JPH06123705A - Toxic substance monitor - Google Patents

Toxic substance monitor

Info

Publication number
JPH06123705A
JPH06123705A JP4273269A JP27326992A JPH06123705A JP H06123705 A JPH06123705 A JP H06123705A JP 4273269 A JP4273269 A JP 4273269A JP 27326992 A JP27326992 A JP 27326992A JP H06123705 A JPH06123705 A JP H06123705A
Authority
JP
Japan
Prior art keywords
flow cell
flow
buffer solution
microbial membrane
immobilized microbial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4273269A
Other languages
Japanese (ja)
Inventor
Yoshiharu Tanaka
良春 田中
Yasushi Zaitsu
靖史 財津
Masanori Morimoto
正範 守本
Hiroshi Hoshikawa
寛 星川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP4273269A priority Critical patent/JPH06123705A/en
Publication of JPH06123705A publication Critical patent/JPH06123705A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Activated Sludge Processes (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

PURPOSE:To simply and quickly detect underwater toxic substance with a microorganism by providing a flow cell having an immobilized microorganism film immobilizing nitrous acid production bacteria. CONSTITUTION:An immobilization microorganism film 1 immobilizing purely cultivated nitrous acid production bacteria is attached to a flow cell 3 set in a constant temperature bath 2, a pump 4 is driven, a valve 5 is opened, first buffer solution 6 containing no microorganism substrate on either surface of the microorganism film 1 is allowed to flow and carried to a detection part 10 having an optical system from the outlet of the flow cell 3. Next, after it is washed with pure water, second buffer solution containing ammonia nitrogen with specified concentration is allowed to flow from the flow cell 3 through the same route as the buffer solution 6 to the detection part 30. Ammoniacal nitrogen is converted into nitrous nitrogen in the flow cell 3 with nitrous acid production bacteria of the microorganism film 1, the concentration of nitrous nitrogen increases in the buffer solution 22, a degree of ultraviolet absorbance becomes high, and since it becomes constant concentration corresponding to the concentration of feed ammonia, the degree of the ultraviolet absorbance becomes constant in the detection part 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は微生物を用いて、ダムや
河川水などの水源水質、浄水場の取水の安全性の監視も
しくは下水処理場の流入水を監視する有害物質モニター
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a harmful substance monitor for monitoring the quality of water sources such as dams and river water, the safety of water intake at water purification plants, or the inflow water at sewage treatment plants, using microorganisms.

【0002】[0002]

【従来の技術】これまで上水の分野では、水槽に多数の
魚を飼育し、その様子から有害物質を監視してきた。そ
こで最近は、 1)AI(人工知能)を用いて魚の行動をより詳細に監
視する装置 2)魚の呼吸量を測定して有害物質を監視する装置 が開発されている。これらはいずれも未だ実用化するに
至っていない。
2. Description of the Related Art Up to now, in the field of clean water, many fish have been bred in an aquarium and the harmful substances have been monitored from the situation. Therefore, recently, 1) a device for monitoring the behavior of fish in more detail using AI (artificial intelligence) 2) a device for monitoring harmful substances by measuring the respiration rate of fish has been developed. None of these have been put to practical use yet.

【0003】一方、下水道分野では、pH,ORP(酸
化還元電位)の測定から、間接的に有害物質、とくに重
金属類の監視を行なってきた。
On the other hand, in the field of sewerage, toxic substances, especially heavy metals, have been indirectly monitored by measuring pH and ORP (oxidation-reduction potential).

【0004】[0004]

【発明が解決しようとする課題】しかし、上記1),
2)の装置はいずれも未だ実用化するに至っておらず、
その主な原因は、 常時、多数の魚を健康な状態で飼育するための維持
管理が面倒である。 装置構成が複雑で高価である。
[Problems to be Solved by the Invention] However, the above 1),
None of the devices of 2) have been put to practical use yet,
The main reason for this is that maintenance is required to keep a large number of fish in a healthy condition at all times. The device configuration is complicated and expensive.

【0005】 有害物質の濃度または毒性レベルの判
定に時間がかかる。 魚が成長する過程で有害物質に対する抵抗力が増
す。 などが挙げられる。また、下水道分野でも、 排水を中和して流すのでpHでは測定することがで
きない。
It takes time to determine the concentration or toxicity level of harmful substances. Resistance to harmful substances increases as the fish grows. And so on. In the field of sewerage, the pH cannot be measured because the wastewater is neutralized before flowing.

【0006】 ORPでは様々な有害物質を検出する
ことができない。 などの問題がある。本発明は上述の点に鑑みてなされた
ものであり、その目的は微生物を用いて、簡便かつ迅速
に、水中の有害物質を検知することが可能な有害物質モ
ニターを提供することにある。
ORP cannot detect various harmful substances. There are problems such as. The present invention has been made in view of the above points, and an object thereof is to provide a harmful substance monitor that can detect a harmful substance in water simply and quickly by using a microorganism.

【0007】[0007]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明の有害物質モニターは、第1の発明は、亜
硝酸生成細菌を固定した固定化微生物膜を保持し、この
固定化微生物膜の一面上を流れる液流路と、前記固定化
微生物膜の他面上を流れた後排出される液流路とを有す
るフローセルと、固定化微生物膜の一面上に無基質の緩
衝溶液を流した後これを所定濃度のアンモニア性窒素を
含む緩衝溶液に切り替える送液系、および固定化微生物
膜の他面上に純水を流した後これを検水に切り替える送
液系と、前述の2種類の緩衝溶液がそれぞれフローセル
を通った後流入し排出される石英フローセル,この石英
フローセルに紫外線を照射する光源,複数個のレンズ,
干渉フィルタ,およびフォトダイオードを有する光学系
の検出部と、この検出部に接続された計測演算部,表示
部,記録部からなる測定部とを備えたものであり、第2
の発明は、硝酸生成細菌を固定した固定化微生物膜を保
持し、この固定化微生物膜の一面上を流れる液流路と、
前記固定化微生物膜の他面上を流れた後排出される液流
路とを有するフローセルと、固定化微生物膜の一面上に
第1の石英フローセルを通して無基質の緩衝溶液を流し
た後これを所定濃度の亜硝酸性窒素を含む緩衝溶液に切
り替える送液系、および固定化微生物膜の他面上に純水
を流した後これを検水に切り替える送液系と、第1の石
英フローセル,上記2種類の緩衝溶液がそれぞれフロー
セルを通った後流入し排出される第2の石英フローセ
ル,これら二つの石英フローセルに紫外線を照射する光
源とビームスプリッタ,複数個のレンズ,干渉フィル
タ,第1の石英フローセルからの光を受ける第1のフォ
トダイオード,および第2の石英フローセルからの光を
受ける第2のフォトダイオードを有する光学系の検出部
と、この検出部に接続された計測演算部,表示部,記録
部からなる測定部とを備えたものである。
In order to solve the above-mentioned problems, the harmful substance monitor of the present invention has a first invention in which an immobilized microbial membrane on which nitrite-producing bacteria are immobilized is retained and A flow cell having a liquid flow path flowing on one surface of the microbial membrane, a liquid flow path discharged after flowing on the other surface of the immobilized microbial membrane, and a substrate-free buffer solution on one surface of the immobilized microbial membrane And a solution sending system that switches the solution to a buffer solution containing a predetermined concentration of ammonia nitrogen, and a solution sending system that switches pure water onto the other surface of the immobilized microbial membrane and then switches it to test water. A quartz flow cell into which the two types of buffer solutions of (1) and (2) respectively flow in and out after passing through the flow cell;
An interference filter and a detection unit of an optical system having a photodiode, and a measurement unit including a measurement calculation unit, a display unit, and a recording unit connected to the detection unit,
The invention holds a fixed microbial membrane on which nitric acid-producing bacteria are fixed, and a liquid flow path flowing on one surface of the fixed microbial membrane,
A flow cell having a liquid flow path that is discharged after flowing on the other surface of the immobilized microbial membrane, and after flowing a substrate-free buffer solution through the first quartz flow cell on one surface of the immobilized microbial membrane, A liquid supply system for switching to a buffer solution containing a predetermined concentration of nitrite nitrogen, and a liquid supply system for flowing pure water on the other surface of the immobilized microbial membrane and then switching it to water for detection, a first quartz flow cell, A second quartz flow cell into which the above-mentioned two kinds of buffer solutions respectively flow in and out after passing through the flow cell, a light source and a beam splitter for irradiating these two quartz flow cells with ultraviolet rays, a plurality of lenses, an interference filter, and a first A detection part of an optical system having a first photodiode that receives light from a quartz flow cell and a second photodiode that receives light from a second quartz flow cell, and a connection to this detection part Measurement computation unit that, the display unit, in which a measuring section composed of a recording unit.

【0008】[0008]

【作用】本発明の有害物質モニターは、以上のように構
成したために、第1の発明では、有害物質に対して感受
性の高い亜硝酸生成細菌を微生物に用いているので、こ
の微生物はアンモニア性窒素を溶存酸素を使って亜硝酸
性窒素に変換する機能が有害物質によって阻害され、緩
衝溶液中の亜硝酸性窒素濃度が減少し、緩衝溶液の亜硝
酸性窒素濃度に起因する350nm付近の紫外吸光度
(UV350 )が低下するのを光学的に測定することによ
り、有害物質を検出することができ、第2の発明では、
有害物質に対して感受性の高い硝酸生成細菌を微生物に
用いており、この微生物は亜硝酸性窒素を溶存酸素を使
って硝酸性窒素に変換する機能が有害物質によって阻害
され、緩衝溶液中の亜硝酸性窒素濃度が増加して、前述
の紫外吸光度が高くなり、フローセルの入口と出口にお
ける紫外吸光度差(ΔUV350)が低下するのを光学的
に測定することにより、有害物質を検出することができ
る。
Since the harmful substance monitor of the present invention is constructed as described above, in the first invention, a nitrite-producing bacterium having high sensitivity to harmful substances is used as a microorganism. The function of converting nitrogen to nitrite nitrogen using dissolved oxygen is inhibited by harmful substances, the concentration of nitrite nitrogen in the buffer solution decreases, and the ultraviolet light around 350 nm caused by the concentration of nitrite nitrogen in the buffer solution is reduced. By optically measuring the decrease in absorbance (UV 350 ), it is possible to detect harmful substances. In the second invention,
Nitrate-producing bacteria, which are highly sensitive to harmful substances, are used as microorganisms.This microorganism inhibits the function of converting nitrite nitrogen to nitrate nitrogen using dissolved oxygen, and the microorganisms in the buffer solution It is possible to detect harmful substances by optically measuring that the concentration of nitrate nitrogen increases, the above-mentioned ultraviolet absorbance increases, and the ultraviolet absorbance difference (ΔUV 350 ) at the inlet and outlet of the flow cell decreases. it can.

【0009】[0009]

【実施例】以下、本発明を実施例に基づき説明する。実施例1 はじめに、アンモニア性窒素を亜硝酸性窒素に変える
(NH4 + −N→NO2 - −N)微生物を利用した場合
を述べる。図1は亜硝酸生成細菌(ニトロソモナス)を
用いた本発明による有害物質モニターの構成を示す模式
図であり、矢印は液体の流れる方向をで表わす。図2は
これを用いた測定結果を示す線図である。以下に図1と
図2を併用参照して、装置の構成とともに作動の手順に
ついて説明する。
EXAMPLES The present invention will be described below based on examples.Example 1 First, change ammoniacal nitrogen to nitrite nitrogen
(NHFour +-N → NO2 --N) When using microorganisms
State. Figure 1 shows nitrite-producing bacteria (Nitrosomonas)
Schematic showing the configuration of the hazardous substance monitor according to the present invention used
It is a figure, and an arrow represents with the flowing direction of a liquid. Figure 2
It is a diagram which shows the measurement result using this. Below in Figure 1
With reference to FIG.
explain about.

【0010】図1において、純粋培養した亜硝酸生成細
菌を固定化した固定化微生物膜1を、恒温層2(斜線
部)内に設置したフローセル3(点線の斜線部)に取り
付け、ポンプ4を駆動させてバルブ5を開き、固定化微
生物膜1の一方の表面に微生物基質を含まない緩衝溶液
6を流し、これをフローセル3の出口から光学系を有す
る検出部10に送る。同時にポンプ7を駆動させ、バル
ブ8を開けて純水9を固定化微生物膜1の他方の表面に
流し洗浄後外部に排出させる。
In FIG. 1, an immobilized microbial membrane 1 on which pure cultivated nitrite-producing bacteria have been immobilized is attached to a flow cell 3 (shaded area of dotted line) installed in a thermostatic layer 2 (shaded area), and a pump 4 is attached. The valve 5 is opened by driving, the buffer solution 6 containing no microbial substrate is caused to flow on one surface of the immobilized microbial membrane 1, and the buffer solution 6 is sent from the outlet of the flow cell 3 to the detection unit 10 having an optical system. At the same time, the pump 7 is driven, the valve 8 is opened, and the pure water 9 is made to flow to the other surface of the immobilized microbial membrane 1 to be washed and discharged to the outside.

【0011】検出部10では光源11の水銀ランプから
出射した波長350nmの紫外線を、レンズ12a,1
2bおよびこれらの間にある干渉フィルタ13を通し
て、石英フローセル14を流れる緩衝溶液6に照射し、
レンズ15を通してその光をフォトダイオード16で受
け、緩衝溶液6の紫外吸光度をフォトダイオード16に
接続した測定部17で光学的に測定する。測定部17
計測演算部18,表示部19,記録部20を備え、これ
らを一点鎖線で囲って示してある。石英フローセル14
を流れた緩衝溶液6はそのまま外部に廃棄する。この状
態をAとし、図2に示す経過時間−紫外吸光度(UV
350 )曲線に併記してある。
In the detector 10 , ultraviolet rays having a wavelength of 350 nm emitted from the mercury lamp of the light source 11 are passed through the lenses 12a and 1a.
The buffer solution 6 flowing through the quartz flow cell 14 is irradiated through 2b and the interference filter 13 between them,
The light is received by the photodiode 16 through the lens 15, and the ultraviolet absorbance of the buffer solution 6 is optically measured by the measuring unit 17 connected to the photodiode 16. The measuring unit 17 includes a measurement / calculation unit 18, a display unit 19, and a recording unit 20, which are surrounded by a dashed line. Quartz flow cell 14
The buffer solution 6 that has flowed through is discarded as it is outside. This state is designated as A, and the elapsed time-ultraviolet absorbance (UV
350 ) Also shown on the curve.

【0012】次に、バルブ5を閉じてバルブ21を開
け、アンモニア性窒素(NH4 + −N)を所定の濃度含
む緩衝溶液22を、緩衝溶液6と同一の経路でフローセ
ル3から検出部10に流す。フローセル3内でアンモニ
ア性窒素は、固定化微生物膜1の亜硝酸生成細菌により
亜硝酸性窒素に変換され、緩衝溶液22中の亜硝酸性窒
素濃度が増加し、紫外吸光度は高くなるが、供給アンモ
ニア濃度に対応した一定の濃度となるので、検出部10
における紫外吸光度は一定になる。この状態が図2の曲
線に併記したBである。
Next, the valve 5 is closed and the valve 21 is opened, and a buffer solution 22 containing ammonia nitrogen (NH 4 + -N) at a predetermined concentration is passed from the flow cell 3 to the detecting section 10 along the same route as the buffer solution 6. Shed on. The ammonia nitrogen in the flow cell 3 is converted into nitrite nitrogen by the nitrite-producing bacteria of the immobilized microbial membrane 1, the concentration of nitrite nitrogen in the buffer solution 22 increases, and the ultraviolet absorbance increases, but it is supplied. Since the concentration becomes constant corresponding to the ammonia concentration, the detection unit 10
The UV absorbance at is constant. This state is B shown in the curve of FIG.

【0013】次に、バルブ8を閉じてバルブ23を開
け、検水(試料水)24をフローセル3に純水9と同一
の経路で導入する。即ち、固定化微生物膜1に関して
は、緩衝溶液6の流れている面の裏側の表面を検水24
が流れることになる。このとき検水24中に有害物質が
含まれていないときは、吸光度は殆ど一定レベルにある
が、検水24中に有害物質が混入している場合は、フロ
ーセル3内の微生物の活性が低下し、亜硝酸性窒素の生
成量が減少するので、吸光度が低くなり図2ではBの終
点から曲線が下向きになる時点で、有害物質の混入を検
出することができる。その後 吸光度は有害物質が存在
する間は一定になる。この状態が図2の曲線に併記した
Cである。
Next, the valve 8 is closed and the valve 23 is opened, and the sample water (sample water) 24 is introduced into the flow cell 3 through the same path as the pure water 9. That is, with respect to the immobilized microbial membrane 1, the surface on the back side of the surface where the buffer solution 6 is flowing is subjected to the test water 24.
Will flow. At this time, when the test water 24 does not contain any harmful substances, the absorbance is almost at a constant level, but when the test water 24 contains harmful substances, the activity of the microorganisms in the flow cell 3 decreases. However, since the amount of nitrite nitrogen produced decreases, the absorbance becomes low, and the contamination of harmful substances can be detected when the curve goes downward from the end point of B in FIG. After that, the absorbance becomes constant while the harmful substance is present. This state is C shown in the curve of FIG.

【0014】そして有害物質が流れ去った後は、図2の
曲線に併記したDの状態となり、もとの吸光度に復帰す
る。このように、本発明の有害物質モニターニよれば、
有害物質の有無の判定を簡便に行なうことができる。実施例2 次は亜硝酸性窒素を硝酸性窒素に変える(NO2 - −N
→NO3 - −N)微生物を利用した場合である。図3は
硝酸生成細菌(ニトロバクター)を用いた本発明による
有害物質モニターの構成を示す模式図であり、液体の流
れる方向を矢印で表わす。図4はこの装置を用いた測定
結果を示す線図であり、図3と図4を併用参照し、実施
例1と同様にして、装置の構成とともに作動の手順につ
いて説明する。
After the harmful substances have flowed away, the state of D shown in the curve of FIG. 2 is restored, and the original absorbance is restored. Thus, according to the harmful substance monitor of the present invention,
The presence or absence of harmful substances can be easily determined. The following Example 2 alters the nitrite nitrogen to nitrate nitrogen (NO 2 - -N
→ NO 3 - -N) is a case of using microorganisms. FIG. 3 is a schematic diagram showing the configuration of a harmful substance monitor according to the present invention using a nitric acid-producing bacterium (nitrobactor), in which the direction in which a liquid flows is indicated by an arrow. FIG. 4 is a diagram showing a measurement result using this apparatus. With reference to FIGS. 3 and 4 together, the configuration of the apparatus and the operating procedure will be described in the same manner as in Example 1.

【0015】図3において、純粋培養した硝酸生成細菌
を固定化した固定化微生物膜1a(斜線部)を、恒温層
(図示を省略)内に設置した実施例1と同様の構造を持
つフローセル3a(点線の斜線部)に取り付ける。ポン
プ4aを駆動させてバルブ5aを開き、微生物基質を含
んでいない緩衝溶液6aを第1の石英フローセル14a
を通して、固定化微生物膜1aの一方の表面に流し、こ
れをさらに第2の石英フローセル14bに流した後排出
する。この場合は、亜硝酸性窒素が硝酸性窒素に変わる
のでフローセル3aの入口と出口で紫外吸光度に差が生
ずるので、ここでは緩衝溶液6aがフローセル3aを流
通する前後でその紫外吸光度を測定することができるよ
うに装置を構成している。緩衝溶液6aを流すと同時に
ポンプ7aを駆動させ、バルブ8aを開けて純水9aを
固定化微生物膜1aの他方の表面に流して洗浄し、その
まま外部に排出させる。
In FIG. 3, a flow cell 3a having the same structure as in Example 1 in which an immobilized microbial membrane 1a (shaded area) on which purely cultured nitric acid-producing bacteria are immobilized is installed in a thermostatic layer (not shown). Attach it to the shaded area of the dotted line. The pump 4a is driven to open the valve 5a, and the buffer solution 6a containing no microbial substrate is added to the first quartz flow cell 14a.
Flow through one surface of the immobilized microbial membrane 1a, which is further passed through the second quartz flow cell 14b and then discharged. In this case, nitrite nitrogen is changed to nitrate nitrogen, and therefore, there is a difference in ultraviolet absorbance between the inlet and outlet of the flow cell 3a. Therefore, here, the ultraviolet absorbance should be measured before and after the buffer solution 6a flows through the flow cell 3a. The device is configured so that it can. At the same time as the buffer solution 6a is flown, the pump 7a is driven, the valve 8a is opened, and the pure water 9a is flown to the other surface of the immobilized microbial membrane 1a for cleaning, and then discharged as it is.

【0016】この場合は上記のように、フローセル3a
の入口および出口の近傍で緩衝溶液6aの紫外吸光度を
測定するので、光学系を有する検出部10aでは光源1
1aの水銀ランプから出射した波長350nmの紫外線
は、レンズ12c,12dおよび干渉フィルタ13aを
通した後、ビームスプリッタ25により光を分岐させ、
一方は第1の石英フローセル14aを流れる緩衝溶液6
aに照射した後、レンズ15aを通って第1のフォトダ
イオード16aで受け、他方は第2の石英フローセル1
4bを流れる緩衝溶液6aに照射した後、レンズ15b
を通って第2のフォトダイオード16bで受ける。第1
のフォトダイオード16aと第2のフォトダイオード1
6bに接続された測定部17aは、計測演算部18a,
表示部19a,記録部20aを有し、これらを一点鎖線
で囲って示してある。
In this case, as described above, the flow cell 3a
Since the UV absorbance of the buffer solution 6a is measured near the inlet and outlet of the light source 1, the light source 1 is used in the detection unit 10a having an optical system.
The ultraviolet ray having a wavelength of 350 nm emitted from the mercury lamp 1a passes through the lenses 12c and 12d and the interference filter 13a, and then is split by the beam splitter 25.
One is the buffer solution 6 flowing through the first quartz flow cell 14a.
After irradiating a, it is received by the first photodiode 16a through the lens 15a, and the other is received by the second quartz flow cell 1.
After irradiating the buffer solution 6a flowing through 4b, the lens 15b
It is received by the second photodiode 16b. First
Photodiode 16a and second photodiode 1
The measurement unit 17a connected to the 6b includes a measurement calculation unit 18a,
It has a display unit 19a and a recording unit 20a, which are surrounded by a dashed line.

【0017】このようにして、フローセル3aの入口お
よび出口の近傍で緩衝溶液6a側の紫外吸光度を測定す
るが、入口における吸光度と出口における吸光度はほぼ
一致しており、両者の差は殆ど見られない。この状態を
Aとし、図4に示す経過時間−紫外吸光度差(ΔUV
350 )曲線に併記してある。次に、バルブ5aを閉じて
バルブ21aを開け、亜硝酸性窒素(NO2 - −N)を
所定の濃度含む緩衝溶液22aを緩衝溶液6aと同一の
経路でフローセル3aに流す。フローセル3a内で亜硝
酸性窒素は、固定化微生物膜1aの硝酸生成細菌により
硝酸性窒素に変換されるので、フローセル3aの出口側
の紫外吸光度が減少し、フローセル3aの入口および出
口における緩衝溶液6aの紫外吸光度に一定の差が生
じ、その後このΔUV350 はその値を保つ。この状態が
図4の曲線に併記したBである。
In this way, the ultraviolet absorbance on the buffer solution 6a side is measured in the vicinity of the inlet and outlet of the flow cell 3a. The absorbance at the inlet and the absorbance at the outlet are almost the same, and there is almost no difference between them. Absent. This state is designated as A, and the elapsed time-ultraviolet absorbance difference (ΔUV) shown in FIG.
350 ) Also shown on the curve. Then, opening the valve 21a closes the valve 5a, nitrite nitrogen - flowing in the flow cell 3a to (NO 2 -N) a predetermined concentration, including buffer solution 22a with a buffer solution 6a the same path. The nitrite nitrogen in the flow cell 3a is converted into nitrate nitrogen by the nitric acid-producing bacteria of the immobilized microbial membrane 1a, so that the ultraviolet absorbance on the outlet side of the flow cell 3a decreases and the buffer solution at the inlet and the outlet of the flow cell 3a. There is a certain difference in the UV absorbance of 6a, after which this ΔUV 350 holds that value. This state is B shown along with the curve in FIG.

【0018】次に、バルブ8aを閉じてバルブ23aを
開け、検水(試料水)24aをフローセル3aに純水9
aと同一の経路で導入する。実施例1の場合と同様、固
定化微生物膜1aに関して、緩衝溶液22aの流れてい
る面の裏側の表面を検水24aが流れる。検水24a中
に有害物質が混入している場合には、フローセル3a内
の硝酸生成細菌の亜硝酸酸化活性が低下し、フローセル
3a出口の亜硝酸性窒素濃度が増加して紫外吸光度が大
きくなるので、フローセル3aの入口と出口の紫外吸光
度の差が小さくなり、図4ではBの終点から曲線が下向
きになる時点で有害物質の混入を検出することができ
る。その後 ΔUV350 は有害物質が存在する間は一定
になる。この状態が図4の曲線に併記したCである。
Next, the valve 8a is closed and the valve 23a is opened, and the sample water (sample water) 24a is added to the flow cell 3a with pure water 9a.
It is introduced by the same route as a. As in the case of Example 1, the sample water 24a flows on the surface on the back side of the surface of the immobilized microbial membrane 1a on which the buffer solution 22a is flowing. When harmful substances are mixed in the test water 24a, the nitrite-oxidizing activity of the nitric acid-producing bacteria in the flow cell 3a decreases, the nitrite nitrogen concentration at the outlet of the flow cell 3a increases, and the ultraviolet absorbance increases. Therefore, the difference in ultraviolet absorbance between the inlet and the outlet of the flow cell 3a becomes small, and it is possible to detect the mixture of harmful substances when the curve goes downward from the end point of B in FIG. After that, ΔUV 350 becomes constant while the harmful substances are present. This state is C shown in the curve of FIG.

【0019】そして有害物質が流れ去った後は、図4の
曲線に併記したDの状態となり、もとの吸光度差に復帰
することは、図2の場合と同じである。以上述べたよう
に、本発明の有害物質モニターは、フローセル3または
3aに常に緩衝溶液22または22aを流しており、固
定化微生物膜1または1aに関して、検水24または2
4aは緩衝溶液22または22aの流れる面とは反対面
を流れるだけであるから、検水24または24aが汚染
されずに済むという特徴があり、実施例2に述べた装置
は、農薬、とくに除草剤の検出に対して感度がよいとい
う利点を有する。
After the harmful substances have flowed away, the state of D shown in the curve of FIG. 4 is restored and the original difference in absorbance is restored, as in the case of FIG. As described above, in the harmful substance monitor of the present invention, the buffer solution 22 or 22a is constantly flown through the flow cell 3 or 3a.
Since 4a only flows on the surface opposite to the surface on which the buffer solution 22 or 22a flows, it is characterized in that the sample water 24 or 24a does not have to be contaminated. It has the advantage of being sensitive to the detection of agents.

【0020】[0020]

【発明の効果】本発明の有害物質モニターは、亜硝酸生
成細菌または硝酸生成細菌を固定した固定化微生物膜を
フローセル中に設け、このフローセルは実施例で述べた
ように、緩衝溶液と検水の流路がそれぞれ固定化微生物
膜の表裏の関係になっているので、測定部(石英フロー
セル)は検水による汚れの影響を受けることなく、また
光学的に紫外吸光度を測定しているために、簡便な装置
で短時間で迅速に、河川水や浄水場の取水や下水処理場
の流入水に有害物質が混入するのを効率的に監視するこ
とができる。
INDUSTRIAL APPLICABILITY The harmful substance monitor of the present invention is provided with an immobilized microbial membrane on which nitrite-producing bacteria or nitric acid-producing bacteria are immobilized in a flow cell. This flow cell has a buffer solution and a test water as described in the Examples. Since each of the flow paths is on the front and back sides of the immobilized microbial membrane, the measurement part (quartz flow cell) is not affected by dirt due to test water, and the optical absorbance is measured optically. By using a simple device, it is possible to efficiently monitor the intake of harmful substances in river water, water intake from water purification plants and inflow water from sewage treatment plants in a short time.

【図面の簡単な説明】[Brief description of drawings]

【図1】亜硝酸生成細菌を固定化微生物膜に用いた本発
明の有害物質モニターの装置構成を示す模式図
FIG. 1 is a schematic diagram showing a device configuration of a harmful substance monitor of the present invention using a nitrite-producing bacterium as an immobilized microbial membrane.

【図2】図1の装置により測定した経過時間と紫外吸光
度(UV350 )の関係を示す線図
FIG. 2 is a diagram showing the relationship between elapsed time measured by the device of FIG. 1 and ultraviolet absorbance (UV 350 ).

【図3】硝酸生成細菌を固定化微生物膜に用いた本発明
の有害物質モニターの構成を示す模式図
FIG. 3 is a schematic diagram showing the constitution of a harmful substance monitor of the present invention in which nitrate-producing bacteria are used as an immobilized microbial membrane.

【図4】図3の装置により測定した経過時間−紫外吸光
度差(ΔUV350 )の関係を示す線図
FIG. 4 is a diagram showing a relationship between elapsed time measured by the device of FIG. 3 and ultraviolet absorption difference (ΔUV 350 ).

【符号の説明】[Explanation of symbols]

1 固定化微生物膜 1a 固定化微生物膜 2 恒温槽 3 フローセル 3a フローセル 4 ポンプ 4a ポンプ 5 バルブ 5a バルブ 6 緩衝溶液 6a 緩衝溶液 7 ポンプ 7a ポンプ 8 バルブ 8a バルブ 9 純水 9a 純水10 検出部10a 検出部 11 光源 11a 光源 12a レンズ 12b レンズ 12c レンズ 12d レンズ 13 干渉フィルタ 13a 干渉フィルタ 14 石英フローセル 14a 第1の石英フローセル 14b 第2の石英フローセル 15 レンズ 15a レンズ 15b レンズ 16 フォトダイオード 16a 第1のフォトダイオード 16b 第2のフォトダイオード17 測定部17a 測定部 18 計測演算部 18a 計測演算部 19 表示部 19a 表示部 20 記録部 20a 記録部 21 バルブ 21a バルブ 22 NH4 + −Nを含む緩衝溶液 22a NO2 - −Nを含む緩衝溶液 23 バルブ 23a バルブ 24 検水 24a 検水 25 ビームスプリッタ1 immobilized microbial membrane 1a immobilized microbial membrane 2 thermostat 3 flow cell 3a flow cell 4 pump 4a pump 5 valve 5a valve 6 buffer solution 6a buffer solution 7 pump 7a pump 8 valve 8a valve 9 pure water 9a pure water 10 detection part 10a detection Part 11 Light source 11a Light source 12a Lens 12b Lens 12c Lens 12d Lens 13 Interference filter 13a Interference filter 14 Quartz flow cell 14a First quartz flow cell 14b Second quartz flow cell 15 Lens 15a Lens 15b Lens 16 Photodiode 16a First photodiode 16b the second photodiode 17 measuring portion 17a measuring section 18 measuring arithmetic unit 18a measures arithmetic unit 19 display unit 19a display unit 20 recording unit 20a records 21 valve 21a valve 22 NH 4 + - Buffer containing -N solution 23 valve 23a valve 24 test water 24a test water 25 beam splitter - buffer 22a NO 2 containing

───────────────────────────────────────────────────── フロントページの続き (72)発明者 星川 寛 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Hiroshi Hoshikawa 1-1 Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Fuji Electric Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】a.亜硝酸生成細菌を固定した固定化微生
物膜を保持し、この固定化微生物膜の一面上を流れる液
流路と、前記固定化微生物膜の他面上を流れた後排出さ
れる液流路とを有するフローセルと、 b.前記固定化微生物膜の一面上に無基質の緩衝溶液を
流した後、これを所定濃度のアンモニア性窒素を含む緩
衝溶液に切り替える送液系、および前記固定化微生物膜
の他面上に純水を流した後これを検水に切り替える送液
系と、 c.前記2種類の緩衝溶液がそれぞれ前記フローセルを
通った後流入し排出される石英フローセル,この石英フ
ローセルに紫外線を照射する光源,複数個のレンズ,干
渉フィルタ,およびフォトダイオードを有する光学系の
検出部と、 d.この検出部に接続された計測演算部,表示部,記録
部からなる測定部とを備えたことを特徴とする有害物質
モニター。
1. A. Holding an immobilized microbial membrane on which nitrite-producing bacteria are immobilized, a liquid flow channel flowing on one surface of the immobilized microbial membrane, and a liquid flow channel discharged after flowing on the other surface of the immobilized microbial membrane. A flow cell having b. After flowing a substrate-free buffer solution on one surface of the immobilized microbial membrane, a liquid delivery system that switches it to a buffer solution containing a predetermined concentration of ammonia nitrogen, and pure water on the other surface of the immobilized microbial membrane. A liquid-sending system in which the water is flown and then switched to a test water, c. A quartz flow cell into which the two types of buffer solutions respectively flow in and out after passing through the flow cell, a light source for irradiating the quartz flow cell with ultraviolet rays, a plurality of lenses, an interference filter, and a detection unit of an optical system having a photodiode. And d. A hazardous substance monitor characterized by comprising a measuring unit comprising a measuring / calculating unit, a display unit and a recording unit connected to the detecting unit.
【請求項2】a.硝酸生成細菌を固定した固定化微生物
膜を保持し、この固定化微生物膜の一面上を流れる液流
路と、前記固定化微生物膜の他面上を流れた後排出され
る液流路とを有するフローセルと、 b.前記固定化微生物膜の一面上に第1の石英フローセ
ルを通して無基質の緩衝溶液を流した後、これを所定濃
度の亜硝酸性窒素を含む緩衝溶液に切り替える送液系、
および前記固定化微生物膜の他面上に純水を流した後こ
れを検水に切り替える送液系と、 c.前記第1の石英フローセル,前記2種類の緩衝溶液
がそれぞれ前記フローセルを通った後、流入し排出され
る第2の石英フローセル,これら二つの石英フローセル
に紫外線を照射する光源とビームスプリッタ,複数個の
レンズ,干渉フィルタ,前記第1の石英フローセルから
の光を受ける第1のフォトダイオード,および前記第2
の石英フローセルからの光を受ける第2のフォトダイオ
ードを有する光学系の検出部と、 d.この検出部に接続された計測演算部,表示部,記録
部からなる測定部、とを備えたことを特徴とする有害物
質モニター。
2. A. The immobilized microbial membrane on which the nitrate-producing bacteria are immobilized is retained, and the liquid flow channel that flows on one surface of the immobilized microbial membrane and the liquid channel that is discharged after flowing on the other surface of the immobilized microbial membrane are provided. A flow cell having b. A solution sending system in which a substrate-free buffer solution is caused to flow through the first quartz flow cell on one surface of the immobilized microbial membrane, and then switched to a buffer solution containing a predetermined concentration of nitrite nitrogen,
And a liquid sending system in which pure water is caused to flow on the other surface of the immobilized microbial membrane and then switched to test water, and c. The first quartz flow cell, the second quartz flow cell into which the two kinds of buffer solutions respectively flow through the flow cell and then flow out, the light source and the beam splitter for irradiating the two quartz flow cells with ultraviolet rays, and a plurality of them. Lens, an interference filter, a first photodiode that receives light from the first quartz flow cell, and the second photodiode
A detection section of an optical system having a second photodiode for receiving light from the quartz flow cell of d. A toxic substance monitor, comprising: a measurement / calculation unit connected to the detection unit; a display unit; and a measurement unit including a recording unit.
JP4273269A 1992-10-13 1992-10-13 Toxic substance monitor Pending JPH06123705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4273269A JPH06123705A (en) 1992-10-13 1992-10-13 Toxic substance monitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4273269A JPH06123705A (en) 1992-10-13 1992-10-13 Toxic substance monitor

Publications (1)

Publication Number Publication Date
JPH06123705A true JPH06123705A (en) 1994-05-06

Family

ID=17525488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4273269A Pending JPH06123705A (en) 1992-10-13 1992-10-13 Toxic substance monitor

Country Status (1)

Country Link
JP (1) JPH06123705A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012166171A (en) * 2011-02-16 2012-09-06 Meidensha Corp Method and device for monitoring nitrite-nitrogen concentration

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012166171A (en) * 2011-02-16 2012-09-06 Meidensha Corp Method and device for monitoring nitrite-nitrogen concentration

Similar Documents

Publication Publication Date Title
US5160604A (en) Toxic substance-detecting system with fixed microorganism membrane for water quality-monitoring
US7820038B2 (en) Ultraviolet radiation water treatment system
RU2108975C1 (en) Analytic device for fluids and device for measuring content of nutritive salts
JPH06508431A (en) organic contaminant monitor
JPH08509549A (en) Fluid medium analyzer
JP3920504B2 (en) UV sterilizer
JP5129463B2 (en) Water quality abnormality detection method
White et al. A study of operational ultraviolet disinfection equipment at secondary treatment plants
JPH06123705A (en) Toxic substance monitor
JP3721087B2 (en) Biosensor type abnormal water quality detection device
Scheible Ultraviolet disinfection of a secondary wastewater treatment plant effluent
JP4999742B2 (en) Toxic substance detection method and toxic substance detection apparatus
JP3077461B2 (en) How to monitor hazardous substances in water
JP2000140783A (en) Washing of water examination tank in continuous organic pollution monitor
JP2953904B2 (en) Analyzer for silica component in water
JP2004037273A (en) Water analyzing method and device
KR19980082125A (en) Method and apparatus for measuring organic pollutants in effluents
JPH1137969A (en) Abnormal water quality detector
JP3505559B2 (en) Pollution load meter
JP2000146833A (en) Abnormality detecting method of test water passage in continuous organic pollution monitor
JPH0735741A (en) Bod measuring equipment
JPH07209180A (en) Water quality monitor apparatus
CA2305488C (en) Method for controlling aeration systems of biological tanks treating waste water
JPH08136526A (en) Continuous measuring apparatus for concentration of dissolved ozone
JP3931602B2 (en) Calibration method for concentration measuring device