良く。Cr濃度は
0.01mol/l以上が良い。酸性度の低いクロム酸
を用いたクロム酸塩処理では、揆水性をもたないクロム
酸塩被膜が形成されるため好ましくない。また、浸漬処
理の活性化を図る上でも、クロム酸溶液の種類としては
酸性度の高いクロム酸を用いるのが好ましい。更に述べ
ると、硫酸、塩酸、硝酸等の強酸を含有しないクロム酸
溶液を用いるのが望ましい。本発明のクロム酸塩処理に
おけるクロム酸溶液中の強酸の含有は、クロム酸溶液の
過度の活性化をもたらすため、被膜質であるNiの溶解
を引き起こし、クロム酸塩被膜の密着性に対し好ましく
ない。また、強酸がNiめっき上のピンホールを通じて
磁石体に浸透した場合には、磁石体に腐食を発生させる
可能性があるため、浸漬処理には強酸を除いたクロム酸
溶液を用いるのが望ましい。 浸漬処理終了後水洗し、
乾燥を行なう。乾燥温度は20〜120度が良い。過度
の加熱はクロム酸塩被膜の耐食性劣化をもたらすため乾
燥温度は120度をこえてはならない。
Finally, chromate treatment is performed to form a chromate film. In the present invention, ultrasonic waves are applied at this time so that even if there are pinholes in the plating layer, the treatment liquid reaches the bottom of the pinhole. Infiltrate. The chromate treatment conditions are as follows. After washing with water after the plating treatment, a dipping treatment is performed in a chromic acid solution. The chromate temperature is preferably 20 to 80 ° C., and the immersion time is preferably 1 to 10 minutes.
As the type of chromic acid solution, it is preferable to use chromic anhydride or dichromic acid having high acidity. The Cr concentration is preferably 0.01 mol / l or more. Chromate treatment using chromic acid having a low acidity is not preferable because a chromate film having no water repellent property is formed. Also, in order to activate the dipping treatment, it is preferable to use chromic acid having a high acidity as the type of chromic acid solution. Furthermore, it is desirable to use a chromic acid solution that does not contain a strong acid such as sulfuric acid, hydrochloric acid or nitric acid. The inclusion of a strong acid in the chromic acid solution in the chromate treatment of the present invention causes excessive activation of the chromic acid solution, which causes dissolution of Ni, which is the film quality, and is preferable for the adhesion of the chromate film. Absent. Further, when the strong acid penetrates into the magnet body through the pinhole on the Ni plating, the magnet body may be corroded. Therefore, it is desirable to use a chromic acid solution without strong acid for the dipping treatment. After the immersion process, wash with water,
Dry. The drying temperature is preferably 20 to 120 degrees. The drying temperature should not exceed 120 degrees because excessive heating causes deterioration of the corrosion resistance of the chromate coating.

【0008】[0008]

【実施例】Nd(Fe0.7Co0.20.07Ga0.036.5
なる組成の合金をアーク溶解にて作製し、得られたイン
ゴットをスタンプミル及びディスクミルで粗粉砕した。
粉砕媒体としてN2ガスを用いジェットミルで微粉砕を
行う粉砕粒度3.5μm(FSSS)の微粉砕を得た。
得られた原料粉を15KOeの磁場中で横磁場成形し
た。成形圧力は2Ton/cm2であった。本成形体を
真空中で1090℃×2時間焼結した。焼結体を18×
10×6mmの寸法に切り出し、次いで900℃のアル
ゴン雰囲気中に2時間加熱保持した後に急冷し温度を6
00℃に保持したアルゴンの雰囲気中で1時間保持し
た。こうして得られた試料に以下の表面処理を行った。
得られた試料をIPAにて脱脂後HNO3 2vol%、溶
液で1分エッチング、次いで水洗を行い、酢酸20vol
%、過酸化水素水5vol%の混酸にて30秒エッチン
グ、水洗の後にめっきを施した。Niめっき液にはワッ
ト浴を用い、サッカリン等を光沢剤として添加した。膜
厚は15μmとした。めっき後、表1に示す作業条件で
化成処理を行った。化成処理液としては7g/lのCr
3溶液を用いた。(温度60℃)
EXAMPLES Nd (Fe 0.7 Co 0.2 B 0.07 Ga 0.03 ) 6.5
An alloy having the following composition was produced by arc melting, and the obtained ingot was roughly crushed by a stamp mill and a disc mill.
Fine pulverization with a pulverized particle size of 3.5 μm (FSSS) was carried out by pulverizing with a jet mill using N 2 gas as the pulverizing medium.
The obtained raw material powder was subjected to transverse magnetic field molding in a magnetic field of 15 KOe. The molding pressure was 2 Ton / cm 2 . The compact was sintered in vacuum at 1090 ° C for 2 hours. 18 × sintered body
Cut out to a size of 10 × 6 mm, then heat and hold in an argon atmosphere at 900 ° C. for 2 hours and then rapidly cool to a temperature of 6
It was kept for 1 hour in an atmosphere of argon kept at 00 ° C. The sample thus obtained was subjected to the following surface treatment.
The obtained sample was degreased with IPA, then HNO 3 2vol%, etched with a solution for 1 minute, and then washed with water to obtain acetic acid 20vol.
%, Hydrogen peroxide solution 5 vol% mixed acid for 30 seconds, washed with water, and then plated. A Watt bath was used as the Ni plating solution, and saccharin or the like was added as a brightening agent. The film thickness was 15 μm. After plating, chemical conversion treatment was performed under the working conditions shown in Table 1. 7g / l Cr as chemical conversion treatment liquid
An O 3 solution was used. (Temperature 60 ° C)

【0009】[0009]

【表1】 試料数は各100ケとした。表2に耐食性試験の結果を
示す。耐食試験は119.6℃×2気圧、100%の状
態に規定の時間放置(表面フクレの発生の有無で判断し
た。)
[Table 1] The number of samples was 100 each. Table 2 shows the results of the corrosion resistance test. In the corrosion resistance test, the sample was left in a state of 119.6 ° C. × 2 atm and 100% for a prescribed time (judged by the presence of surface blisters).

【0010】[0010]

【表2】 [Table 2]

【0011】[0011]

【発明の効果】本発明によれば、クロム酸塩被膜層形成
時に超音波発振機による振動を付与することにより、金
属めっきとクロム酸塩被膜層からなる被膜層をより完全
なものとし、R−TM−B磁石の耐食性を顕著に向上し
た。
According to the present invention, a coating layer composed of metal plating and a chromate coating layer is made more complete by applying vibration by an ultrasonic oscillator during formation of the chromate coating layer, -It significantly improved the corrosion resistance of the TM-B magnet.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 R(ここでRは、Yを含む希土類元素の
1種又は2種以上)、TM(ここでTMは、遷移金属元
素の1種又は2種以上)、B(硼素)からなるR−TM
−B系永久磁石の表面にめっき層、クロム酸塩被膜層が
順次積層されたR−TM−B磁石の製造方法において、
クロム酸塩被膜層形成時に超音波振動を付与することを
特徴とするR−TM−B系永久磁石の製造方法。
1. From R (where R is one or more kinds of rare earth elements including Y), TM (where TM is one or more kinds of transition metal elements), and B (boron) R-TM
In a method for producing an R-TM-B magnet in which a plating layer and a chromate coating layer are sequentially laminated on the surface of a -B permanent magnet,
A method for producing an R-TM-B based permanent magnet, which comprises applying ultrasonic vibration during formation of a chromate coating layer.
JP4272677A 1992-10-12 1992-10-12 Manufacture of r-tm-b magnet Pending JPH06124814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4272677A JPH06124814A (en) 1992-10-12 1992-10-12 Manufacture of r-tm-b magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4272677A JPH06124814A (en) 1992-10-12 1992-10-12 Manufacture of r-tm-b magnet

Publications (1)

Publication Number Publication Date
JPH06124814A true JPH06124814A (en) 1994-05-06

Family

ID=17517258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4272677A Pending JPH06124814A (en) 1992-10-12 1992-10-12 Manufacture of r-tm-b magnet

Country Status (1)

Country Link
JP (1) JPH06124814A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4821384A (en) * 1987-11-05 1989-04-18 Beloit Corporation Self-loading controlled deflection roll

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4821384A (en) * 1987-11-05 1989-04-18 Beloit Corporation Self-loading controlled deflection roll

Similar Documents

Publication Publication Date Title
US5275891A (en) R-TM-B permanent magnet member having improved corrosion resistance and method of producing same
WO2009139055A1 (en) Rare-earth-based permanent magnet
JP3698308B2 (en) Magnet and manufacturing method thereof
JPH06124814A (en) Manufacture of r-tm-b magnet
JP2004039917A (en) Permanent magnet and manufacturing method therefor
JP3142172B2 (en) R-TM-B permanent magnet with improved adhesion and method for producing the same
JPH06124813A (en) Manufacture of r-tm-b magnet
JP2599753B2 (en) R-TM-B permanent magnet with improved corrosion resistance and manufacturing method
JPH0247815A (en) Manufacture of r-fe-b permanent magnet
JP3135174B2 (en) R-TM-B permanent magnet with improved corrosion resistance and method for producing the same
JP3377605B2 (en) Corrosion resistant magnetic alloy
JPH04288804A (en) Permanent magnet and manufacture thereof
JP3337558B2 (en) Corrosion resistant magnetic alloy
US5286366A (en) Surface treatment for iron-based permanent magnet including rare-earth element
JPH09270310A (en) Rare earth permanent magnet
JPH09289108A (en) R-fe-b permanent magnet having electric insulating film excellent in adhesion and its manufacture
JP2941446B2 (en) R-TM-B permanent magnet with improved corrosion resistance
US5348639A (en) Surface treatment for iron-based permanent magnet including rare-earth element
JPH04276603A (en) R-tm-b permanent magnet improved in corrosion resistance
JP2883144B2 (en) Method for producing R-TM-B permanent magnet with improved corrosion resistance
JP2894816B2 (en) R-TM-B permanent magnet with improved corrosion resistance and method of manufacturing the same
JP4600627B2 (en) Rare earth permanent magnet manufacturing method
JPH0582320A (en) R-tm-b series permanent magnet having improved corrosion resistance and film thickness uniformity
US9171668B2 (en) Magnet member
JPH05335124A (en) Corrosion-proof property improved r-tm-b permanent magnet and manufacture thereof