JPH06124767A - Elf-heating far infrared radiation cooking device material for microwave oven - Google Patents

Elf-heating far infrared radiation cooking device material for microwave oven

Info

Publication number
JPH06124767A
JPH06124767A JP4309190A JP30919092A JPH06124767A JP H06124767 A JPH06124767 A JP H06124767A JP 4309190 A JP4309190 A JP 4309190A JP 30919092 A JP30919092 A JP 30919092A JP H06124767 A JPH06124767 A JP H06124767A
Authority
JP
Japan
Prior art keywords
silicon carbide
alumina
microwave oven
clay
feldspar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4309190A
Other languages
Japanese (ja)
Inventor
Kazunori Ishii
和紀 石井
Koichi Takada
紘一 高田
Toshio Kawai
利雄 川合
Sachiko Ishii
幸子 石井
Reiko Takazawa
令子 高澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkei Techno Research Co Ltd
Nippon Light Metal Co Ltd
Original Assignee
Nikkei Techno Research Co Ltd
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkei Techno Research Co Ltd, Nippon Light Metal Co Ltd filed Critical Nikkei Techno Research Co Ltd
Priority to JP4309190A priority Critical patent/JPH06124767A/en
Publication of JPH06124767A publication Critical patent/JPH06124767A/en
Pending legal-status Critical Current

Links

Landscapes

  • Constitution Of High-Frequency Heating (AREA)
  • Resistance Heating (AREA)
  • Electric Ovens (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To promote chemical reaction in a food or action of an enzyme, and improve the taste by forming a sintered tissue body composed of 50-60% of hot charge such as feldspar and a plastic material such as clay containing silicon carbide of 30-45% and alpha-alumina of 5-20%. CONSTITUTION:When blending of silicon carbide is reduced, a calorific value is lowered, so that 30% blending is required to obtain generation of heat necessary for cooking in about a minute. When addition of alumina is taken into consideration, the upper limit becomes 45%, so that it is set in 30-45%. Though a particle diameter of the silicon carbide is preferable to become larger, it is preferable to be a material in which particle size distribution 5-30mum occupies 80% or more in terms of a problem with moldability. Since the silicon carbide of minimum 30% is necessary, when an adding quantity of alpha-alumina is set 5-20%, proper heat generation and high intensification are balanced with each other. In relation to a plastic material and hot charge, it is proper to set the plastic material such as clay in 30-40% and the hot charge such as feldspar in 20-30%. Thereby, flavor or a scorching state desirable in terms of food external appearance can be formed properly.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電子レンジ用自己発熱遠
赤外線放射調理器材の創案に係り、食器類その他の電子
レンジ用の自己発熱遠赤外線放射調理用器材として特別
な追加加熱手段を用いることなく食品の表面に焦げ目を
生ぜしめ、器材自体から遠赤外線を放射し食品内化学反
応や酵素の作用を促進し味覚の向上を図ろうとするもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a self-heating far-infrared radiation cooking utensil for microwave ovens, which uses special additional heating means as a self-heating far-infrared radiation cooking utensil for dishes and other microwave ovens. Instead, the surface of the food is burnt, and far infrared rays are radiated from the equipment itself to promote the chemical reaction in the food and the action of enzymes to improve the taste.

【0002】[0002]

【従来の技術】電子レンジ用自己発熱遠赤外線放射調理
器材は従来から種々に実用化されている。即ち、電子レ
ンジは通常マグネトロンから放射されたマイクロ波をオ
ーブン内に導いて水分を含有した被調理物に照射し、被
調理物自体、特に水分がマイクロ波を吸収しその振動エ
ネルギーにより内部から発熱させて調理を行う機器であ
るが、水を発熱させるものであることから被調理物の表
面に焦げ目をつけることができず、食慾をそそらないこ
とになり、主として加温目的に利用されていた。
2. Description of the Related Art Various self-heating far-infrared radiation cooking appliances for microwave ovens have been put to practical use. That is, a microwave oven normally guides microwaves radiated from a magnetron into an oven to irradiate a food material containing water, and the food material itself, particularly water, absorbs microwaves and heats from inside due to its vibration energy. Although it is a device that cooks by making it heat, it can not make a brown mark on the surface of the food to be cooked because it heats the water, and it does not attract the food, and it was mainly used for heating purposes. .

【0003】このような従来一般の電子レンジにおける
問題点に対し、電子レンジ内に別にヒータ等の追加加熱
手段を組み込み、マイクロ波に加えて被調理物に対し直
接に熱を与えて焦げ目をつけるようにした電子レンジも
提案され、実用化されている。
In order to solve the problems in the conventional general microwave oven, an additional heating means such as a heater is incorporated in the microwave oven to directly heat the object to be cooked in addition to microwaves to make a brown mark. Such a microwave oven has also been proposed and put into practical use.

【0004】また上記のような調理に当ってその食品を
収容する容器自体を発熱させて食品表面に焦げ目をつけ
ることについても検討がなされており、即ち炭化珪素な
どを従来からの陶磁器坏土に添加して容器を形成し、あ
るいは炭化珪素そのものを食器となし、更には多孔質素
材とし、若しくは食器の特定部位に形成するようなこと
について種々の提案がなされている(特開昭58−49
665、特開昭62−106227、142928、2
00676、特開昭63−14014、133493、
198288、特開平1−95227、特開平2−59
12など)。
In addition, it has been studied to heat the container itself for storing the food in the above-mentioned cooking to make the surface of the food brown, that is, silicon carbide or the like is added to the conventional ceramic clay. Various proposals have been made for forming a container by adding it, or forming silicon carbide itself into tableware, and further using it as a porous material or forming it in a specific portion of the tableware (Japanese Patent Laid-Open No. 58-49).
665, JP-A-62-106227, 142928, 2
00766, JP-A-63-14014, 133493,
198288, JP-A-1-95227, JP-A-2-59.
12).

【0005】[0005]

【発明が解決しようとする課題】前記した電子レンジ内
に追加加熱手段を用いるものでは成程焦げ目をつけるこ
とができるとしても熱源としてマグネトロンとヒータの
2種を必要とし装置的に複雑化、大型化すると共にコス
トアップとならざるを得ない不利がある。
The above-mentioned one using the additional heating means in the microwave oven requires two kinds of magnetrons and heaters as a heat source even if it is possible to make a brown spot, and the apparatus becomes complicated and large in size. There is a disadvantage inevitably that the cost will increase with the realization.

【0006】又上記したように炭化珪素を用いることに
ついての提案においては陶磁器として上述したような焦
げ目を適切に得るための配合組成についての検討が不充
分であって、炭化珪素配合量に具体的に触れてある特開
昭58−49665のものでは70%以上というもので
あって、実用的に好ましい発熱条件を得ることが困難
で、また炭化珪素による局部的加熱に器体強度が耐え得
ず、若干の使用によって破損するなど、適切な耐用性を
求め得ないなどの欠点がある。
In addition, as described above, in the proposal of using silicon carbide, the study of the composition for properly obtaining the above-mentioned charred porcelain as a ceramics is insufficient, and the specific amount of silicon carbide is specified. In the case of JP-A-58-49665 mentioned above, it is 70% or more, and it is difficult to obtain a practically preferable heat generation condition, and the body strength cannot withstand local heating by silicon carbide. However, there is a defect that proper durability cannot be obtained, such as damage due to slight use.

【0007】[0007]

【課題を解決するための手段】本発明は上記したような
従来のものにおける技術的課題を解消することについて
検討を重ね、炭化珪素とα−アルミナおよび粘土などの
可塑材と溶材とを特定の配合組成とすることにより電子
レンジとしての加温時に適切な焦げ目を形成すると共に
耐用性などを有効に得しめることに成功したものであっ
て、以下の如くである。
The present invention has been studied to solve the technical problems in the above-mentioned conventional ones, and specified silicon carbide, α-alumina and plastic materials such as clay and a melting material. The compounding composition has succeeded in forming an appropriate browning at the time of heating as a microwave oven and effectively obtaining durability and the like, as follows.

【0008】(1) 坏土を用い成形焼成された器体で
あって、炭化珪素が30〜45%、α−アルミナが5〜
20%、粘土などの可塑材および長石などの熔材が50
〜65%から成る焼結組織体であることを特徴とする電
子レンジ用自己発熱遠赤外線放射調理器材。
(1) A container body molded and fired using kneaded clay, wherein silicon carbide is 30 to 45% and α-alumina is 5 to 5.
20%, 50% plastic material such as clay and 50% molten material such as feldspar
A self-heating far-infrared radiation cooking appliance for a microwave oven, which is a sintered structure consisting of ˜65%.

【0009】(2) 粘土などの可塑材が30〜40%
であり、長石などの熔材が20〜30%であることを特
徴とする前記(1)項に記載の電子レンジ用自己発熱遠
赤外線放射調理器材。
(2) 30-40% of plastic material such as clay
The melting material such as feldspar is 20 to 30%, and the self-heating far-infrared radiation cooking utensil for microwave oven according to the item (1) is characterized.

【0010】(3) 炭化珪素の粒度分布0.5〜30
μmが80%以上であることを特徴とする前記(1)項
または(2)項に記載の電子レンジ用自己発熱遠赤外線
放射調理器材。
(3) Particle size distribution of silicon carbide 0.5 to 30
μm is 80% or more, The self-heating far-infrared radiation cooking utensil for microwave ovens according to the item (1) or (2).

【0011】(4) α−アルミナの1次粒子径0.5
〜8μmが70%以上であることを特徴とする請求項1
に記載の電子レンジ用自己発熱遠赤外線放射調理器材。
(4) Primary particle size of α-alumina 0.5
~ 8 μm is 70% or more.
Self-heating far-infrared radiation cooking equipment for microwave ovens.

【0012】[0012]

【作用】電子レンジ内でマイクロ波により陶磁器のよう
な絶縁体が発熱するのは、セラミック誘電体が正負の電
荷を持った双極子の集合体と考えられ、このとき誘電体
内で熱に変わる電力損失Pは次の数式1により与えられ
る。
[Function] In a microwave oven, heat generated by an insulator such as ceramics is considered to be an assembly of dipoles having a positive and negative electric charge in a ceramic dielectric. At this time, electric power converted into heat in the dielectric. The loss P is given by the following formula 1.

【0013】[0013]

【数1】 P=0.556εrtan δfE×10−10〔W
/m〕 εr :物質の比誘電率 tan δ:物質の誘電損失 f :周波数〔Hz〕 E :電界強度〔V/m〕
## EQU1 ## P = 0.556εrtan δfE 2 × 10 −10 [W
/ M 3 ] εr: relative permittivity of substance tan δ: dielectric loss of substance f: frequency [Hz] E: electric field strength [V / m]

【0014】即ち上記数式1によれば、発生熱は周波
数、出力(電界強度)が高いマイクロ波発振器を用いれ
ばいいことになる。しかし、家庭用電子レンジの周波数
は2.45GHzとISM(Industrial S
cientific andMedical)で帯域が
定められており、出力も機械によって決まるものなので
むやみに変えることは出来ない。そこで絶縁体(食器)
の誘電損率(εrtan δ)を何らかの方法で高めて
やることで発熱量を上げることができ、本発明による配
合組成は以下の如くである。
That is, according to the above formula 1, it is sufficient to use a microwave oscillator having high frequency and high output (electric field strength) for heat generation. However, the frequency of household microwave oven is 2.45 GHz and ISM (Industrial S).
Since the band is defined by "Cientific and Medical" and the output is also determined by the machine, it cannot be changed unnecessarily. So insulator (tableware)
The amount of heat generation can be increased by increasing the dielectric loss factor (εrtan δ) of (1) by some method, and the compounding composition according to the present invention is as follows.

【0015】炭化珪素:30〜45% 食器等の器体に配合される炭化珪素の量は、単に発熱量
のみを考慮した場合には多ければ多いほどよいが、60
%以上の場合、高い誘電損失率のため暴走状態(run
away現象)を生じ、赤熱状態となり適切な調理条
件を得ることが困難である。さらに、成形性の点で50
%以上の配合にすると、陶磁器の成形法(鋳込、押出、
ローラマシン(自動ろくろ成形機))を用いることが困
難になり完全な成形体を得られなくなる。また、配合を
少なくすると発熱量が減り、調理に必要な熱が得られな
くなる。調理に必要な発熱(200℃)を1分程度で得
るには30%の配合が必要である。アルミナの添加を考
慮すると上限は45%となるもので、30〜45%とす
ることによりこれらの関係を満足することができる。
Silicon Carbide: 30 to 45% The amount of silicon carbide blended into the body of a tableware or the like is better if only the calorific value is taken into consideration.
%, The runaway state (run
Away phenomenon) occurs, and a red heat state occurs, and it is difficult to obtain appropriate cooking conditions. Furthermore, in terms of formability, 50
If the composition is more than%, the ceramic molding method (casting, extrusion,
It becomes difficult to use a roller machine (automatic lathe molding machine), and it becomes impossible to obtain a perfect molded body. Further, when the amount of the mixture is reduced, the calorific value is reduced and the heat required for cooking cannot be obtained. To obtain the heat (200 ° C) required for cooking in about 1 minute, 30% of the composition is required. Considering the addition of alumina, the upper limit is 45%, and by setting it to 30 to 45%, these relationships can be satisfied.

【0016】なお上記したような炭化珪素の配合関係に
ついては、20〜60%と配合量を変えた場合の昇温曲
線を図1に示すが、配合する炭化珪素は、粒径と粒界の
比に比例して誘電率が高くなることから(相対的に炭化
珪素の粒子形を大きくすることと粒界の厚みを減らすこ
とでさらに全体としての誘電率を上げることが出来
る)、大きいほど望ましいが成形性の問題より粒度分布
0.5〜30μmが80%以上を占めるものが望まし
い。
Regarding the compounding relationship of silicon carbide as described above, a temperature rising curve when the compounding amount is changed to 20 to 60% is shown in FIG. 1. Silicon carbide to be compounded has a particle size and a grain boundary. Since the permittivity increases in proportion to the ratio (the relative permittivity can be further increased by relatively increasing the grain size of silicon carbide and reducing the thickness of grain boundaries), the larger the better. However, due to the problem of moldability, it is desirable that the particle size distribution of 0.5 to 30 μm accounts for 80% or more.

【0017】α−アルミナ:5〜20% アルミナを一般坏土における石英粒子に置換することに
より高強度化することは1946年Austinらが発
表しており(C.R.Austin,H.Z.Scho
filed,N.L.Haldy,J.Am.Cera
m.Soc.,29,)、アルミナを粒子分散強化用骨
材として添加する強化磁器と考えた場合アルミナの添加
量最大は骨材全部とすることが可能であるが、その場合
は発熱素子である炭化珪素の配合が0%となり発熱が生
じなくなる。即ち、前記のように、最低30%の炭化珪
素が発熱に必要なことから、α−アルミナの添加量を5
〜20%とすることにより適当な発熱と高強度化とをバ
ランスして図らしめる。
Α-alumina: 5 to 20% It was announced by Austin et al. In 1946 that the strength was increased by substituting alumina particles with quartz particles in general kneaded clay (CR Austin, HZ. Scho
filed, N.M. L. Haldy, J. et al. Am. Cera
m. Soc. , 29,), when considering a reinforced porcelain in which alumina is added as an aggregate for strengthening particle dispersion, the maximum addition amount of alumina can be the entire aggregate, but in that case, it is The composition becomes 0% and heat generation does not occur. That is, as described above, since at least 30% of silicon carbide is required for heat generation, the addition amount of α-alumina is 5%.
By setting the content to -20%, it is possible to achieve a proper balance between heat generation and high strength.

【0018】なお、このα−アルミナについては、前記
したような配合条件下において一次粒子径0.5〜8μ
mを70%以上とすることにより成形性と粒子分散強化
とを適切に図らしめる。
Regarding this α-alumina, the primary particle diameter is 0.5 to 8 μm under the above-mentioned compounding conditions.
When m is 70% or more, moldability and particle dispersion strengthening are properly achieved.

【0019】炭化珪素自身、非常に耐熱衝撃特性に優れ
た素材であるが(分散強化粒子としても)、発熱源とし
て磁器素材中に分散している場合、磁器全体として考え
ると自己発熱による衝撃特性を低下させることになる。
即ち炭化珪素粒子は電子レンジ内でマイクロ波を吸収し
発熱するため周囲のガラス質マトリックス内に熱衝撃を
与えて微少なクラックが発生する。各粒子で発生したク
ラックは一気に伝播して破壊につながる。一方アルミナ
粒子はマイクロ波で発熱せず、炭化珪素の周囲から発生
したクラックを止めることができる。そのためアルミナ
粒子は発生したクラックが避けて通ることができない程
度の量と大きさが必要となる。α−アルミナを5、1
0、20%添加した場合の曲げ強度は図2に示す如くで
あり、強度を略15kg/cm以上に向上し得る。
Although silicon carbide itself is a material having very excellent thermal shock resistance (even as dispersion strengthening particles), when it is dispersed in a porcelain material as a heat source, considering the porcelain as a whole, the shock characteristics due to self-heating. Will be lowered.
That is, since the silicon carbide particles absorb microwaves and generate heat in the microwave oven, thermal shock is given to the surrounding vitreous matrix to generate minute cracks. The cracks generated in each particle propagate at once and lead to destruction. On the other hand, the alumina particles do not generate heat by microwaves and can stop cracks generated around the silicon carbide. Therefore, the amount and size of the alumina particles must be such that the generated cracks cannot be avoided. α-alumina is 5, 1
The bending strength when 0, 20% is added is as shown in FIG. 2, and the strength can be improved to about 15 kg / cm 2 or more.

【0020】可塑材および熔材:50〜65% 前記したような炭化珪素およびα−アルミナの配合条件
下において粘土、長石の如き可塑材および熔材は50〜
65%となる。即ちこのような炭化珪素(SiC)、α
−アルミナ(α−Al)と粘土、長石の配合関係
を三元状態として示すと図3に示す如くであって、器体
成形のための成形に好ましい坏土とそれによる食器など
において安定な強度、耐熱衝撃性などを満足することが
できる。
Plasticizer and Melt Material: 50 to 65% Under the compounding conditions of silicon carbide and α-alumina as described above, the plasticizer and melt material such as clay and feldspar are 50 to 65%.
It becomes 65%. That is, such silicon carbide (SiC), α
-Alumina (α-Al 2 O 3 ) and clay and feldspar are shown in a ternary state as shown in FIG. 3. Stable strength and thermal shock resistance can be satisfied.

【0021】なお、この可塑材および熔材に関して、好
ましい各別の組成は粘土などの可塑材が30〜40%、
長石などの熔材を20〜30%とすることが適切であ
る。
With respect to the plastic material and the molten material, the preferable composition is 30 to 40% of the plastic material such as clay,
It is suitable that the amount of the molten material such as feldspar is 20 to 30%.

【0022】食器などの器体を得るには上記のような配
合の原料をボールミルにて粉砕混合、フィルタープレス
後、ローラーマシンおよび押出成形用原料とする。これ
は通常の陶磁器坏土及び製法と同じであって、焼成は雰
囲気に限定はない。酸化及び還元雰囲気でも焼成可能
(通常のシャトル、ローラーハウスキルンで焼成可能)
である。
To obtain containers such as tableware, the raw materials having the above-mentioned composition are pulverized and mixed in a ball mill, filter-pressed, and then used as a roller machine and a raw material for extrusion molding. This is the same as ordinary clay and manufacturing method, and firing is not limited to atmosphere. Can be fired in an oxidizing or reducing atmosphere (can be fired in a normal shuttle or roller house kiln)
Is.

【0023】本発明において得る器材としては皿、碗な
どの食器類、鍋や釜などの調理用具あるいはそれらの器
具の蓋または器具内底面または蓋の内面などにセットさ
れる板状体など各種の器材として適宜に成形し、実施し
得ることは明らかである。
The equipment to be obtained in the present invention includes various dishes such as dishes such as plates and bowls, cooking utensils such as pots and kettles, lids of these appliances or plate-like bodies set on the inner bottom surface of the appliances or the inner surface of the lids. It is apparent that the equipment can be appropriately formed and implemented.

【0024】[0024]

【実施例】本発明によるものの具体的な実施例について
説明すると、以下の如くである。 (実施例1)発熱源である炭化珪素(太平洋ランダム社
製CB−F粒度分布1〜10μmが80%)を30%、
粒子分散強化用α−アルミナ(日本軽金属製A32粒度
分布0.5〜4μmが80%)を10%、蛙目粘土30
%、長石30%をボールミルで粉砕・混合してスラリー
とし、鋳込成形により板状に成形し1250℃30分酸
化雰囲気で焼成した。同焼結体を電子レンジ内で加熱を
行い、評価した結果は後述実施例と共に後記表1の如く
である。
EXAMPLES Specific examples of the present invention will be described below. (Example 1) 30% of silicon carbide (80% of CB-F particle size distribution 1-10 μm manufactured by Taiheiyo Random Co., Ltd.), which is a heat source,
10% of α-alumina for particle dispersion strengthening (80% of A32 particle size distribution 0.5 to 4 μm made by Nippon Light Metal Co., Ltd.), frog clay 30
%, And feldspar 30% were crushed and mixed by a ball mill to form a slurry, which was molded into a plate shape by casting and baked at 1250 ° C. for 30 minutes in an oxidizing atmosphere. The same sintered body was heated in a microwave oven and evaluated. The results are shown in Table 1 below together with the examples described later.

【0025】評価項目は吸水率(JIS C214
1)、成形性〔鋳込、押出、ローラーマシン(自動ろく
ろ成形機)〕の3方法とも可能なものを○、2方法を
△、1方法×とする。曲げ強度(JIS R160
1)、電子レンジ内昇温特性(電磁波に影響されない光
減衰法を利用したLUXTRON社の光ファイバー温度
計による。電子レンジは(株)東芝製電子レンジER−
470JF、高周波出力 500W、加熱時間3分)、
耐熱衝撃特性(鋳込成形により作成した箱型(155m
m×120mm×25mm)10個の電子レンジ内で一
気に加熱(3分間)後、水中(約20℃)に入れ、これ
を20回行い、10個中の生存率で表す)。
The evaluation item is the water absorption rate (JIS C214
1), moldability [casting, extrusion, roller machine (automatic potter's wheel molding machine)] possible 3 methods, ○, 2 methods △, 1 method ×. Bending strength (JIS R160
1), temperature rising characteristics in microwave oven (by LUXTRON optical fiber thermometer using optical attenuation method that is not affected by electromagnetic wave. Microwave oven is Toshiba Microwave oven ER-
470JF, high frequency output 500W, heating time 3 minutes),
Thermal shock resistance (box shape created by casting (155m
(m × 120 mm × 25 mm) After heating at once in 10 microwave ovens (3 minutes), put in water (about 20 ° C.), do this 20 times, and express by the survival rate of 10).

【0026】(実施例2)発熱源である炭化珪素(ロン
ザ製UF−15粒度分布0.5〜1μmが80%)を3
0%、粒子分散強化用α−アルミナ(日本軽金属製A3
4粒度分布1〜8μmが70%)を20%、蛙目粘土3
0%、長石20%をボールミルで粉砕・混合しスラリー
とし、鋳込成形により板状に成形し1200℃30分酸
化雰囲気で焼成した。得られた製品についての評価項目
および評価方法は実施例1と同じである。
(Embodiment 2) Silicon carbide (80% of UF-15 particle size distribution 0.5-1 μm manufactured by Lonza, 80%) which is a heat source is used.
0%, α-alumina for strengthening particle dispersion (A3 made by Nippon Light Metal Co., Ltd.
4 particle size distribution 1 to 8 μm 70%) 20%, frog eye clay 3
0% and 20% of feldspar were crushed and mixed with a ball mill to form a slurry, which was molded into a plate by casting and fired at 1200 ° C. for 30 minutes in an oxidizing atmosphere. The evaluation items and evaluation method for the obtained product are the same as in Example 1.

【0027】(実施例3)発熱源である炭化珪素(太平
洋ランダム社製RCP−200F粒度分布10〜30μ
mが80%)を30%、粒子分散強化用α−アルミナ
(日本軽金属製A32粒度分布0.5〜4μmが80
%)を10%、蛙目粘土30%、長石30%をボールミ
ルで粉砕・混合しスラリーとし、鋳込成形により板状に
成形し1100℃30分酸化雰囲気で焼成した。得られ
た製品についての評価項目および評価方法は実施例1と
同じである。
(Example 3) Silicon carbide (RCP-200F manufactured by Taiheiyo Random Co., Ltd., particle size distribution 10 to 30 μm) as a heat source
m is 80%) and α-alumina for particle dispersion strengthening (A32 made by Nippon Light Metal Co., Ltd. particle size distribution 0.5 to 4 μm is 80%).
%), 30% of frog clay and 30% of feldspar are crushed and mixed in a ball mill to form a slurry, which is molded into a plate by casting and baked at 1100 ° C. for 30 minutes in an oxidizing atmosphere. The evaluation items and evaluation method for the obtained product are the same as in Example 1.

【0028】(実施例4)発熱源である炭化珪素(太平
洋ランダム社製CB−F粒度分布1〜10μmが80
%)を40%、粒子分散強化用α−アルミナ(日本軽金
属製A32粒度分布0.5〜4μmが80%)を5%、
蛙目粘土30%、長石25%をボールミルで粉砕・混合
しスラリーとし、鋳込成形により板状に成形し1100
℃30分酸化雰囲気で焼成し製品とした。得られた製品
についての評価項目および評価方法は実施例1と同じで
ある。
(Example 4) Silicon carbide as a heat source (CB-F manufactured by Taiheiyo Random Co., Ltd. has a particle size distribution of 1 to 10 μm of 80).
%), 5% of α-alumina for strengthening particle dispersion (80% of A32 particle size distribution 0.5-4 μm made by Nippon Light Metal Co., Ltd.),
30% of frog clay and 25% of feldspar are crushed and mixed with a ball mill to form a slurry, which is then cast into a plate shape for 1100
The product was baked at 30 ° C. for 30 minutes in an oxidizing atmosphere to obtain a product. The evaluation items and evaluation method for the obtained product are the same as in Example 1.

【0029】(実施例5)発熱源である炭化珪素(太平
洋ランダム社製CB−F粒度分布1〜10μmが80
%)を45%、粒子分散強化用α−アルミナ(日本軽金
属製A32粒度分布0.5〜4μmが80%)を5%、
蛙目粘土30%、長石20%をボールミルで粉砕・混合
しスラリーとし、鋳込成形により板状に成形し1250
℃30分酸化雰囲気で焼成した。得られた製品について
の評価項目および評価方法は実施例1と同じである。
(Embodiment 5) Silicon carbide which is a heat source (CB-F particle size distribution 1-10 μm manufactured by Taiheiyo Random Co., Ltd. is 80).
%) 45%, α-alumina for particle dispersion strengthening (80% of A32 particle size distribution 0.5-4 μm made by Nippon Light Metal Co., Ltd.) 5%,
30% of frog clay and 20% of feldspar are crushed and mixed in a ball mill to form a slurry, which is then molded into a plate by casting 1250.
Firing was performed in an oxidizing atmosphere at 30 ° C. for 30 minutes. The evaluation items and evaluation method for the obtained product are the same as in Example 1.

【0030】(実施例6)発熱源である炭化珪素(太平
洋ランダム社製CB−F粒度分布1〜10μmが80
%)を30%、粒子分散強化用α−アルミナ(日本軽金
属製A34粒度分布1〜8μmが70%)を5%、蛙目
粘土40%、長石25%をボールミルで粉砕・混合しス
ラリーとし、鋳込成形により板状に成形し1250℃3
0分酸化雰囲気で焼成した。得られた製品についての評
価項目および評価方法は実施例1と同じである。
(Example 6) Silicon carbide as a heat source (manufactured by Taiheiyo Random Co., Ltd. has a CB-F particle size distribution of 1 to 10 μm of 80).
%), 5% α-alumina for particle dispersion strengthening (70% of A34 particle size distribution 1-8 μm made by Nippon Light Metal Co., Ltd., 40% frog eye clay, 25% feldspar in a ball mill to form a slurry, Plate-shaped by cast molding, 1250 ° C 3
It was fired in an oxidizing atmosphere for 0 minutes. The evaluation items and evaluation method for the obtained product are the same as in Example 1.

【0031】上記したような本発明の実施例に対する比
較例は以下の如くである。 (比較例1)発熱源である炭化珪素を0%、α−アルミ
ナ(日本軽金属製A32粒度分布0.5〜4μmが80
%)を30%、蛙目粘土40%、長石30%をボールミ
ルで粉砕・混合しスラリーとし、鋳込成形により板状に
成形し1350℃30分酸化雰囲気で焼成した。得られ
た製品についての評価項目および評価方法は実施例1と
同じである。
Comparative examples for the examples of the present invention as described above are as follows. (Comparative Example 1) 0% silicon carbide, which is a heat source, and α-alumina (Nihon Light Metal A32 particle size distribution 0.5-4 μm is 80%).
%), 40% of frog clay and 30% of feldspar are crushed and mixed in a ball mill to form a slurry, which is molded into a plate by casting and baked at 1350 ° C. for 30 minutes in an oxidizing atmosphere. The evaluation items and evaluation method for the obtained product are the same as in Example 1.

【0032】(比較例2)発熱源である炭化珪素(大平
洋ランダム社製CB−F粒度分布1〜10μmが80
%)を20%、粒子分散強化用α−アルミナ(日本軽金
属製A32粒度分布0.5〜4μmが80%)を10
%、蛙目粘土40%、長石30%をボールミルで粉砕・
混合しスラリーとし、鋳込成形により板状に成形し12
50℃30分酸化雰囲気で焼成した。得られた製品につ
いての評価項目および評価方法は実施例1と同じであ
る。
(Comparative Example 2) Silicon carbide which is a heat source (CB-F particle size distribution 1-10 μm manufactured by Taiheiyo Random Co., Ltd. is 80).
%) And 10% of α-alumina for particle dispersion strengthening (80% of A32 particle size distribution 0.5-4 μm made by Nippon Light Metal Co., Ltd.).
%, Frogme clay 40%, feldspar 30% crushed with a ball mill
Mix to make a slurry, and cast into a plate shape by casting 12
Firing was carried out at 50 ° C. for 30 minutes in an oxidizing atmosphere. The evaluation items and evaluation method for the obtained product are the same as in Example 1.

【0033】(比較例3)発熱源である炭化珪素(太平
洋ランダム社製RCP−200粒度分布10〜30μm
が80%)を30%、蛙目粘土40%、長石30%をボ
ールミルで粉砕・混合しスラリーとし、鋳込成形により
板状に成形し1250℃30分酸化雰囲気で焼成した。
得られた製品についての評価項目および評価方法は実施
例1と同じである。
(Comparative Example 3) Silicon carbide as a heat source (RPC-200 particle size distribution manufactured by Taiheiyo Random Co., Ltd. 10 to 30 μm)
80%), 30%, 40% of frog clay and 30% of feldspar are crushed and mixed in a ball mill to form a slurry, which is cast into a plate and fired at 1250 ° C. for 30 minutes in an oxidizing atmosphere.
The evaluation items and evaluation method for the obtained product are the same as in Example 1.

【0034】(比較例4)発熱源である炭化珪素(太平
洋ランダム社製CB−F粒度分布1〜10μmが80
%)を50%、粒子分散強化用α−アルミナ(日本軽金
属製A32粒度分布0.5〜4μmが80%)を5%、
蛙目粘土25%、長石20%をボールミルで粉砕・混合
しスラリーとし、鋳込成形により板状に成形し1100
℃30分酸化雰囲気で焼成した。得られた製品について
の評価項目および評価方法は実施例1と同じである。
(Comparative Example 4) Silicon carbide as a heat source (CB-F manufactured by Taiheiyo Random Co., Ltd. has a particle size distribution of 1 to 10 μm of 80).
%) 50%, α-alumina for strengthening particle dispersion (80% of A32 particle size distribution 0.5-4 μm made by Nippon Light Metal Co., Ltd.) 5%,
25% frog clay and 20% feldspar are crushed and mixed with a ball mill to form a slurry, which is then cast into a plate shape for 1100
Firing was performed in an oxidizing atmosphere at 30 ° C. for 30 minutes. The evaluation items and evaluation method for the obtained product are the same as in Example 1.

【0035】(比較例5)発熱源である炭化珪素(太平
洋ランダム社製CB−F粒度分布1〜10μmが80
%)を60%、蛙目粘土20%、長石20%をボールミ
ルで粉砕・混合しスラリーとし、鋳込成形により板状に
成形し1200℃30分酸化雰囲気で焼成した。得られ
た製品についての評価項目および評価方法は実施例1と
同じである。
(Comparative Example 5) Silicon carbide which is a heat source (CB-F particle size distribution 1-10 μm manufactured by Taiheiyo Random Co., Ltd. is 80).
%), 20% of frog clay and 20% of feldspar are pulverized and mixed in a ball mill to form a slurry, which is molded into a plate by cast molding and fired at 1200 ° C. for 30 minutes in an oxidizing atmosphere. The evaluation items and evaluation method for the obtained product are the same as in Example 1.

【0036】上記したような実施例および比較例による
結果を要約して示すと、次の表1および表2に示す如く
である。
The results of the above Examples and Comparative Examples are summarized and shown in Tables 1 and 2 below.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】 [Table 2]

【0039】なお、上記表2における各評価項目等の内
容は以下のとおりである。吸水率は、JIS C214
1により評価した。成形性は、鋳込,押出,ローラーマ
シンの3成形方法中、○は3方法可能,△は2方法可
能,×は1方法可能であることをそれぞれ示している。
曲げ強度は、JIS R1601により評価した。電子
レンジ内昇温特性は、加熱時間3分後の製品の実体温度
である。ここで、温度測定装置は、LUXTRON社の
光ファイバー温度計、電子レンジは株式会社東芝製で高
周波出力は500Wである。耐熱衝撃特性は、鋳込成形
により作成した箱型(155mm×120mm×25m
m)10個を電子レンジ内で一気に加熱(3分間)後、
水中(約20℃)に入れる工程を20回行い、10個中
の生存率で表している。遠赤外線特性は、装置:日本電
子株式会社製フーリエ変換赤外分光光度計 JIR−3
505、試料温度180±2℃、範囲:2200〜50
0cm−1による積分分光放射率を測定したものであ
る。総合評価は、○は良好,△は普通,×は不可をそれ
ぞれ示している。
The contents of each evaluation item in Table 2 above are as follows. Water absorption rate is JIS C214
It was evaluated by 1. Regarding the moldability, among the three molding methods of casting, extrusion and roller machine, ○ indicates that 3 methods are possible, Δ indicates that 2 methods are possible, and × indicates that 1 method is possible.
The bending strength was evaluated according to JIS R1601. The temperature rising characteristic in the microwave oven is the actual temperature of the product after heating for 3 minutes. Here, the temperature measuring device is an optical fiber thermometer manufactured by LUXTRON, the microwave oven is manufactured by Toshiba Corporation, and the high frequency output is 500W. The thermal shock resistance is a box type (155 mm × 120 mm × 25 m) created by casting.
m) After heating 10 pieces in a microwave at once (3 minutes),
The process of putting in water (about 20 degreeC) was performed 20 times, and it is represented by the survival rate in 10 pieces. Far-infrared characteristics, device: JEOL Ltd. Fourier transform infrared spectrophotometer JIR-3
505, sample temperature 180 ± 2 ° C, range: 2200-50
The integrated spectral emissivity at 0 cm -1 is measured. In the comprehensive evaluation, ◯ means good, Δ means normal, and × means bad.

【0040】即ち表1および表2の結果によるときは本
発明によるものが成形性が良好で、曲げ強度も食器など
として適切に得られ電子レンジ内昇温も385〜400
℃と食材をのせた時に食材に焦げ目を得しめるに好まし
い温度条件を示し、また耐熱衝撃特性や遠赤外線特性も
良好であって好ましい電子レンジ用調理器材であること
が確認された。
That is, according to the results of Tables 1 and 2, the one according to the present invention has good moldability, bending strength is appropriately obtained as tableware, and the temperature rise in the microwave oven is 385 to 400.
It was confirmed that it is a preferable cooking device for a microwave oven because it shows a preferable temperature condition for obtaining a brown color on the food when it is placed at ℃, and also has good thermal shock resistance and far-infrared characteristics.

【0038】[0038]

【発明の効果】以上説明したような本発明によるとき
は、特別な追加加熱手段を用いることなしに風味ないし
食品外観上好ましい焦げ目を適切に形成し、しかも強度
や耐熱衝撃性などにおいても優れていて耐用性の高い電
子レンジ用の自己発熱遠赤外線放射調理器材を提供し得
るものであって、工業的にその効果の大きい発明であ
る。
According to the present invention as described above, it is possible to properly form a brown mark which is preferable in flavor and food appearance without using special additional heating means, and is excellent in strength and thermal shock resistance. It is possible to provide a self-heating far-infrared radiation cooking equipment for microwave ovens having high durability, and is an invention having a great industrial effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】炭化珪素含有量と電子レンジ昇温との関係を示
した図表である。
FIG. 1 is a chart showing the relationship between the content of silicon carbide and the temperature rise in a microwave oven.

【図2】アルミナ添加量と強度との関係を示した図表で
ある。
FIG. 2 is a chart showing the relationship between the amount of alumina added and the strength.

【図3】炭化珪素、酸化アルミニウムと可塑材および熔
材に関する三元状態図において本発明範囲を示した図表
である。
FIG. 3 is a table showing the scope of the present invention in a ternary phase diagram regarding silicon carbide, aluminum oxide, a plastic material, and a molten material.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川合 利雄 静岡県庵原群蒲原町蒲原1丁目34番1号 株式会社日軽技研内 (72)発明者 石井 幸子 静岡県庵原群蒲原町蒲原1丁目34番1号 株式会社日軽技研内 (72)発明者 高澤 令子 静岡県庵原群蒲原町蒲原1丁目34番1号 株式会社日軽技研内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshio Kawai 1-34-1 Kambara, Kambara-cho, Anbara-gun, Shizuoka Prefecture Nipparu Giken Co., Ltd. No. 1 within Nikkei Giken Co., Ltd. (72) Inventor Reiko Takazawa 1-34-1 Kambara, Kambara-cho, Anbara-gun, Shizuoka Prefecture

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 坏土を用い成形焼成された器体であっ
て、炭化珪素が30〜45%、α−アルミナが5〜20
%、粘土などの可塑材および長石などの熔材が50〜6
5%から成る焼結組織体であることを特徴とする電子レ
ンジ用自己発熱遠赤外線放射調理器材。
1. A container body formed and fired using kneaded clay, wherein silicon carbide is 30 to 45% and α-alumina is 5 to 20.
%, Plastic materials such as clay and molten materials such as feldspar are 50 to 6
A self-heating far-infrared radiation cooking appliance for a microwave oven, which is a sintered structure composed of 5%.
【請求項2】 粘土などの可塑材が30〜40%であ
り、長石などの熔材が20〜30%であることを特徴と
する請求項1に記載の電子レンジ用自己発熱遠赤外線放
射調理器材。
2. The self-heating far infrared radiation cooking for a microwave oven according to claim 1, wherein the plastic material such as clay is 30 to 40% and the molten material such as feldspar is 20 to 30%. Equipment.
【請求項3】 炭化珪素の粒度分布0.5〜30μmが
80%以上であることを特徴とする請求項1に記載の電
子レンジ用自己発熱遠赤外線放射調理器材。
3. The self-heating far-infrared radiation cooking utensil for a microwave oven according to claim 1, wherein the particle size distribution of silicon carbide is 0.5 to 30 μm of 80% or more.
【請求項4】 α−アルミナの1次粒子径0.5〜8μ
mが70%以上であることを特徴とする請求項1に記載
の電子レンジ用自己発熱遠赤外線放射調理器材。
4. The primary particle diameter of α-alumina is 0.5 to 8 μm.
The self-heating far-infrared radiation cooking utensil for a microwave oven according to claim 1, wherein m is 70% or more.
JP4309190A 1992-10-07 1992-10-07 Elf-heating far infrared radiation cooking device material for microwave oven Pending JPH06124767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4309190A JPH06124767A (en) 1992-10-07 1992-10-07 Elf-heating far infrared radiation cooking device material for microwave oven

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4309190A JPH06124767A (en) 1992-10-07 1992-10-07 Elf-heating far infrared radiation cooking device material for microwave oven

Publications (1)

Publication Number Publication Date
JPH06124767A true JPH06124767A (en) 1994-05-06

Family

ID=17990016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4309190A Pending JPH06124767A (en) 1992-10-07 1992-10-07 Elf-heating far infrared radiation cooking device material for microwave oven

Country Status (1)

Country Link
JP (1) JPH06124767A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004051469A (en) * 2002-07-24 2004-02-19 Takasago Ind Co Ltd Method for operating microwave heating furnace and placing table for workpiece
JP2013050301A (en) * 2006-03-30 2013-03-14 Advanced Composite Materials Llc Composite material and device comprising single crystal silicon carbide heated by electromagnetic radiation
CN103269529A (en) * 2013-05-17 2013-08-28 王欢 Manufacturing method of silicon-carbide far infrared radiation electric heating device heat conducting element
CN104202852A (en) * 2014-08-27 2014-12-10 常熟市微尘电器有限公司 Heating tube with long service life

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004051469A (en) * 2002-07-24 2004-02-19 Takasago Ind Co Ltd Method for operating microwave heating furnace and placing table for workpiece
JP4497798B2 (en) * 2002-07-24 2010-07-07 高砂工業株式会社 Operation method of microwave heating furnace and stage for placing object to be heated
JP2013050301A (en) * 2006-03-30 2013-03-14 Advanced Composite Materials Llc Composite material and device comprising single crystal silicon carbide heated by electromagnetic radiation
US9688583B2 (en) 2006-03-30 2017-06-27 Advanced Composite Materials, Llc Composite materials and devices comprising single crystal silicon carbide heated by electromagnetic radiation
CN103269529A (en) * 2013-05-17 2013-08-28 王欢 Manufacturing method of silicon-carbide far infrared radiation electric heating device heat conducting element
CN104202852A (en) * 2014-08-27 2014-12-10 常熟市微尘电器有限公司 Heating tube with long service life

Similar Documents

Publication Publication Date Title
JP5688643B2 (en) Fever glaze and fever container applied here
KR100714053B1 (en) Heat generate cooker for microwave
US20130040082A1 (en) Compounds and compositions for susceptor materials
KR100470316B1 (en) Ceramic heating element and method of the same
JPH06124767A (en) Elf-heating far infrared radiation cooking device material for microwave oven
CN101828855A (en) Microwave oven chinaware capable of frying and roasting
KR101652106B1 (en) Exothermic glaze and vessel sped it on the surface
CN101913849A (en) Heat-resistant ceramic for kitchen ware
WO2021010910A1 (en) Porcelain cooking pot and manufacture method thereof
JP5850821B2 (en) Powder for microwave-absorbing heating element, microwave-absorbing heating element using the powder, and production method thereof
KR100693757B1 (en) Roaster for microwave oven
KR100881951B1 (en) A heat resistant container coating structure and manufacture method
KR100937232B1 (en) Heat generating plate for microwave oven and fabrication method thereof
EP2982614B1 (en) Device for microwave cooking
KR100823837B1 (en) Plate fot generating heat by microwave and vessel having the plate
JP5483026B2 (en) Microwave absorption / self-heating heat-resistant ceramics and method for manufacturing the same
JPH02135689A (en) Ceramic heating container for microwave oven and manufacture thereof
KR20120053808A (en) A heat porcelain for food cooking
KR830002534Y1 (en) Cooking container
KR20030033196A (en) Ceramic pyrogen composition absorbing microwave and method for manufacturing the same
JP2005126247A (en) Pottery and its producing method
JP7432206B2 (en) Ceramic manufacturing method, ceramic manufacturing granules and their manufacturing method
KR920004071B1 (en) Cooking vessel for electronic range
JPH04278123A (en) Microwave oven
CN101210701A (en) Microwave furnace baking tray and manufacturing method thereof