JPH06123295A - Capacity controller in compressor - Google Patents

Capacity controller in compressor

Info

Publication number
JPH06123295A
JPH06123295A JP3216486A JP21648691A JPH06123295A JP H06123295 A JPH06123295 A JP H06123295A JP 3216486 A JP3216486 A JP 3216486A JP 21648691 A JP21648691 A JP 21648691A JP H06123295 A JPH06123295 A JP H06123295A
Authority
JP
Japan
Prior art keywords
valve
pressure
gas
opening
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3216486A
Other languages
Japanese (ja)
Other versions
JP2952377B2 (en
Inventor
Masanori Tanaka
政則 田中
Toshiyuki Honma
利幸 本間
Tetsuya Kato
哲哉 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuetsu Industries Co Ltd
Original Assignee
Hokuetsu Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuetsu Industries Co Ltd filed Critical Hokuetsu Industries Co Ltd
Priority to JP3216486A priority Critical patent/JP2952377B2/en
Publication of JPH06123295A publication Critical patent/JPH06123295A/en
Application granted granted Critical
Publication of JP2952377B2 publication Critical patent/JP2952377B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prevent housing of a closing valve of an unloader at transition from a capacity-regulated operation to a no-load operation by connecting a gas passage communicating to a control pressure chamber of the unloader to a gas passage communicating to a receiver tank through a regulator valve. CONSTITUTION:When a pressure in a receiver tank 7 for reserving compression gas discharged by a compressor body 1 exceeds a first set value and a first regulator valve 40 is opened, a pressure is supplied from a passage 22 to a control pressure chamber 38 of an unloader 3, and a part of the gas is introduced into a suction passage 12 through an orifice 29 and an opening 19. When the pressure in the passage 22 exceeds a second set value, a second regulator valve 50 is opened, and a part of the pressure gas is introduced into the suction passage 12 through the regulator valve 50 and the orifice 29. When the pressure in the receiver tank 7 reaches a third set value, a pressure switch PS is actuated so as to bring a directional control valve 26 to B position and the pressure in the passage 21 is supplied to the control pressure chamber 38.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、圧縮機本体と、該本体
の吸入側に設けたアンローダと、前記本体の吐出側にレ
シーバタンクとを備えた圧縮機において、前記レシーバ
タンク内の圧縮ガスの圧力が予め定めた値を超えたとき
にアンローダを作動せしめ、かつ圧縮機本体へのガス吸
入量を前記アンローダにより無段階に制御する、圧縮機
における容量制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compressor provided with a compressor body, an unloader provided on the suction side of the body, and a receiver tank on the discharge side of the body. The present invention relates to a capacity control device for a compressor, which activates an unloader when the pressure exceeds a predetermined value and controls the amount of gas sucked into the compressor body steplessly by the unloader.

【0002】[0002]

【従来の技術】圧縮機、特に回転圧縮機において、レシ
ーバタンクに貯溜されたガス圧が予め定めた値を超えた
とき、アンローダにより圧縮機の吸入口を閉塞して容量
制御を行う方式として、アンローダにおいて吸入口を開
閉する弁体に連結したピストンを滑動自在に収容するシ
リンダを、前記ピストンの一面に前記レシーバタンク内
の圧力を付加する制御圧室と、前記ピストンの他面に前
記吸入口より圧縮機のガス圧縮のための作動室側の吸入
通路内の圧力を付加する二次圧室とに、前記ピストンに
より区画させ、レシーバタンク内のガス圧が第1の規定
値を超えたとき該レシーバタンク内のガス圧を前記アン
ローダの制御圧室に供給するとともに、前記二次圧室に
は前記レシーバタンク内のガス圧を減圧して供給し、そ
の差圧によりアンローダの弁体による前記吸入口の開口
面積の制御を無段階に行わせるとともに、前記レシーバ
タンク内のガス圧を検知する圧力スイツチを設け、前記
レシーバタンク内の圧力が前記設定値より大なる第2の
設定値を超えたときは、1個の電磁弁により前記アンロ
ーダの二次圧室へのガス圧供給を停止するとともに、さ
らに1個の電磁弁によりバイパス通路を介して前記アン
ローダの制御圧室に前記レシーバタンク内の圧力を供給
することにより、前記アンローダの吸入口を急速に閉じ
るものが、実開平1−78284号公報に記載されてい
る。
2. Description of the Related Art In a compressor, particularly a rotary compressor, when the gas pressure stored in a receiver tank exceeds a predetermined value, a method of controlling the capacity by closing an intake port of the compressor with an unloader is known. A cylinder that slidably accommodates a piston connected to a valve body that opens and closes a suction port in an unloader, a control pressure chamber that applies pressure in the receiver tank to one surface of the piston, and the suction port to the other surface of the piston. When the gas pressure in the receiver tank exceeds the first specified value by being partitioned by the piston into a secondary pressure chamber that applies pressure in the suction passage on the working chamber side for gas compression of the compressor. The gas pressure in the receiver tank is supplied to the control pressure chamber of the unloader, and the gas pressure in the receiver tank is depressurized and supplied to the secondary pressure chamber. The opening area of the suction port is controlled steplessly by the valve body of the feeder, and a pressure switch for detecting the gas pressure in the receiver tank is provided so that the pressure in the receiver tank becomes larger than the set value. When the second set value is exceeded, the gas pressure supply to the secondary pressure chamber of the unloader is stopped by one solenoid valve, and the unloader control is further performed by the one solenoid valve via the bypass passage. Japanese Utility Model Laid-Open No. 1-78284 discloses that the suction port of the unloader is closed rapidly by supplying the pressure in the receiver tank to a pressure chamber.

【0003】[0003]

【発明が解決しようとする課題】上記従来の技術におい
ては、レシーバタンク内の圧力が第1の規定値を超えた
ときアンローダの制御圧室に前記レシーバタンク内の圧
力を供給するレギユレータ弁により、アンローダが無段
階に制御され、前記レシーバタンク内に貯溜されている
圧縮ガスの消費量に応じた量の圧縮ガスが圧縮機本体か
らレシーバタンクに供給されるので、消費側のガス圧の
変動幅を小さく押さえることができるが、アンローダが
吸入口を閉塞して無負荷運転に移行した後における負荷
動力(消費電力比)を、全負荷運転時の約70%程度に
しか低減できない点に問題がある。この種の圧縮機にお
ける容量制御装置は、アンローダが吸入口を全開してい
る状態で圧縮機の負荷動力を原動機の定格出力にほぼ一
致させることができて、動力効率のよい圧縮機を提供す
ることができるが、アンローダの無負荷運転から全負荷
運転への復帰圧力は、電磁弁等各制御機器の最小復帰圧
力巾を考慮した上で定められ、圧縮機の全負荷時の規定
圧力(レギユレータ弁の作動開始時の規定値)より低い
値で定められるのが普通であり、そのため消費側におけ
る配管内圧力の低下と圧力変動幅が大きく、使用機器の
動作上支障が生ずる。これを回避するためにこの規定圧
力値を増大するとその分圧縮機の負荷動力が増大し、圧
縮機および駆動原動機の過熱の原因となるおそれがあ
る。
SUMMARY OF THE INVENTION In the above-mentioned prior art, a regulator valve for supplying the pressure in the receiver tank to the control pressure chamber of the unloader when the pressure in the receiver tank exceeds a first specified value, Since the unloader is controlled steplessly, and the compressed gas in an amount corresponding to the consumption amount of the compressed gas stored in the receiver tank is supplied from the compressor body to the receiver tank, the fluctuation range of the gas pressure on the consumption side However, the problem is that the load power (power consumption ratio) after the unloader closes the intake port and shifts to no-load operation can be reduced to only about 70% of full-load operation. is there. The capacity control device in this type of compressor can make the load power of the compressor substantially match the rated output of the prime mover with the unloader fully opening the suction port, and provide a compressor with high power efficiency. However, the return pressure from no-load operation to full-load operation of the unloader is determined in consideration of the minimum return pressure range of each control device such as a solenoid valve, and the specified pressure at full load of the compressor (regulator It is usually set to a value lower than the specified value at the time of starting operation of the valve). Therefore, the pressure in the pipe on the consuming side drops and the pressure fluctuation range is large, which causes a trouble in the operation of the equipment used. If the specified pressure value is increased to avoid this, the load power of the compressor increases correspondingly, which may cause overheating of the compressor and the driving prime mover.

【0004】そこで、アンローダの前記二次圧室側にレ
シーバタンク内のガス圧を供給する通路に絞りを配設し
て、アンローダの作動時における吸入口の閉塞および開
放のタイミングを改善する試みが提案された(特開平3
−121291号)が、前記アンローダの吸入口の全開
を保証するために吸入口を閉塞する弁体に全開方向に作
用するスプリングを付勢せしめていると、ガス圧が前記
規定圧力より前記スプリングのセツト荷重をクリアする
圧力だけ上昇しないと容量制御が開始されず、圧縮機お
よび原動機がオーバロード状態となるおそれがある。本
発明は、アンローダの開閉弁が吸入口の開口面積を無段
階に制御する容量制御装置の特徴を維持して、レシーバ
タンク等圧縮機本体の吐出口と連通する配管系内の圧力
が予め定めた設定値を超えた後に容量制御を開始し、か
つ前記開閉弁が吸入口を完全に閉塞して無負荷運転に移
行する前の状態においては前記開閉弁の移動を鈍化さ
せ、これによりレシーバタンク内に貯溜したガスの消費
量変化が大きいときでも前記開閉が吸入口を開閉する動
作を頻繁に繰り返すことなく、圧縮機を運転可能とした
容量制御装置を提供することを目的とする。
Therefore, an attempt has been made to improve the timing of closing and opening the suction port during operation of the unloader by providing a throttle in the passage for supplying the gas pressure in the receiver tank on the side of the secondary pressure chamber of the unloader. Proposed (JP-A-3
No. -121291) urges a spring acting in a fully open direction to a valve body that closes the suction port of the unloader to ensure that the suction port of the unloader is fully opened, the gas pressure of the spring is higher than the specified pressure. If the pressure that clears the set load is not increased, capacity control will not start, and the compressor and prime mover may become overloaded. The present invention maintains the feature of the capacity control device in which the opening / closing valve of the unloader controls the opening area of the suction port steplessly, and the pressure in the piping system communicating with the discharge port of the compressor body such as the receiver tank is predetermined. When the opening / closing valve starts capacity control after exceeding the set value and before the opening / closing valve completely closes the suction port and shifts to no-load operation, the movement of the opening / closing valve is slowed down, whereby the receiver tank An object of the present invention is to provide a capacity control device capable of operating a compressor without frequently repeating the opening / closing operation of opening / closing the suction port even when the amount of consumption of the gas stored therein changes greatly.

【0005】[0005]

【課題を解決するための手段】本発明は、圧縮機本体
と、制御圧室に導入されたガス圧に応動して開閉弁が吸
入口を開閉し前記圧縮機本体の作動室に吸入されるガス
流量を制御するアンローダと、前記作動室の吐出側に逆
止弁を介して連通され吐出された圧縮ガスを貯溜するレ
シーバタンクとを備えた圧縮機における容量制御装置に
関する。前記アンローダには、前記開閉弁に固定され
て、前記制御圧室に供給されたガス圧と前記開閉弁を開
方向即ち吸入口より遠去かる方向に付勢するスプリング
の弾力とにより、前記開閉弁を移動せしめる開閉弁移動
手段が設けられる。前記レシーバタンクに連通する第1
のガス通路と、前記アンローダの制御圧室に連通する第
2のガス通路とを連結して第1のレギユレータ弁が設け
られる。該第1のレギユレータ弁は前記第1のガス通路
内のガス圧が予め定めた第1の設定値を超えたとき流体
通路を開路して、前記第2のガス通路を第1のガス通路
に連通せしめる。
According to the present invention, an on-off valve opens and closes an intake port in response to a gas pressure introduced into a compressor body and a control pressure chamber, and is sucked into the working chamber of the compressor body. The present invention relates to a capacity control device in a compressor that includes an unloader that controls a gas flow rate and a receiver tank that stores the compressed gas discharged by communicating with a discharge side of the working chamber via a check valve. The unloader is fixed to the opening / closing valve, and is opened / closed by a gas pressure supplied to the control pressure chamber and a spring force of a spring for urging the opening / closing valve in a direction of opening, i.e., a direction away from the suction port. On-off valve moving means for moving the valve is provided. First communicating with the receiver tank
And a second gas passage communicating with the control pressure chamber of the unloader are connected to each other to provide a first regulator valve. The first reguulator valve opens the fluid passage when the gas pressure in the first gas passage exceeds a predetermined first set value, and causes the second gas passage to become the first gas passage. I can communicate.

【0006】前記アンローダの吸入口より圧縮機本体の
作動室側の吸入通路には第3のガス通路が連通せしめら
れ、この第3のガス通路と前記第1および第2のガス通
路を連結して切換弁が設けられる。この切換弁は、その
弁体を、前記第2のガス通路と第3のガス通路とを連通
させる第1の位置と、前記第2のガス通路を第1のガス
通路に連通させる第2の位置とに選択的に切換えるもの
である。前記第3のガス通路には、前記切換弁を介して
供給されるガス圧が予め定めた第2の設定値を超えたと
き流体通路を開路して、第3のガス通路に供給されたガ
ス圧を前記アンローダの吸入口より圧縮機本体側の吸入
通路に供給する第2のレギユレータ弁と、予め定めた固
定の流体通路を備えたオリフイスとが並列せしめられて
設けられる。前記逆止弁からレシーバタンクを経て前記
第1のガス通路までの間のガス通路内の圧力を検出する
圧力スイツチを含み、前記圧力が予め定めた第3の設定
値を超えたとき前記切換弁を第1の位置から第2の位置
に切換えるとともに、前記圧力が前記第1の設定値を下
回つたとき前記切換弁を第1の位置に切り換える切換手
段を設ける。前記第2のレギユレータ弁は、前記切換弁
に連通する第1の開口部と、前記アンローダの吸入口よ
り圧縮機本体の作動室側の吸入通路に連通する第2の開
口部を備えたハウジングと、該ハウジング内に形成され
て前記第1の開口部と第2の開口部とを連通せしめる流
体通路内に配設され、スプリングにより前記第1の開口
部を閉塞すべく付勢されている弁体とからなり、前記オ
リフイスは前記弁体に形成されて前記第1の開口部と第
2の開口部とを常時連通せしめる貫通孔とすることがで
きる。
A third gas passage is connected to the suction passage on the side of the working chamber of the compressor main body from the suction port of the unloader, and the third gas passage is connected to the first and second gas passages. A switching valve is provided. The switching valve has a valve body having a first position in which the second gas passage and the third gas passage communicate with each other and a second position in which the second gas passage communicates with the first gas passage. The position is selectively switched to. The gas supplied to the third gas passage is opened in the third gas passage when the gas pressure supplied through the switching valve exceeds a second preset value. A second regulator valve for supplying pressure to the suction passage on the compressor body side from the suction port of the unloader and an orifice provided with a predetermined fixed fluid passage are provided in parallel. A pressure switch for detecting the pressure in the gas passage between the check valve and the receiver tank to the first gas passage; and the switching valve when the pressure exceeds a predetermined third set value. Is switched from the first position to the second position, and switching means is provided for switching the switching valve to the first position when the pressure falls below the first set value. The second reguulator valve includes a housing having a first opening communicating with the switching valve and a second opening communicating with a suction passage on the working chamber side of the compressor body from a suction opening of the unloader. A valve formed in the housing, disposed in a fluid passage that connects the first opening and the second opening, and urged by a spring to close the first opening. The orifice may be a through hole that is formed on the valve body and that always connects the first opening and the second opening.

【0007】[0007]

【作用】本発明によれば、圧縮機本体の運転により、そ
の作動室で圧縮された圧縮ガスは、吐出側に逆止弁を介
して連通されたレシーバタンクに貯溜され、消費側の需
要に応じてレシーバタンクから取り出され消費される。
消費側の需要が減り、レシーバタンク内のガス圧が予め
定めた第1の設定値(例えば7.1kgf/cm2)を
超えると第1のレギユレータ弁が開き、第1のガス通路
から第2のガス通路を介してアンローダの制御圧室に圧
力を供給し、圧力ガスの一部は切換弁の弁体が第1の位
置にあることにより、第2のガス通路から第3のガス通
路のオリフイスを介してアンローダの吸入口より圧縮機
本体の作動室側の吸入通路に導入される。アンローダの
開閉弁は、移動手段における前記制御圧室内の圧力とこ
れに抗する方向に作用するスプリングの弾力により吸入
口を閉じる方向に移動しはじめ、容量制御を開始する。
圧縮機本体の吐出圧の上昇は鈍化する。圧縮機本体の吐
出側の逆止弁より前記第1のガス通路までの間のガス
圧、例えばレシーバタンク内のガス圧がさらに大となる
と、前記第3のガス通路に設けられている第2のレギユ
レータ弁が第2の設定値(例えば0.7kgf/c
2)において流体通路を開きアンローダの吸気口より
圧縮機本体の作動室側の吸気通路に圧縮ガスを導入す
る。これにより前記制御圧室内のガス圧の上昇比率を鈍
化させる。
According to the present invention, the compressed gas compressed in the working chamber by the operation of the compressor body is stored in the receiver tank which is communicated with the discharge side through the check valve to meet the demand of the consumer side. Accordingly, it is taken out from the receiver tank and consumed.
When the demand on the consumer side decreases and the gas pressure in the receiver tank exceeds a predetermined first set value (for example, 7.1 kgf / cm 2 ), the first regulator valve opens and the second gas passage opens from the first gas passage. The pressure is supplied to the control pressure chamber of the unloader through the gas passage of the second unloader, and a part of the pressure gas flows from the second gas passage to the third gas passage because the valve body of the switching valve is at the first position. It is introduced into the suction passage on the side of the working chamber of the compressor body from the suction port of the unloader via the orifice. The opening / closing valve of the unloader starts to move in the direction of closing the suction port by the pressure of the control pressure chamber in the moving means and the elastic force of the spring acting in the direction against the pressure, and starts the capacity control.
The rise in the discharge pressure of the compressor body slows down. When the gas pressure between the check valve on the discharge side of the compressor main body and the first gas passage, for example, the gas pressure in the receiver tank becomes higher, the second gas passage is provided in the third gas passage. Regulator valve has a second set value (eg 0.7 kgf / c
At m 2 ), the fluid passage is opened and the compressed gas is introduced from the intake port of the unloader into the intake passage on the working chamber side of the compressor body. This slows down the rate of increase of the gas pressure in the control pressure chamber.

【0008】圧縮機本体の吐出側の逆止弁より前記第1
のガス通路までの間のガス圧、例えばレシーバタンク内
のガス圧が、前記予め定めた第1の設定値より若干大な
る第3の設定値(例えば8.0kgf/cm2)を超え
ると、圧力スイツチがこれを検知し、切換手段が切換弁
の弁体を第2の位置に切換える。これにより第2のガス
通路は直接第1のガス通路に連通され、第3のガス通路
は第2のガス通路との連通を断たれるので、アンローダ
の開閉弁移動手段は、制御圧室に供給された第1のガス
通路内のガス圧によりスプリングの弾力に抗して開閉弁
を吸入口に確実に着座させ、吸入口を完全に閉塞し、無
負荷運転に入る。レシーバタンク内に貯溜されている圧
縮ガスが多量に消費され、レシーバタンク内のガス圧が
前記第1の設定値を下廻つたときは、切換手段は切換弁
を第1の位置に切換えるとともに、第1のレギユレータ
弁はその流体通路を閉じる。従つてアンローダの開閉弁
はスプリングの弾力により吸入口を完全に開放した位置
に復帰し、圧縮機本体は全負荷運転状態に戻る。
From the check valve on the discharge side of the compressor body, the first
When the gas pressure up to the gas passage of, for example, the gas pressure in the receiver tank exceeds a third set value (for example, 8.0 kgf / cm 2 ) slightly larger than the predetermined first set value, The pressure switch detects this, and the switching means switches the valve body of the switching valve to the second position. As a result, the second gas passage is directly connected to the first gas passage, and the third gas passage is disconnected from the second gas passage, so that the opening / closing valve moving means of the unloader is connected to the control pressure chamber. Due to the gas pressure in the supplied first gas passage, the on-off valve is reliably seated in the suction port against the elasticity of the spring, the suction port is completely closed, and no-load operation starts. When a large amount of the compressed gas stored in the receiver tank is consumed and the gas pressure in the receiver tank falls below the first set value, the switching means switches the switching valve to the first position, and The first regulator valve closes its fluid passage. Therefore, the opening / closing valve of the unloader returns to the position where the suction port is completely opened by the elastic force of the spring, and the compressor body returns to the full load operation state.

【0009】[0009]

【実施例】図1は本発明を適用したスクリユ式空気圧縮
機の容量制御装置の一実施例の配管図、図2はそのアン
ローダの断面図、図3はそのレギユレータ弁の断面図を
示す。スクリユ式回転圧縮機本体1の圧縮作動室2の吸
入側には、吸気閉塞型のアンローダ3が装着され、圧縮
作動室2の吐出側である吐出室4は逆止弁5および吐出
パイプ6を介してレシーバタンク7に接続され、該レシ
ーバタンク7の圧縮空気取出口8には、開閉弁9、逆止
弁10を介して消費側空気配管11が接続される。アン
ローダ3は、図2に示すようにハウジング31を備え、
該ハウジング31に空気濾過器(図示せず)を介して空
気を吸入する吸入口32を開閉する開閉弁33にはピス
トン34が固着され、該ピストン34を摺動自在に収容
するシリンダ35の軸方向一側には、前記開閉弁33を
吸入口32より離間させて吸入口32の開口面積を拡大
する方向に前記ピストン34を付勢する2個のスプリン
グ36,37が配設され、前記ピストン34の軸方向他
側には制御圧室38が形成される。前記スプリング3
6,37を収容したシリンダ室は開口39により圧縮機
本体1の作動室2への吸気通路12の一部を構成する通
路に連通している。圧縮機本体1の雄ロータ13が原動
機(図示せず)により回転駆動されると、雄ロータ13
は該ロータ13に噛合する雌ロータ(図示せず)ととも
に吸入通路12を介してアンローダ3の吸入口32より
吸入した空気を作動室2内で圧縮し、吐出室4に吐出す
る。吐出された圧縮空気は逆止弁5、吐出パイプ6を経
てレシーバタンク7内に吐出される。雌雄ロータの潤滑
および圧縮機本体1の冷却のための油がレシーバタンク
7内の圧力を利用して給油配管14、冷却器15、油量
調整弁16を介して作動室2に送られる。油は圧縮空気
とともに吐出室4に吐出され、吐出室4の最低水準部か
ら気液混合流体としてポンプ17に吸引され、配管18
および吐出パイプ6を介してレシーバタンク7内に回収
され、レシーバタンク7内で圧縮空気から分離される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a piping diagram of an embodiment of a capacity control device for a screw type air compressor to which the present invention is applied, FIG. 2 is a sectional view of its unloader, and FIG. 3 is a sectional view of its reguulator valve. An intake block type unloader 3 is attached to the suction side of the compression working chamber 2 of the Screwil type rotary compressor body 1, and the discharge chamber 4 on the discharge side of the compression working chamber 2 includes a check valve 5 and a discharge pipe 6. The receiver side tank 7 is connected to the receiver tank 7, and the compressed air outlet 8 of the receiver tank 7 is connected to the consumption side air pipe 11 via the opening / closing valve 9 and the check valve 10. The unloader 3 includes a housing 31 as shown in FIG.
A piston 34 is fixed to an opening / closing valve 33 that opens and closes an intake port 32 that sucks air into the housing 31 through an air filter (not shown), and a shaft of a cylinder 35 that slidably accommodates the piston 34. Two springs 36, 37 for urging the piston 34 in a direction of enlarging the opening area of the suction port 32 by arranging the opening / closing valve 33 from the suction port 32 are disposed on one side in the direction. A control pressure chamber 38 is formed on the other side in the axial direction of 34. The spring 3
The cylinder chamber accommodating 6, 37 communicates with the passage forming a part of the intake passage 12 to the working chamber 2 of the compressor body 1 through the opening 39. When the male rotor 13 of the compressor body 1 is rotationally driven by a prime mover (not shown), the male rotor 13
Together with the female rotor (not shown) meshing with the rotor 13, the air sucked from the suction port 32 of the unloader 3 through the suction passage 12 is compressed in the working chamber 2 and discharged into the discharge chamber 4. The discharged compressed air is discharged into the receiver tank 7 through the check valve 5 and the discharge pipe 6. Oil for lubricating the male and female rotors and cooling the compressor body 1 is sent to the working chamber 2 via the oil supply pipe 14, the cooler 15, and the oil amount adjusting valve 16 by utilizing the pressure in the receiver tank 7. The oil is discharged into the discharge chamber 4 together with the compressed air, and is sucked into the pump 17 as a gas-liquid mixed fluid from the lowest level portion of the discharge chamber 4, and the pipe 18
It is collected in the receiver tank 7 via the discharge pipe 6 and separated from the compressed air in the receiver tank 7.

【0010】前記レシーバタンク7の空気取出口8に一
端を連通せしめたパイプよりなる第1のガス通路21の
他端は、第1のレギユレータ弁40の入口側41に連通
され、前記アンローダ3のハウジング31に形成されて
前記制御圧室38に連通する開口30に一端を連通せし
めたパイプよりなる第2のガス通路22の他端は、前記
第1のレギユレータ弁40の出口側42に連通される。
前記第1のレギユレータ弁40は図3に示すように、前
記入口側41と出口側42とを連通する流体通路43に
弁座44が形成され、該弁座44に着座する弁体45は
前記レギユレータ弁40のハウジング内において該ハウ
ジングにより周縁を固定されたダイアフラム46に固定
されており、該ダイアフラム46の一面には入口側41
から通路47を介して入口側41に存在する圧力が付与
され、前記ダイアフラム46の他面には前記圧力に抗す
る方向にスプリング48の弾力が付勢され、該スプリン
グ48の弾力は前記ハウジングに螺装された螺杆49に
より調整可能とされている。従つてレシーバタンク7の
空気取出口8、第1のガス通路21を介して第1のレギ
ユレータ弁40に達し、その入口側41より通路47を
介してダイアフラム48に付与されるレシーバタンク7
内の空気圧が前記スプリング48の付勢力より大となつ
たときは、弁体45が弁座44から離れて流体通路43
を開路させ、第1のガス通路21内の圧力を第2のガス
通路22、該通路22に設けたオリフイス28、アンロ
ーダ3のハウジング31に形成した開口30を介して制
御圧室38に供給する。本実施例においては前記第1の
レギユレータ弁40の流体通路43を開路させる空気圧
(第1の設定値)を7.1kgf/cm2となるよう
に、螺杆49により調整されるスプリング48の弾力を
予め定めておく。
The other end of the first gas passage 21 made of a pipe, one end of which is connected to the air outlet 8 of the receiver tank 7, is connected to the inlet side 41 of the first regulator valve 40, and the other end of the unloader 3 is connected. The other end of the second gas passage 22 formed of a pipe, one end of which is connected to the opening 30 formed in the housing 31 and which is connected to the control pressure chamber 38, is connected to the outlet side 42 of the first regurator valve 40. It
As shown in FIG. 3, in the first regulator valve 40, a valve seat 44 is formed in a fluid passage 43 that connects the inlet side 41 and the outlet side 42, and the valve body 45 seated on the valve seat 44 is In the housing of the reguulator valve 40, it is fixed to a diaphragm 46 whose peripheral edge is fixed by the housing, and one surface of the diaphragm 46 is provided with an inlet side 41.
Is applied to the inlet side 41 via the passage 47, and the elastic force of the spring 48 is urged to the other surface of the diaphragm 46 in a direction against the pressure, and the elastic force of the spring 48 is applied to the housing. It can be adjusted by a screw rod 49 that is screwed. Therefore, the receiver tank 7 reaches the first regulator valve 40 via the air outlet 8 of the receiver tank 7 and the first gas passage 21 and is applied to the diaphragm 48 from the inlet side 41 via the passage 47.
When the internal air pressure becomes larger than the biasing force of the spring 48, the valve body 45 separates from the valve seat 44 and the fluid passage 43
Is opened, and the pressure in the first gas passage 21 is supplied to the control pressure chamber 38 through the second gas passage 22, the orifice 28 provided in the passage 22, and the opening 30 formed in the housing 31 of the unloader 3. . In this embodiment, the elastic force of the spring 48 adjusted by the screw rod 49 is adjusted so that the air pressure (first set value) for opening the fluid passage 43 of the first reguulator valve 40 becomes 7.1 kgf / cm 2. Set in advance.

【0011】前記第1のガス通路21の空気取出口8と
第1のレギユレータ弁40との間より分岐する分岐路2
4、前記第2のガス通路22のオリフイス28とアンロ
ーダ3との間より分岐する分岐路25および前記アンロ
ーダ3のハウジング31に形成されて吸入口32より圧
縮機本体1の作動室2側の吸入通路12に連通せしめら
れる開口19に一端を連通せしめたパイプよりなる第3
のガス通路23が、電磁式三方切換弁26に連結され
る。該切換弁26は励磁されている間、弁体27のA部
が連通位置にあつて、前記第2のガス通路22の分岐路
25を前記第3のガス通路23と連通せしめる第1の位
置にあり、非励磁とされたときは弁体27のB部が連通
位置にあつて、前記第2のガス通路22の分岐路25を
前記第1のガス通路21の分岐路24と連通せしめる第
2の位置にある。前記第3のガス通路23には、第2の
レギユレータ弁50と予め定めた流路面積を有する固定
の流体通路を備えたオリフイス29とが並列に接続され
る。第2のレギユレータ弁50は第1のレギユレータ弁
40と同一の構成を備える。従つて、以後説明のために
用いる符号41〜49は、それぞれ第1のレギユレータ
弁40の符号41〜49を付した部分と同一部分を指す
ものとする。前記切換弁26の弁体27がそのA部を連
通位置に位置せしめる第1の位置にあるときは、第1の
レギユレータ弁40が流体通路43を開路させると、該
レギユレータ弁40の出口側42から第2のガス通路2
2、オリフイス28、分岐路25、弁体27のA部を介
して第3のガス通路23に供給された圧力空気は、その
圧力が低い間はオリフイス29のみを通つて開口19よ
り圧縮機本体1の吸入通路12に導入される。次いでレ
シーバタンク7内の圧力が高まつて第2のレギユレータ
弁50に供給される空気圧力によりダイアフラム46に
付与される力がスプリング48の弾力より大となると、
第2のレギユレータ弁50は流体通路43を開路する。
このとき圧縮機本体1の吸入通路12には、オリフイス
29および第2のレギユレータ弁50を通過した圧縮空
気がともに開口19より導入される。本実施例において
は第2のレギユレータ弁50の流体通路43を開路させ
る空気圧(第2の設定値)をほぼ0.7kgf/cm2
となるように、螺杆49により調整されるスプリング4
8の弾力を予め定めておく。
A branch passage 2 that branches from between the air outlet 8 of the first gas passage 21 and the first regurator valve 40.
4, a branch passage 25 branching between the orifice 28 of the second gas passage 22 and the unloader 3, and a housing 31 of the unloader 3 formed in the housing 31 of the unloader 3. A third pipe consisting of one end of which is connected to an opening 19 which is connected to the passage 12.
The gas passage 23 is connected to the electromagnetic three-way switching valve 26. While the switching valve 26 is energized, the A portion of the valve body 27 is in the communicating position so that the branch passage 25 of the second gas passage 22 communicates with the third gas passage 23. When the de-excitation is performed, the portion B of the valve body 27 is in the communicating position, and the branch passage 25 of the second gas passage 22 is made to communicate with the branch passage 24 of the first gas passage 21. It is in position 2. A second regulator valve 50 and an orifice 29 having a fixed fluid passage having a predetermined flow passage area are connected in parallel to the third gas passage 23. The second regulator valve 50 has the same configuration as the first regulator valve 40. Therefore, the reference numerals 41 to 49 used for the following description refer to the same portions as the reference numerals 41 to 49 of the first reguulator valve 40, respectively. When the valve body 27 of the switching valve 26 is in the first position for positioning the A portion in the communication position, when the first regulator valve 40 opens the fluid passage 43, the outlet side 42 of the reguulator valve 40 is opened. To second gas passage 2
2, the compressed air supplied to the third gas passage 23 through the orifice 28, the branch passage 25, and the portion A of the valve body 27 passes only the orifice 29 while the pressure is low, and passes through the opening 19 to the compressor main body. 1 is introduced into the suction passage 12. Next, when the pressure in the receiver tank 7 becomes high and the force applied to the diaphragm 46 by the air pressure supplied to the second regulator valve 50 becomes larger than the elasticity of the spring 48,
The second regulator valve 50 opens the fluid passage 43.
At this time, the compressed air that has passed through the orifice 29 and the second regulator valve 50 is both introduced into the suction passage 12 of the compressor body 1 through the opening 19. In the present embodiment, the air pressure (second set value) for opening the fluid passage 43 of the second regulator valve 50 is set to approximately 0.7 kgf / cm 2.
4 adjusted by the screw rod 49 so that
The elasticity of 8 is predetermined.

【0012】前記レシーバタンク7内に貯溜される圧縮
空気の圧力を検出し、この圧力が前記第1の設定値
(7.1kgf/cm2)より所定の値を超えたとき開
路し、検出した圧力が低下して前記第1の設定値を下回
つたとき閉路する圧力スイツチPSを前記レシーバタン
ク7に設け、該圧力スイツチPSを前記電磁式三方切換
弁26に連結する。これにより前記切換弁26は、レシ
ーバタンク7内の圧力が所定の値に達するまでは弁体2
7がA部を連通位置におく第1の位置にあり、前記第2
のガス通路22を第3のガス通路23に連通せしめてお
り、レシーバタンク7内の圧力が前記所定の値を超える
と、弁体27がB部を連通位置におく第2の位置に切換
えられ、前記第2のガス通路22を第1のガス通路21
に連通せしめ、この状態からレシーバタンク7内の圧力
が前記第1の設定値を下回つたとき、弁体27は第1の
位置に戻される。本実施例においては、前記圧力スイツ
チPSの検出する圧力の所定の値(第3の設定値)を
8.0kgf/cm2に予め定める。
The pressure of the compressed air stored in the receiver tank 7 is detected, and when the pressure exceeds a predetermined value from the first set value (7.1 kgf / cm 2 ), the circuit is opened and detected. A pressure switch PS that closes when the pressure drops below the first set value is provided in the receiver tank 7, and the pressure switch PS is connected to the electromagnetic three-way switching valve 26. As a result, the switching valve 26 is provided with the valve body 2 until the pressure in the receiver tank 7 reaches a predetermined value.
7 is in the first position for placing the A portion in the communication position, and the second position
Is connected to the third gas passage 23, and when the pressure in the receiver tank 7 exceeds the predetermined value, the valve body 27 is switched to the second position where the portion B is in the communication position. , The second gas passage 22 and the first gas passage 21
When the pressure in the receiver tank 7 falls below the first set value from this state, the valve body 27 is returned to the first position. In this embodiment, the predetermined value (third set value) of the pressure detected by the pressure switch PS is preset to 8.0 kgf / cm 2 .

【0013】本実施例においては、アンローダ3におい
て開閉弁33が吸入口32を完全に開放した状態にあ
り、かつ圧縮機本体1が原動機により全負荷運転されて
いるときの圧縮機本体1の吐出空気圧を7kgf/cm
2とする。圧縮機本体1が全負荷運転状態にあるとき、
レシーバタンク7より消費側空気配管11に取り出され
る圧縮空気の量が減少すると、レシーバタンク7内の空
気圧が次第に上昇する。そしてこの空気圧が第1のレギ
ユレータ弁40に設定した予め定めた第1の設定値であ
る7.1kgf/cm2を超えると、第1のレギユレー
タ弁40の流体通路43が開路する。前記第1の設定値
は圧力スイツチPSに設定した予め定めた第3の設定値
である8.0kgf/cm2より低いので切換弁26の
弁体27はA部を連通位置におく第1の位置にあり、第
1のレギユレータ弁40の流体通路43を通つた圧縮空
気は第2のガス通路22を経てアンローダ3の制御圧室
38に供給され、ピストン34の一面にその圧力を付与
するとともに、前記第2のガス通路22に供給された圧
縮空気の一部は切換弁26および第3のガス通路23お
よび開口19を経て圧縮機本体1の吸入通路12に導入
される。第3のガス通路23に供給される空気圧は第2
のガス通路22に配設したオリフイス28により大きく
減圧されており、この減圧された空気圧が第2のレギユ
レータ弁50に設定した予め定めた第2の設定値である
0.7kgf/cm2より低い間は第2のレギユレータ
弁50の流体通路43を開路せしめることなく、オリフ
イス29を介して圧縮機本体1の吸入通路12に導入さ
れる。ピストン34は制御圧室38に供給された空気圧
により、スプリング36,37の付勢力に抗して吸入口
32に接近する方向に移動し、開閉弁33により吸入口
32の開口面積を変更して圧縮機本体1の吸入通路12
への吸入空気流量を制限する容量制御を開始する。その
後、第1のガス通路21内の圧力の上昇に伴つて無段階
容量制御が行われる。
In the present embodiment, the discharge of the compressor body 1 when the opening / closing valve 33 in the unloader 3 is in the state where the suction port 32 is completely opened and the compressor body 1 is in full load operation by the prime mover. Air pressure is 7kgf / cm
Set to 2 . When the compressor body 1 is in full load operation,
When the amount of compressed air taken out from the receiver tank 7 to the consumer side air pipe 11 decreases, the air pressure inside the receiver tank 7 gradually rises. Then, when this air pressure exceeds 7.1 kgf / cm 2 which is the first preset value set in the first regulator valve 40, the fluid passage 43 of the first regulator valve 40 opens. Since the first set value is lower than the preset third set value of 8.0 kgf / cm 2 set in the pressure switch PS, the valve body 27 of the switching valve 26 places the A portion in the communicating position. The compressed air which is in the position and has passed through the fluid passage 43 of the first regulator valve 40 is supplied to the control pressure chamber 38 of the unloader 3 through the second gas passage 22 and applies the pressure to one surface of the piston 34. A part of the compressed air supplied to the second gas passage 22 is introduced into the suction passage 12 of the compressor body 1 through the switching valve 26, the third gas passage 23 and the opening 19. The air pressure supplied to the third gas passage 23 is the second
Is greatly decompressed by the orifice 28 disposed in the gas passage 22 of No. 1, and the decompressed air pressure is lower than 0.7 kgf / cm 2 which is the second preset value set in the second reguulator valve 50. In the interval, the fluid passage 43 of the second regulator valve 50 is introduced into the suction passage 12 of the compressor body 1 via the orifice 29 without opening the fluid passage 43. The piston 34 moves in a direction approaching the suction port 32 against the biasing force of the springs 36 and 37 by the air pressure supplied to the control pressure chamber 38, and the opening area of the suction port 32 is changed by the opening / closing valve 33. Intake passage 12 of the compressor body 1
Start the capacity control to limit the intake air flow rate to the. After that, stepless capacity control is performed as the pressure in the first gas passage 21 rises.

【0014】消費側空気配管11から取り出される圧縮
空気消費が依然として少ないと、レシーバタンク7内の
圧力上昇に伴つて前記第1のガス通路21から第2のガ
ス通路22の分岐路25を経て第3のガス通路23に供
給される圧縮空気圧も次第に上昇し、第2のレギユレー
タ弁50に設定した0.7kgf/cm2である予め定
めた第2の設定値を超えると、第2のレギユレータ弁5
0の流体通路43が開路し、圧縮機本体1の吸入通路1
2には、前記オリフイス29を通る圧縮空気と第2のレ
ギユレータ弁50の流体通路34を通る圧縮空気とが並
列して開口19より導入される。アンローダ3が無段階
容量制御を開始すると、開閉弁33を開方向に付勢して
いるスプリング36,37は圧縮される。両スプリング
36,37のうち大径のスプリング36は小径のスプリ
ング37よりばね定数が小で、該スプリング36が他方
のスプリング37より大きく撓み、両スプリング36,
37を係止しているカラーがピストン34に当接してか
らスプリング37が大きく撓む。一方、前記第2のガス
通路22内のガス圧が上昇するとピストン34の移動速
度も増大するが、第2のレギユレータ弁50の流体通路
34が開路すると、前記第3の通路23および開口19
を通つて圧縮機本体1の吸入通路12に導入される圧縮
空気の量が増大し、従つて開閉弁33の移動速度は第2
のガス通路22内の上昇にかかわらずさほど増大せず、
むしろ鈍化する。本実施例においては、第2のガス通路
22内の圧力が第2の設定値(0.7kgf/cm2
に達して第2のレギユレータ弁50が作動しはじめてか
ら圧力スイツチPSが第3の設定値(8.0kgf/c
2)で作動するまでの間は、アンローダ3の制御圧室
38内の圧力はほぼ1.0kgf/cm2前後(0.9
〜1.3kgf/cm2)に押えられる。そしてレシー
バタンク7内の圧力が予め定めた第3の設定値である
8.0kgf/cm2を超えると、圧力スイツチPSが
これを検出して電磁式三方切換弁26を消磁させ、その
弁体27は流通位置をB部とする第2の位置に切換えら
れる。従つて第2のガス通路22はその分岐路25を介
して第1のガス通路21と連通して、前記第1の設定値
を超えた空気圧がアンローダ3の制御圧室38に供給さ
れるとともに、第3のガス通路23への圧力空気は供給
が断たれる。これによりピストン34は直ちに開閉弁3
3を吸入口32の全閉位置に確実に着座させ、圧縮機本
体1の無負荷運転に移行させることになる。上記実施例
において、開閉弁33を吸入口32に対して移動せしめ
る開閉弁移動手段として、開閉弁33の弁杆に固定した
ピストン34を説明したが、該ピストン34に代えて周
縁をハウジング31に固定したダイアフラムに代えて
も、同様の作用を奏する開閉弁移動手段を構成すること
ができる。
When the consumption of the compressed air taken out from the consumption side air pipe 11 is still small, the pressure in the receiver tank 7 rises and the first gas passage 21 passes through the branch passage 25 of the second gas passage 22 to reach the first gas passage 21. When the compressed air pressure supplied to the gas passage 23 of No. 3 also gradually increases and exceeds the predetermined second set value which is 0.7 kgf / cm 2 set for the second reguulator valve 50, the second reguulator valve is set. 5
0 fluid passage 43 is opened, and suction passage 1 of compressor body 1 is opened.
Compressed air passing through the orifice 29 and compressed air passing through the fluid passage 34 of the second reguulator valve 50 are introduced into the nozzle 2 in parallel through the opening 19. When the unloader 3 starts the stepless capacity control, the springs 36 and 37 that urge the opening / closing valve 33 in the opening direction are compressed. Of the two springs 36, 37, the spring 36 having the larger diameter has a smaller spring constant than the spring 37 having the smaller diameter, and the spring 36 flexes more than the other spring 37.
The spring 37 is largely bent after the collar that locks 37 abuts the piston 34. On the other hand, when the gas pressure in the second gas passage 22 rises, the moving speed of the piston 34 also increases, but when the fluid passage 34 of the second regulator valve 50 opens, the third passage 23 and the opening 19 are opened.
The amount of compressed air introduced into the suction passage 12 of the compressor body 1 through the passage increases, so that the moving speed of the opening / closing valve 33 is the second.
It does not increase so much regardless of the rise in the gas passage 22 of
Rather slow down. In the present embodiment, the pressure in the second gas passage 22 is the second set value (0.7 kgf / cm 2 ).
Has reached the third set value (8.0 kgf / c) and the second regulator valve 50 has started to operate, the pressure switch PS has reached the third set value (8.0 kgf / c).
Until operating at m 2), the pressure in the control chamber 38 of the unloader 3 are approximately 1.0 kgf / cm 2 before and after (0.9
~1.3kgf / cm 2) to be pressing. When the pressure in the receiver tank 7 exceeds a preset third set value of 8.0 kgf / cm 2 , the pressure switch PS detects this and demagnetizes the electromagnetic three-way switching valve 26, and the valve body 27 is switched to the second position where the circulation position is B part. Therefore, the second gas passage 22 communicates with the first gas passage 21 via the branch passage 25, and the air pressure exceeding the first set value is supplied to the control pressure chamber 38 of the unloader 3. The supply of the pressurized air to the third gas passage 23 is cut off. As a result, the piston 34 immediately opens the on-off valve 3
3 is securely seated at the fully closed position of the suction port 32, and the compressor main body 1 is shifted to the no-load operation. In the above-described embodiment, the piston 34 fixed to the valve rod of the opening / closing valve 33 is described as the opening / closing valve moving means for moving the opening / closing valve 33 with respect to the suction port 32. Even if the diaphragm is fixed, the opening / closing valve moving means having the same function can be configured.

【0015】上記実施例の作動を図4ないし図6を用い
て説明する。図4はアンローダ3の制御圧室38内に供
給された圧力と、開閉弁33の開度(位置)との関係を
実線で示した線図である。アンローダ3の制御圧室38
に圧力が供給されないときは、スプリング36,37の
付勢力により開閉弁33は吸入口32から最も遠い位置
1にある。第1のガス通路21内の圧力が第1の設定
値(7.1kgf/cm2)を超えると、第1のレギユ
レータ弁40の弁体45が流体通路43を開きはじめ、
第2のガス通路22およびオリフイス28を介して圧縮
空気が減圧されて前記制御圧室38に供給され、同時に
圧縮空気の一部は切換弁26を介して第3のガス通路2
3にも供給される。制御圧室38内の圧力は急速に立ち
上がつて、該圧力がスプリング36,37のセツト荷重
(換算で0.5kgf/cm2相当)を超えると開閉弁
33は移動しはじめる。第1のガス通路21内の圧力の
上昇に伴つて第1のレギユレータ弁40の流体通路43
の開度が大となると、この開度の拡大に伴つてスプリン
グ36,37の弾力に抗する方向にピストン34に作用
する制御圧室38内の圧力も上昇するが、第3のガス通
路23に設けられているオリフイス29を介して第2の
ガス通路22内の圧縮空気が開口19より吸入通路12
に導入されるので、前記位置L1からの開閉弁33の移
動はさほど急速には行われず、制御圧室38の圧力は直
線的に上昇しはじめる。次に第3のガス通路23に供給
される第2のガス通路22内の圧力が第2の設定値
(0.7kgf/cm2)を超えると、第2のレギユレ
ータ弁50の弁体45が弁座44から離れ、流体通路4
3を開きはじめると、第2のガス通路22内の圧縮空気
の一部は第3のガス通路23のオリフイス29および第
2のレギユレータ弁50の流体通路43を通つて開口1
9から吸入通路12に導入される。この第2のレギユレ
ータ弁50の弁体45が弁座44を離れたときのアンロ
ーダ3の開閉弁33の位置をL2とする。レシーバタン
ク7内の圧力は前記第1の設定値を超え、第2のガス通
路22にオリフイス28を経て供給される圧縮空気の圧
力は上昇しているが、第2のレギユレータ弁50の流体
通路43を通つて吸入通路12に導入される圧縮空気の
量がオリフイス29を通つて吸入通路12に導入される
圧縮空気の量に付加されること、および第2のレギユレ
ータ弁50の弁体45は第3のガス通路23に供給され
る圧縮空気の圧力が上昇するに従い流体通路43の開口
を大とし流量を漸増させることにより、該弁体45が流
体通路43を全開させたときの開閉弁33の位置L3
では制御圧室38内の圧力上昇を鈍化させている。しか
し第2のレギユレータ弁50の弁体45がその流体通路
43を全開させた後は、圧力スイツチPSが第3の設定
値(8.0kgf/cm2)を検知して切換弁26の弁
体27をそのB部が流通位置にある第2の位置に切換え
るまで制御圧室38の圧力を急増させる。圧力スイツチ
PSが第3の設定値を検知したときの開閉弁33の位置
をL4とすると、開閉弁33の位置L2とL3との間にお
ける制御圧室38内の圧力はほぼ1.0kgf/cm2
前後(0.7〜1.3kgf/cm2)に保たれてお
り、開閉弁33の位置L4においては、制御圧室38内
の圧力はほぼ2.0kgf/cm2から第3の設定値で
ある8.0kgf/cm2に切換えられ、開閉弁33は
吸入口32を確実に閉塞する位置L5に保持される。
The operation of the above embodiment will be described with reference to FIGS. FIG. 4 is a diagram showing the relationship between the pressure supplied into the control pressure chamber 38 of the unloader 3 and the opening degree (position) of the opening / closing valve 33 by a solid line. Control pressure chamber 38 of unloader 3
When the pressure is not supplied to the opening / closing valve 33, the opening / closing valve 33 is at the position L 1 farthest from the suction port 32 due to the urging force of the springs 36 and 37. When the pressure in the first gas passage 21 exceeds the first set value (7.1 kgf / cm 2 ), the valve body 45 of the first reguulator valve 40 starts to open the fluid passage 43,
The compressed air is decompressed through the second gas passage 22 and the orifice 28 and supplied to the control pressure chamber 38, and at the same time, a part of the compressed air is passed through the switching valve 26 and the third gas passage 2 is formed.
3 is also supplied. The pressure in the control pressure chamber 38 rises rapidly, and when the pressure exceeds the set load of the springs 36, 37 (corresponding to 0.5 kgf / cm 2 equivalent), the on-off valve 33 starts to move. As the pressure inside the first gas passage 21 rises, the fluid passage 43 of the first regulator valve 40 increases.
When the opening degree of the third gas passage 23 increases, the pressure in the control pressure chamber 38 acting on the piston 34 in the direction against the elasticity of the springs 36 and 37 also increases as the opening degree increases. The compressed air in the second gas passage 22 is introduced from the opening 19 through the orifice 29 provided in the suction passage 12
Therefore, the opening / closing valve 33 is not moved from the position L 1 very rapidly, and the pressure in the control pressure chamber 38 starts to increase linearly. Next, when the pressure in the second gas passage 22 supplied to the third gas passage 23 exceeds the second set value (0.7 kgf / cm 2 ), the valve body 45 of the second reguulator valve 50 is Away from the valve seat 44, the fluid passage 4
3 starts to open, a portion of the compressed air in the second gas passage 22 passes through the orifice 29 of the third gas passage 23 and the fluid passage 43 of the second reguulator valve 50 to open the opening 1.
9 is introduced into the suction passage 12. The position of the opening / closing valve 33 of the unloader 3 when the valve body 45 of the second regulator valve 50 leaves the valve seat 44 is L 2 . The pressure in the receiver tank 7 exceeds the first set value, and the pressure of the compressed air supplied to the second gas passage 22 through the orifice 28 increases, but the pressure in the fluid passage of the second regulator valve 50 increases. The amount of compressed air introduced into the intake passage 12 through 43 is added to the amount of compressed air introduced into the intake passage 12 through the orifice 29, and the valve body 45 of the second reguulator valve 50 is As the pressure of the compressed air supplied to the third gas passage 23 rises, the opening of the fluid passage 43 is enlarged and the flow rate is gradually increased, so that the opening / closing valve 33 when the valve body 45 fully opens the fluid passage 43. to the position L 3 of is blunted the pressure increase in the control pressure chamber 38. However, after the valve body 45 of the second regulator valve 50 fully opens the fluid passage 43, the pressure switch PS detects the third set value (8.0 kgf / cm 2 ) and the valve body of the switching valve 26. The pressure in the control pressure chamber 38 is rapidly increased until 27 is switched to the second position in which the portion B is in the circulation position. When the position of the opening / closing valve 33 when the pressure switch PS detects the third set value is L 4 , the pressure in the control pressure chamber 38 between the positions L 2 and L 3 of the opening / closing valve 33 is approximately 1. 0 kgf / cm 2
Longitudinal (0.7~1.3kgf / cm 2) in is kept in the position L 4 of the on-off valve 33, the pressure in the control pressure chamber 38 is approximately from 2.0 kgf / cm 2 third set value It is switched to 8.0 kgf / cm 2 and the on-off valve 33 is held at the position L 5 that surely closes the suction port 32.

【0016】図5は、図4に示した開閉弁33の開度
(位置)と圧縮機本体1の吸入空気量比との関係を実線
で示す線図であり、図6はアンローダ3による容量制御
時におけるレシーバタンク内圧力の変化に対応した駆動
動力比を実線で示す線図である。ここに吸入空気量比と
は、容量制御時の吸入空気量をアンローダ全開時の吸入
空気量で除した百分比であり、駆動動力比とは、容量制
御時の駆動電動機の消費電力(KW/hr)を当該駆動
電動機の定格電力(KW/hr)で除した百分比であ
る。図5から明らかなように、吸入空気量比は第1のレ
ギユレータ弁40の作動開始時の開閉弁33の位置L1
から第2のレギユレータ弁50の作動開始時の開閉弁3
3の位置L2まではほぼ90%前後まで低い減少率で直
線的に変化し、前記位置L2から第2のレギユレータ弁
50の全開時の開閉弁33の位置L3まではほぼ80%
前後まで緩い速度で減少し、さらに前記位置L3からは
急速に減少するに至る。しかしながら第3の設定値を圧
力スイツチPSが検出し切換弁26の弁体27を切換え
る開閉弁33の位置L4においては50〜70%の吸入
空気量比を得ている。従つて第1の設定値(7.1kg
f/cm2)においてアンローダ3による容量制御運転
が開始されたときは、図4に示した制御室内圧力と開閉
弁の開度の関係が得られ、これにより図5に示した開閉
弁の開度と吸入空気量比の関係が得られるから、圧縮機
本体1を駆動原動機の定格電力で運転して第1の設定値
を超えたレシーバタンク7内に圧縮空気を吐出させてレ
シーバタンク7内を昇圧させていても、レシーバタンク
7内の圧力は、開閉弁33の位置L2においてほぼ7.
5kgf/cm2、位置L3において7.8kgf/cm
2に上昇するが、圧縮機本体1への吸入空気量は図5に
実線で示すように減少していることから、圧縮機本体1
の消費電力が駆動原動機の定格出力内に納まり、図6に
示すように容量制御中の駆動動力比をほぼ100%に維
持することができる。
FIG. 5 is a diagram showing the relationship between the opening (position) of the on-off valve 33 shown in FIG. 4 and the intake air amount ratio of the compressor body 1 by a solid line, and FIG. It is a diagram showing a drive power ratio corresponding to the change in the receiver tank pressure during control by a solid line. Here, the intake air amount ratio is a percentage ratio obtained by dividing the intake air amount during capacity control by the intake air amount when the unloader is fully opened, and the drive power ratio is the power consumption (KW / hr) of the drive motor during capacity control. ) Is divided by the rated power (KW / hr) of the drive motor. As is clear from FIG. 5, the intake air amount ratio is determined by the position L 1 of the opening / closing valve 33 at the start of the operation of the first regulator valve 40.
To the open / close valve 3 at the start of the operation of the second reguulator valve 50
3 to the position L 2 changes linearly with a low decrease rate up to about 90%, and from the position L 2 to the position L 3 of the opening / closing valve 33 when the second regulator valve 50 is fully opened, it is about 80%.
It gradually decreases to the front and back, and further rapidly decreases from the position L 3 . However, the intake air amount ratio of 50 to 70% is obtained at the position L 4 of the opening / closing valve 33 which switches the valve body 27 of the switching valve 26 by detecting the third set value by the pressure switch PS. Therefore, the first set value (7.1 kg
When the capacity control operation by the unloader 3 is started at f / cm 2 ), the relationship between the pressure in the control chamber and the opening degree of the on-off valve shown in FIG. 4 is obtained. Since the relationship between the degree and the intake air amount ratio can be obtained, the compressor main body 1 is operated at the rated power of the driving prime mover to discharge the compressed air into the receiver tank 7 that exceeds the first set value to even boosts the pressure in the receiver tank 7 is approximately 7 at the position L 2 of the on-off valve 33.
5 kgf / cm 2 , 7.8 kgf / cm at position L 3
2 , but the intake air amount into the compressor body 1 decreases as shown by the solid line in FIG.
Power consumption is within the rated output of the drive motor, and the drive power ratio during capacity control can be maintained at almost 100% as shown in FIG.

【0017】そして本実施例においては、圧縮機本体1
の無負荷運転中に消費側空気配管11を介してのレシー
バタンク7内の圧縮空気の消費が急増し、レシーバタン
ク7内の圧力が次第に降下して第1の設定値(7.1k
gf/cm2)を下廻ると、圧力スイツチPSはこれを
検出して切換弁26を励磁させ、その弁体27は流通位
置をA部とする第1の位置に切換えられる。これにより
アンローダ3の制御圧室38は第2のガス通路22、切
換弁26、第3のガス通路23および開口19を介して
吸入通路12に連通され、制御圧室38内の高圧は吸入
通路12内に逃がされ、同時に第1のレギユレータ弁4
0の弁体45が流体通路43を閉じ、容量制御運転を解
除する。レシーバタンク7内の圧力が第1の設定値を超
えている場合は、圧縮機本体1は再び容量制御運転状態
となる。そしてレシーバタンク7内の圧力がほぼ7.5
〜7.8kgf/cm2のときは図6に示すようにアン
ローダ3の開閉弁33は位置L2とL3の付近にあつて第
2のレギユレータ弁50が作動中であり、図4および図
5に示すように制御圧室38内の圧力がほぼ1.0kg
f/cm2前後で激しい変化がなく、吸入空気量比もほ
ぼ90〜80%前後で激しい変化を生じていないので、
開閉弁33の動作は鈍化しており、圧力スイツチPSが
作動する第3の設定値(8.0kgf/cm2)の前後
において消費側の圧縮空気消費に頻繁な変化が生じて
も、開閉弁33が吸入口32を頻繁に開閉するいわゆる
ハンチング減少を生ずることなく、しかも圧縮機の駆動
動力比を極めて高い状態に維持することができる。仮に
本実施例において第2のレギユレータ弁50を配設しな
いこととすると、アンローダ3の制御圧室38内の圧力
は開閉弁33の位置L1〜L2間は図4の実線に沿つて制
御されるが、その後第1のレギユレータ弁40の弁体4
5が流体通路43を全開した状態以降は制御圧室38内
の圧力上昇を鈍化させる要素は2個の固定オリフイス2
8,29しか存在しないので、制御圧室38内の圧力は
急速に上昇し、レシーバタンク7内の圧力がまだ充分に
は蓄圧されていない7.6kgf/cm2もしくはこれ
より低い圧力のときに開閉弁33が吸入口32を全閉し
てしまうことになる。その結果、消費側における配管内
圧力が全体に低下すると共に、急激な圧縮空気の消費が
あつたときには第3のガス通路23に設けたオリフイス
29の存在によりアンローダの制御圧室38内圧力の排
出速度が遅く、よつて開閉弁33の開弁遅れが生じ圧縮
機本体1において空気の吸入と圧縮空気の供給が即座に
追従できないという問題が生ずる。そのため、消費側の
配管内圧力の大幅な低下を招くほか、圧縮ガスの消費が
断続的かつ頻繁に行われたときには前記開閉弁が繰り返
し開閉を繰り返すいわゆるハンチング現象を発生させ、
使用機器の駆動に障害が生ずることになる。開閉弁33
が吸入口32を全閉すると圧縮機本体1への空気の吸入
もレシーバタンク7への圧縮空気の吐出も行われなくな
るので、この場合は圧力スイツチPSに設定する第3の
設定値を8.0kgf/cm2に維持するとすれば、第
1のレギユレータ弁40に設定する第1の設定値を7.
3kgf/cm2程度に設定せざるを得ず、全負荷運転
時の吐出空気圧が7kgf/cm2である圧縮機本体1
に過負荷運転を強いることになる。さらに消費側の圧縮
空気消費によりレシーバタンク7内の圧力が第3の設定
値前後で大きくかつ頻繁に変化せしめられたときは、開
閉弁33はレシーバタンク7内の圧力が7.8〜8.0
kgf/cm2のとき頻繁に吸入口32を開閉するハン
チング減少を生ずるとともに、駆動動力比においても劣
るものとなる。
In the present embodiment, the compressor body 1
The consumption of the compressed air in the receiver tank 7 via the consumption-side air pipe 11 rapidly increases during the no-load operation, and the pressure in the receiver tank 7 gradually decreases to the first set value (7.1 k).
When gf / cm 2 ) is exceeded, the pressure switch PS detects this and excites the switching valve 26, and the valve body 27 is switched to the first position where the flow position is the portion A. As a result, the control pressure chamber 38 of the unloader 3 is communicated with the suction passage 12 via the second gas passage 22, the switching valve 26, the third gas passage 23 and the opening 19, and the high pressure in the control pressure chamber 38 is increased by the suction passage. 12 is released into the first regu- lator valve 4 at the same time.
The valve body 45 of 0 closes the fluid passage 43 and releases the capacity control operation. When the pressure in the receiver tank 7 exceeds the first set value, the compressor body 1 is brought into the capacity control operation state again. And the pressure in the receiver tank 7 is about 7.5.
When it is ˜7.8 kgf / cm 2 , as shown in FIG. 6, the opening / closing valve 33 of the unloader 3 is near the positions L 2 and L 3 , and the second regulator valve 50 is in operation. As shown in 5, the pressure in the control pressure chamber 38 is approximately 1.0 kg.
Since there is no drastic change around f / cm 2 and no drastic change in the intake air amount ratio around 90-80%,
The operation of the opening / closing valve 33 is slowed down, and even if the compressed air consumption on the consumption side frequently changes before and after the third set value (8.0 kgf / cm 2 ) at which the pressure switch PS operates, the opening / closing valve 33 It is possible to maintain the drive power ratio of the compressor at an extremely high state without causing so-called hunting reduction in which 33 frequently opens and closes the suction port 32. If the second regulator valve 50 is not provided in the present embodiment, the pressure in the control pressure chamber 38 of the unloader 3 is controlled along the solid line in FIG. 4 between the positions L 1 and L 2 of the opening / closing valve 33. However, after that, the valve body 4 of the first reguulator valve 40 is
After the state in which the fluid passage 43 is fully opened by the valve 5, the element that slows down the pressure increase in the control pressure chamber 38 is the two fixed orifices 2.
Since there are only 8, 29, the pressure in the control pressure chamber 38 rises rapidly, and when the pressure in the receiver tank 7 is 7.6 kgf / cm 2 or lower which is not sufficiently accumulated. The on-off valve 33 will fully close the suction port 32. As a result, the pressure in the pipe on the consumption side is entirely reduced, and when the compressed air is rapidly consumed, the presence of the orifice 29 provided in the third gas passage 23 discharges the pressure in the control pressure chamber 38 of the unloader. The speed is slow, so that there is a delay in opening the on-off valve 33, which causes a problem that the intake of air and the supply of compressed air cannot immediately follow in the compressor body 1. Therefore, in addition to causing a significant decrease in the pressure in the piping on the consumption side, when the consumption of compressed gas is intermittently and frequently performed, the on-off valve causes a so-called hunting phenomenon in which it repeatedly opens and closes,
This will cause a failure in driving the equipment used. On-off valve 33
When the intake port 32 is fully closed, neither suction of air into the compressor body 1 nor discharge of compressed air into the receiver tank 7 is performed. In this case, therefore, the third set value set in the pressure switch PS is set to 8. If the pressure is maintained at 0 kgf / cm 2 , the first set value set for the first reguulator valve 40 is 7.
The compressor body 1 has to be set to about 3 kgf / cm 2 and the discharge air pressure during full load operation is 7 kgf / cm 2.
Will be forced to overload. Further, when the pressure in the receiver tank 7 is changed largely and frequently around the third set value due to the consumption of compressed air on the consumption side, the opening / closing valve 33 causes the pressure in the receiver tank 7 to be 7.8 to 8. 0
When the pressure is kgf / cm 2 , hunting for opening and closing the suction port 32 is frequently reduced, and the driving power ratio is also inferior.

【0018】図7に本発明を適用したスクリユ式空気圧
縮機の容量制御装置の他の実施例の配管図を示す。本実
施例は第3のガス通路23に並列せしめて配設する第2
のレギユレータ弁50およびオリフイス29を、図8に
断面で示した1個のレギユレータ弁60にまとめた点に
おいてのみ図1に示す実施例と異なる。図8において、
前記レギユレータ弁60のハウジングは2個のハウジン
グ半体61,62とからなり、一方のハウジング半体6
2は、外形が段付円筒状を呈し、その小径部の端部には
前記切換弁26に連通する第1の開口部63が中心軸に
沿つて開口形成され、ハウジング半体62の内部には、
前記第1の開口部63に接続して該開口部63の内径よ
り大径の案内壁64が同軸的に形成され、該案内壁64
に接続して該案内壁64の内径より大径の接続用内壁6
5が同軸的にかつ大径部の端面に開口するように形成さ
れ、該内壁65には雌螺糸66が刻設される。前記第1
の開口部63と円筒状の案内壁64とが接続する段部に
は截頭円錐形の弁座67が形成され、小径部の外周には
雄螺糸68が刻設される。他方のハウジング半体63は
外形が段付円筒状を呈し、その小径部の外周には前記ハ
ウジング半体62の接続用内壁65の雌螺糸66に螺合
する雄螺糸69が刻設され、該小径部の端部には後述す
るスプリング受けとなる有底円筒状の案内壁70が中心
軸に沿つて開口形成される。大径部の端部には、前記ア
ンローダ3のハウジング31に形成した開口39と連通
する第2の開口部71が中心軸に沿つて開口形成され、
該開口部71の内壁には雌螺糸72が刻設されるととも
に、該開口部71と前記案内壁70の底部とが小径の連
通壁73で連通せしめられる。
FIG. 7 is a piping diagram of another embodiment of the capacity control device for the Skrill type air compressor to which the present invention is applied. In this embodiment, the second gas passage 23 is arranged in parallel with the second gas passage 23.
1 is different from the embodiment shown in FIG. 1 only in that the regulator valve 50 and the orifice 29 of FIG. 1 are combined into one regulator valve 60 shown in cross section in FIG. In FIG.
The housing of the reguulator valve 60 comprises two housing halves 61, 62, one housing half 6
2 has a stepped cylindrical shape, and a first opening portion 63 communicating with the switching valve 26 is formed at the end of the small diameter portion along the central axis, and is formed inside the housing half 62. Is
A guide wall 64 connected to the first opening 63 and having a diameter larger than the inner diameter of the opening 63 is coaxially formed.
Connecting inner wall 6 having a diameter larger than the inner diameter of the guide wall 64.
5 is formed coaxially and opens at the end surface of the large diameter portion, and an internal thread 66 is engraved on the inner wall 65. The first
A frusto-conical valve seat 67 is formed on the stepped portion connecting the opening 63 of the cylindrical guide wall 64 and the cylindrical guide wall 64, and a male thread 68 is engraved on the outer circumference of the small diameter portion. The outer half of the other half of the housing 63 has a stepped cylindrical shape, and a male thread 69 to be screwed into the female thread 66 of the connecting inner wall 65 of the housing half 62 is engraved on the outer circumference of the small diameter portion. At the end of the small diameter portion, a bottomed cylindrical guide wall 70 serving as a spring receiver described later is formed along the central axis. A second opening 71 communicating with the opening 39 formed in the housing 31 of the unloader 3 is formed at the end of the large diameter portion along the central axis.
An internal thread 72 is engraved on the inner wall of the opening 71, and the opening 71 and the bottom of the guide wall 70 are communicated with each other by a communication wall 73 having a small diameter.

【0019】ハウジング半体61の大径部の端部とハウ
ジング62の大径部との間にパツキング74を介装して
螺着すると、前記第1の開口部63と第2の開口部71
との間に、円筒状の案内壁64、雌螺糸66を刻設した
接続用内壁65、円筒状の案内壁70および小径の連通
壁73で囲まれた流体通路が形成される。両ハウジング
半体61,62の螺着前に、この流体通路内に弁体75
とスプリング76とが挿置される。弁体75は、前記円
筒状の案内壁64の内径より小なる外周を有し通孔77
を貫通形成した円筒状壁部と、該円筒状壁部の外径より
大で前記案内壁64に摺動自在とされる外径を有する円
筒状壁よりなるスカート部78と、前記通孔77を形成
した円筒状壁部の軸方向端部を閉じる端壁79とよりな
り、端壁79の周縁部には前記弁座67に着座する弁部
80が形成される。スプリング76は、一端を弁体75
の前記スカート部78と通孔77を形成した円筒状壁部
との境界部の段部に当接され、他端をハウジング半体6
2の案内壁70と連通壁73との境界部の段部に当接さ
れ、弁体75の弁部80をハウジング半体61の弁座6
7に着座せしめる方向に弁体75を付勢する。オリフイ
ス29は前記弁体65の端壁79に、前記第1の開口部
63内に開口するように貫通形成せしめられる。
When a packing 74 is interposed and screwed between the end of the large diameter portion of the housing half 61 and the large diameter portion of the housing 62, the first opening 63 and the second opening 71 are formed.
A fluid passage surrounded by the cylindrical guide wall 64, the connecting inner wall 65 in which the female thread 66 is engraved, the cylindrical guide wall 70, and the small-diameter communication wall 73 is formed between and. Before screwing the two housing halves 61, 62 into the fluid passage, a valve body 75
And the spring 76 are inserted. The valve body 75 has an outer circumference smaller than the inner diameter of the cylindrical guide wall 64 and has a through hole 77.
A cylindrical wall portion penetrating through the skirt, a skirt portion 78 formed of a cylindrical wall having an outer diameter larger than the outer diameter of the cylindrical wall portion and slidable on the guide wall 64, and the through hole 77. Is formed of an end wall 79 that closes the axial end of the cylindrical wall portion that forms the valve wall 80, and a valve portion 80 that seats on the valve seat 67 is formed at the peripheral edge of the end wall 79. The spring 76 has a valve body 75 at one end.
Of the housing half body 6 is brought into contact with the step portion of the boundary portion between the skirt portion 78 and the cylindrical wall portion in which the through hole 77 is formed, and the other end thereof is
The second guide wall 70 and the communication wall 73 are brought into contact with the stepped portion of the boundary portion, and the valve portion 80 of the valve body 75 is connected to the valve seat 6 of the housing half body 61.
The valve body 75 is biased in the direction in which the valve body 75 is seated on the seat 7. The orifice 29 is formed so as to penetrate the end wall 79 of the valve body 65 so as to open in the first opening 63.

【0020】本実施例によるときは、レシーバタンク7
内の圧力が予め定めた第3の設定値である8.0kgf
/cm2以下であつて、電磁式三方切換弁26が励磁さ
れており、その弁体27が流通位置をA部とする第1の
位置にあるとき、レシーバタンク7内の圧力が予め定め
た第1の設定値である7.1kgf/cm2を超える
と、第1のガス通路21内の圧力は第1のレギユレータ
弁40を通つて第2のガス通路22に供給され、オリフ
イス28を介してアンローダ3の制御圧室37に供給さ
れるとともに、前記第2のガス通路22に設けられたオ
リフイス28により減圧された空気圧は、第2のガス通
路22の分岐路25、切換弁26を通つて前記レギユレ
ータ弁60に達する。該レギユレータ弁60は、前記切
換弁26に連通する第1の開口部63と、アンローダ3
のハウジング31に形成した開口39に連通する第2の
開口部71とが流体通路により連通されており、該流体
通路内に配設された弁体75はスプリング76の弾力で
その弁部80を弁座67に着座せしめられており、前記
弁体75の端壁79はオリフイス29が貫通形成されて
第1および第2の開口部63,71を連通せしめている
から、切換弁26を経て第1の開口部63に供給される
空気圧が低い間は、アンローダ3のハウジング31の開
口部39より吸入通路12に供給される空気圧はオリフ
イス29によつて減圧されて導入される。しかしながら
前記レギユレータ弁60の第1の開口部63に供給され
る空気圧がさらに高まり、弁体75の端壁79に作用す
る力が前記オリフイス29の流通抵抗とスプリング76
の弾力とによつて定まる第2の設定値(例えば0.7K
gf/cm2)を超えると、弁体75はスプリング76
の付勢力に抗して離座し、前記第1の開口部63に供給
された空気圧はオリフイス29および前記弁体75の弁
部80と弁座67の間隙とを介して吸入通路12に導入
されることとなるので、本実施例においても図1に示し
た実施例と同一の作用および効果を奏することとなる。
また本実施例においては、圧縮機本体1の無負荷運転中
に消費側配管11を介してレシーバタンク7内の圧縮空
気の消費が急増することにより、レシーバタンク7内の
圧力が急速に減少して第1の設定値(7.1Kgf/c
2)を下回り、これによつて電磁式三方切換弁26が
その弁体27のB部を流通位置とする第2の位置からA
部を流通位置とする第1の位置に切換えられ、圧縮機本
体1の運転を無負荷運転から容量制御運転または全負荷
運転に切換えたとき、アンローダ3の制御圧室38内の
高圧の圧縮空気は第2のガス通路22、切換弁26、前
記レギユレータ弁60および開口19を介して吸入通路
12に導入される。このときレギユレータ弁60の弁体
75は、前記制御圧室38から流入する高圧の圧縮空気
の動圧によりスプリング76の弾力に抗して短時間弁座
67より離座させられ、第3のガス通路23を流れる空
気量を増大する。従つてアンローダ3の制御圧室38内
の圧力は前記短時間のうちに急速に低下するから、無負
荷運転から容量制御運転への切換え時にアンローダ3の
開閉弁33が吸入口32を閉塞した位置からの移動を促
進させ、該吸入口32から圧縮機本体1の作動室2への
空気の吸入開始時期を早めさせるので、レシーバタンク
7内の圧力を早期に回復し、消費側配管11内の圧力低
下を防止することができる。アンローダ3の制御圧室3
8内の圧力が低下すれば前記レギユレータ弁60の弁体
75はスプリング76の弾力により弁座67に着座し、
容量制御運転が可能の状態に復帰する。
According to the present embodiment, the receiver tank 7
The inner pressure is 8.0 kgf, which is the third preset value.
/ Cm 2 or less, the electromagnetic three-way switching valve 26 is excited, and when the valve body 27 is in the first position with the circulating position being the A part, the pressure in the receiver tank 7 is predetermined. When the first set value of 7.1 kgf / cm 2 is exceeded, the pressure in the first gas passage 21 is supplied to the second gas passage 22 through the first reguulator valve 40 and passes through the orifice 28. The air pressure supplied to the control pressure chamber 37 of the unloader 3 and depressurized by the orifice 28 provided in the second gas passage 22 passes through the branch passage 25 and the switching valve 26 of the second gas passage 22. Then, it reaches the reguulator valve 60. The regulator valve 60 has a first opening 63 communicating with the switching valve 26 and an unloader 3.
The second opening 71 communicating with the opening 39 formed in the housing 31 is communicated by the fluid passage, and the valve body 75 arranged in the fluid passage opens the valve portion 80 by the elasticity of the spring 76. It is seated on the valve seat 67, and the end wall 79 of the valve body 75 has the orifice 29 penetratingly formed so as to connect the first and second openings 63, 71 to each other. While the air pressure supplied to the opening 63 of No. 1 is low, the air pressure supplied to the suction passage 12 from the opening 39 of the housing 31 of the unloader 3 is reduced by the orifice 29 and introduced. However, the air pressure supplied to the first opening 63 of the regulator valve 60 further increases, and the force acting on the end wall 79 of the valve body 75 causes the flow resistance of the orifice 29 and the spring 76.
The second set value (for example, 0.7K) that is determined by the elasticity of
gf / cm 2 ) is exceeded, the valve body 75 becomes the spring 76.
The air pressure supplied to the first opening 63 is introduced into the suction passage 12 through the orifice 29 and the gap between the valve portion 80 of the valve body 75 and the valve seat 67. As a result, even in this embodiment, the same operation and effect as those of the embodiment shown in FIG. 1 can be obtained.
Further, in the present embodiment, the pressure in the receiver tank 7 is rapidly reduced due to a rapid increase in the consumption of the compressed air in the receiver tank 7 via the consumption side pipe 11 during the no-load operation of the compressor body 1. The first set value (7.1 Kgf / c
m 2 ), which causes the electromagnetic three-way switching valve 26 to move from the second position where the portion B of the valve body 27 is in the circulating position to A
When the operation of the compressor body 1 is switched from the no-load operation to the capacity control operation or the full-load operation by switching to the first position with the section as a circulation position, high-pressure compressed air in the control pressure chamber 38 of the unloader 3 Is introduced into the intake passage 12 through the second gas passage 22, the switching valve 26, the regulator valve 60 and the opening 19. At this time, the valve body 75 of the regulator valve 60 is separated from the valve seat 67 for a short time against the elasticity of the spring 76 by the dynamic pressure of the high-pressure compressed air flowing from the control pressure chamber 38, and the third gas is released. The amount of air flowing through the passage 23 is increased. Therefore, the pressure in the control pressure chamber 38 of the unloader 3 rapidly decreases in the short time, and therefore the opening / closing valve 33 of the unloader 3 closes the suction port 32 when switching from no-load operation to capacity control operation. From the suction port 32 to accelerate the start of sucking air from the suction port 32 into the working chamber 2 of the compressor body 1, so that the pressure in the receiver tank 7 is recovered early and the consumption side pipe 11 The pressure drop can be prevented. Control pressure chamber 3 of unloader 3
If the pressure inside 8 decreases, the valve body 75 of the reguulator valve 60 is seated on the valve seat 67 by the elasticity of the spring 76,
It returns to the state where capacity control operation is possible.

【0021】図9に本発明を適用したスクリユ式空気圧
縮機の容量制御装置の他の実施例の配管図を示す。本実
施例は、基本的には図7に示した実施例と同一であつ
て、第3のガス通路23が連通する開口19が、アンロ
ーダ3の2個のスプリング36,37を収容したシリン
ダ室に連通するようにハウジング31に設けられている
点においてのみ異なる。従つて図7に示す実施例と同一
の部分に同一符号を付してその説明は省略する。本実施
例においては、レシーバタンク7内の圧力が第1の設定
値を超えて第2の設定値に達するまでの間は、第1のレ
ギユレータ弁40を通り減圧された圧縮空気が前記レギ
ユレータ弁60、第3のガス通路23および開口19を
介してアンローダ3のシリンダ室に供給され、開口39
を通つて吸入通路12に導入される。しかし、レシーバ
タンク7内の圧力が第2の設定値を超えて第1のガス通
路21内の高圧の圧縮空気が第2のガス通路22および
開口30を介して制御圧室38内に供給され、圧縮機本
体1が無負荷運転に移行した後において、消費側の圧縮
空気の消費の急増により圧力スイツチPSが第1の設定
値を下回つたことを検知すると、電磁式三方切換弁26
の切換えにより制御圧室38内の高圧の圧縮空気が第2
のガス通路22より前記レギユレータ弁60に供給さ
れ、図7に示す実施例について説明したように弁体75
を短時間に離座させ、一時的に多量の高圧圧縮空気を第
3のガス通路23に送り出す。本実施例においては、こ
の高圧の圧縮空気は第3のガス通路23および開口19
を介してシリンダ室に供給される。従つてシリンダ室に
供給された圧縮空気の高圧はピストン34の背面に、か
つスプリング36,37の付勢力と同一方向に一時的に
作用し、同時に制御圧室38内の圧力は急速に減少する
ので、アンローダ3の開閉弁33の無負荷運転時に吸入
口32を閉塞していた位置から吸入口32を全開する位
置に向つて急速に移動せしめられる。この移動は、図7
に示す実施例に比し、第3のガス通路23に送出された
空気圧がピストン34の背面に作用する分だけ促進され
る。なお図1および図7に示す実施例において、アンロ
ーダ3における開閉弁33の移動手段としてピストン3
4を図示したが、該ピストン34に代え、アンローダ3
のハウジング31により外周縁を該ハウジング31に固
定されるダイアフラムを用いても、全く同一の作用効果
を奏することは自明である。
FIG. 9 shows a piping diagram of another embodiment of the capacity control device for a Skrill type air compressor to which the present invention is applied. This embodiment is basically the same as the embodiment shown in FIG. 7, in which the opening 19 through which the third gas passage 23 communicates is a cylinder chamber in which the two springs 36 and 37 of the unloader 3 are housed. The only difference is that the housing 31 is provided so as to communicate with. Therefore, the same parts as those of the embodiment shown in FIG. 7 are designated by the same reference numerals and the description thereof will be omitted. In the present embodiment, until the pressure in the receiver tank 7 exceeds the first set value and reaches the second set value, the compressed air that has been depressurized through the first reguulator valve 40 is the regurator valve. 60, the third gas passage 23, and the opening 19 to supply the cylinder chamber of the unloader 3 with the opening 39.
It is introduced into the suction passage 12 through However, the pressure in the receiver tank 7 exceeds the second set value, and the high-pressure compressed air in the first gas passage 21 is supplied into the control pressure chamber 38 via the second gas passage 22 and the opening 30. , After the compressor main body 1 shifts to the no-load operation, when it is detected that the pressure switch PS falls below the first set value due to a rapid increase in consumption of compressed air on the consumption side, the electromagnetic three-way switching valve 26
The high pressure compressed air in the control pressure chamber 38 is
Is supplied to the reguulator valve 60 from the gas passage 22 of the valve body 75, as described in the embodiment shown in FIG.
Are separated from each other in a short time, and a large amount of high-pressure compressed air is temporarily sent out to the third gas passage 23. In this embodiment, the high pressure compressed air is supplied to the third gas passage 23 and the opening 19.
Is supplied to the cylinder chamber via. Therefore, the high pressure of the compressed air supplied to the cylinder chamber temporarily acts on the back surface of the piston 34 and in the same direction as the urging force of the springs 36 and 37, and at the same time, the pressure in the control pressure chamber 38 rapidly decreases. Therefore, the opening / closing valve 33 of the unloader 3 can be rapidly moved from the position where the suction port 32 is closed to the position where the suction port 32 is fully opened during the no-load operation. This movement is shown in FIG.
Compared with the embodiment shown in FIG. 5, the air pressure sent to the third gas passage 23 is accelerated by the amount of acting on the back surface of the piston 34. In the embodiment shown in FIGS. 1 and 7, the piston 3 is used as a moving means of the opening / closing valve 33 in the unloader 3.
4, the unloader 3 is used instead of the piston 34.
It is obvious that even if a diaphragm whose outer peripheral edge is fixed to the housing 31 is used, the same effect can be obtained.

【0022】なお本発明において予め定められる第1の
設定値(実施例においては7.1kgf/cm2)は、
圧縮機本体の全負荷運転時の吐出圧(実施例においては
7.0kgf/cm2)によつて定められ、該吐出圧と
同一もしくはやや高い所定の圧力値である。また第3の
設定値は圧縮ガスの性質および用途により、レシーバタ
ンクに蓄圧せしめる最大値として定められる圧力であつ
て、一般に圧縮空気を動力源とする空圧機器に圧縮空気
を供給する圧縮機としては、前記空圧機器までの配管の
圧力降下分を見込んで、前記第1の設定値より1〜2k
gf/cm2だけ高い圧力値(実施例においては8.0
kgf/cm2)に設定したものである。本発明におい
て予め定められる第2の設定値は、第1のレギユレータ
弁とアンローダを含む回路構成によつて決定される圧力
値である。本発明の実施例においてはアンローダのピス
トンを圧縮機の吐出圧(7.0kgf/cm2)である
高い圧力で作動させる構成を回避し、第1のレギユレー
タ弁とアンローダの制御圧室間にオリフイスを備えて制
御圧室に供給する圧力を低下せしめたため実施例におい
ては0.7kgf/cm2としたが、この設定値は前記
オリフイスおよびアンローダの構成によつて当然に異つ
てくる値であり、第2のレギユレータ弁が作動を開始す
る時点を、圧縮機本体の吐出側の逆止弁よりレシーバタ
ンクを経て第1のレギユレータ弁に至るまでの間に存在
するガス圧が前記第1の設定値と第3の設定値との間で
ある圧力であるときとし、そのときの第3のガス通路に
供給される所定の圧力値であると理解すべきである。
The first preset value (7.1 kgf / cm 2 in the embodiment) predetermined in the present invention is
It is determined by the discharge pressure (7.0 kgf / cm 2 in the embodiment) during full load operation of the compressor body, and is a predetermined pressure value that is the same as or slightly higher than the discharge pressure. Further, the third set value is a pressure determined as a maximum value for accumulating in the receiver tank depending on the property and use of the compressed gas, and is generally used as a compressor for supplying compressed air to pneumatic equipment using compressed air as a power source. Is 1 to 2 k from the first set value in consideration of the pressure drop in the pipe to the pneumatic equipment.
Pressure value higher by gf / cm 2 (8.0 in the example)
(kgf / cm 2 ). The second set value determined in advance in the present invention is a pressure value determined by the circuit configuration including the first regurator valve and the unloader. In the embodiment of the present invention, the configuration in which the piston of the unloader is operated at a high discharge pressure (7.0 kgf / cm 2 ) of the compressor is avoided, and an orifice is provided between the first reguulator valve and the control pressure chamber of the unloader. In order to reduce the pressure supplied to the control pressure chamber due to the above, the value is 0.7 kgf / cm 2 in the embodiment, but this set value is naturally a value different depending on the configurations of the orifice and the unloader. At the time when the second regulator valve starts operating, the gas pressure existing between the check valve on the discharge side of the compressor body, the receiver tank, and the first regulator valve is set to the first set value. And a third set value, it should be understood as a predetermined pressure value supplied to the third gas passage at that time.

【0023】[0023]

【発明の効果】本発明によれば、アンローダの開閉弁に
固定される開閉弁移動手段は、制御圧室内に供給された
ガス圧と前記開閉弁を開方向に付勢するスプリングの弾
力とにより、前記開閉弁を無段階に移動せしめる型式の
ものであつて、前記アンローダの制御圧室に連通する第
2のガス通路は、第1のレギユレータ弁を介してレシー
バタンクに連通する第1のガス通路に連結されており、
前記第1のレギユレータ弁は第1のガス通路内のガス圧
が予め定めた第1の設定値を超えるまでは該レギユレー
タ弁の流体通路を開路することがないから、前記第1の
ガス通路内のガス圧が前記第1の設定値以下であるとき
は、アンローダはその開閉弁を前記スプリングの付勢力
でガス吸入口を全開位置に保持し、圧縮機本体は原動機
による全負荷運転が行われる。前記圧縮機本体の吐出側
に設けた逆止弁からレシーバタンクを経て前記第1のガ
ス通路までの間の圧縮ガス圧の圧力が予め定めた第1の
設定値を超えたときは、第1のレギユレータ弁の流体通
路を開路させてアンローダの制御圧室に圧力を供給し、
開閉弁を供給した圧力に応じて移動させ、容量制御運転
に移行する。このとき切換弁および第3のガス通路を介
して、前記吸入口より圧縮機本体の作動室側の吸入通路
に前記第1のレギユレータ弁を通過した圧縮空気の一部
を導入する。この第3のガス通路には予め定めた固定の
流体通路を備えたオリフイスが設けられているので、こ
のオリフイスを通り前記吸入通路に圧縮空気の一部を導
入することにより、アンローダの制御圧室内の圧力上昇
を低速化することができる。
According to the present invention, the on-off valve moving means fixed to the on-off valve of the unloader uses the gas pressure supplied into the control pressure chamber and the elastic force of the spring for urging the on-off valve in the opening direction. A second gas passage communicating with the control pressure chamber of the unloader, the first gas communicating with a receiver tank via a first regulator valve. Connected to the aisle,
In the first gas passage, the first regulator valve does not open the fluid passage of the regulator valve until the gas pressure in the first gas passage exceeds a first preset value. When the gas pressure of is less than the first set value, the unloader holds the opening / closing valve of the gas intake port at the fully opened position by the urging force of the spring, and the compressor body is operated at full load by the prime mover. . When the pressure of the compressed gas pressure from the check valve provided on the discharge side of the compressor body to the first gas passage through the receiver tank exceeds the first preset value, the first To open the fluid passage of the regulator valve to supply pressure to the control pressure chamber of the unloader,
The on-off valve is moved according to the supplied pressure, and the capacity control operation is started. At this time, a part of the compressed air that has passed through the first regulator valve is introduced into the suction passage on the working chamber side of the compressor body from the suction port through the switching valve and the third gas passage. The third gas passage is provided with an orifice, which is provided with a predetermined fixed fluid passage. Therefore, by introducing a part of the compressed air into the suction passage through the orifice, a control pressure chamber of the unloader is provided. The pressure rise can be slowed.

【0024】この状態から第1のガス通路21内の圧縮
ガスがさらに増大すると、その圧力増大に応じて第2の
ガス通路内の圧力も増大する。この圧力が第2の設定値
を超えると第2のレギユレータ弁の流体通路を開路させ
て、該レギユレータ弁に並列に設けられた前記オリフイ
スとともに圧縮ガスをアンローダの吸入口より圧縮機本
体側の吸入通路に導入することとなる。第2のレギユレ
ータ弁は、切換弁を介して第3のガス通路に供給する圧
力が増大するにつれてアンローダの吸入口より圧縮機本
体側の吸入通路に導入する圧縮ガスの量を増大し、この
間はアンローダの制御圧室の圧力上昇は第1のガス通路
内のガス圧の増大にかかわらず鈍化させる。しかし第2
のレギユレータ弁を通過する圧縮ガス量が該レギユレー
タ弁の構成から許容される最大量に達すると、アンロー
ダの制御圧室内の圧力も第1のガス通路内の圧力増大に
従つて上昇する。そして圧縮機本体の吐出側の逆止弁よ
りレシーバタンクを経て前記第1のガス通路までの間に
存在するガス圧が圧力スイツチにより予め定めた第3の
設定値を超えたことが検出されると、切換弁が第1の位
置より第2の位置に切換えられ、第1のガス通路の圧力
が第1のレギユレータ弁を介することなく直接第2のガ
ス通路を経てアンローダの制御圧室に供給され、第3の
ガス通路は遮断されるので、アンローダの開閉弁移動手
段は開閉弁を前記吸入口が完全に閉塞される位置に移動
させ、圧縮機を無負荷運転に移行させる。従つて、前記
第1のガス通路内の圧力が予め定めた第1の値を超え、
第1のレギユレータ弁が流体通路を開路せしめてから、
ガス圧が予め定めた第3の値を超えるまでの圧縮機本体
の容量制御運転は、圧縮機本体の吐出側の逆止弁よりレ
シーバタンクを経て前記第1の通路までの間に存在する
ガス圧を前記第1の設定値(実施例においては7.1k
gf/cm2)と前記第3の設定値(実施例においては
8.0kgf/cm2)との間に確実に保持することが
できる。
When the compressed gas in the first gas passage 21 further increases from this state, the pressure in the second gas passage also increases in accordance with the increase in the pressure. When this pressure exceeds the second set value, the fluid passage of the second regulator valve is opened, and the compressed gas is sucked from the suction port of the unloader to the compressor main body side together with the orifice provided in parallel with the regulator valve. It will be introduced into the passage. The second reguulator valve increases the amount of compressed gas introduced into the suction passage on the compressor body side from the suction port of the unloader as the pressure supplied to the third gas passage via the switching valve increases, and during this period. The pressure increase in the control pressure chamber of the unloader is slowed down regardless of the increase in the gas pressure in the first gas passage. But the second
When the amount of compressed gas passing through the regulator valve reaches the maximum amount allowed by the configuration of the regulator valve, the pressure in the control pressure chamber of the unloader also rises as the pressure in the first gas passage increases. Then, it is detected that the gas pressure existing between the check valve on the discharge side of the compressor main body, the receiver tank and the first gas passage exceeds the third preset value by the pressure switch. And the switching valve is switched from the first position to the second position, and the pressure of the first gas passage is directly supplied to the control pressure chamber of the unloader via the second gas passage without passing through the first regulator valve. Then, since the third gas passage is shut off, the opening / closing valve moving means of the unloader moves the opening / closing valve to the position where the suction port is completely closed, and shifts the compressor to the no-load operation. Therefore, the pressure in the first gas passage exceeds a predetermined first value,
After the first reguulator valve opens the fluid passage,
The capacity control operation of the compressor main body until the gas pressure exceeds a predetermined third value is determined by the gas existing between the check valve on the discharge side of the compressor main body, the receiver tank, and the first passage. The pressure is set to the first set value (7.1 k in the embodiment).
gf / cm 2 ) and the third set value (8.0 kgf / cm 2 in the embodiment) can be reliably maintained.

【0025】前述したところから明らかなように、圧縮
機本体の吐出側の逆止弁よりレシーバタンクを経て前記
第1のガス通路までの間に存在する前記第1の設定値を
超えたときは、このガス圧の増大に応じてアンローダの
開閉弁移動手段によつて開閉弁を吸入口を全開する位置
から全閉する位置に向けて無段階に移動させてガスの吸
入量を制御する。これにより圧縮機本体は吸入ガス量を
無段階に制御された容量制御運転を行うから、圧縮機の
消費側の圧縮ガスの消費量に変動が生じた場合は、前記
ガス圧の変化に応答してアンローダの開閉弁移動手段が
開閉弁による吸入口の開度を調整し、消費量に応じた圧
縮ガス量をレシーバタンクに吐出する。圧縮機本体が無
負荷運転中に消費側の圧縮ガスの消費量に大きな変動が
生じた場合、前記圧縮機本体の吐出側の逆止弁よりレシ
ーバタンクを経て第1のガス通路までの間に存在するガ
ス圧が前記第1の設定値より低下したことを圧力スイツ
チが検出すると、切換弁は第2の位置から第1の位置に
切換えられ、圧縮機本体は容量制御運転に移行する。そ
して消費側の圧縮ガスの消費量が圧縮機本体からレシー
バタンクに吐出する圧縮ガス量を下回つて圧力スイツチ
が第3の設定値を超えたことを検出すると、切換弁は第
1の位置から第2の位置に切換えられて再び圧縮機の無
負荷運転が開始されることとなるが、圧縮機本体の容量
制御運転中で第2のレギユレータ弁の作動中において
は、前記第2および第3の通路に供給されるガス圧の増
大に応じて第3のガス通路を通つてアンローダの吸入口
より圧縮機本体側の作動室側の吸入通路に導入されるガ
ス量が増大するため、アンローダの制御圧室内の圧力は
前記第2のガス通路に供給される圧縮ガスの圧力増大ほ
どには増大せず、従つてアンローダの吸入口も開閉弁に
よつて急速に閉じることがないから、消費側の圧縮ガス
の消費量の変動により開閉弁が吸入口を頻繁に開閉する
いわゆる開閉弁のハンチング現象の発生を阻止すること
ができ、かつ圧縮機本体の吐出側の逆止弁よりレシーバ
タンクを経て第1のガス通路までの間に存在する圧縮機
ガスの圧力が、圧縮機本体の全負荷運転状態における定
格吐出圧力と同一またはこれより僅かに高く定めた第1
の設定値を超えた後は、圧縮機本体の駆動動力が駆動原
動機の定格出力内に納まるようにアンローダの吸入口を
開閉弁が制御する開度を無段階に制御するとともに、圧
縮機本体の定格吐出圧力より1kgf/cm2程度高い
値に設定した第3の設定値に到達したときは、アンロー
ダの吸入口を開閉弁で完全に閉塞し、その後無負荷運転
に移行することができるので、消費側における圧縮ガス
の消費が断続的かつ頻繁に行われても、消費側配管内圧
力の低下と圧力変動幅を最小に止めることができ、圧縮
機本体の全負荷運転時に定格出力となる駆動原動機を用
いて動力効率のよい圧縮機本体の駆動を行うことがで
き、圧縮機本体および駆動原動機の安定した運転制御を
行うことができる。
As is clear from the above description, when the first set value existing between the check valve on the discharge side of the compressor body, the receiver tank, and the first gas passage is exceeded, In response to this increase in gas pressure, the on-off valve moving means of the unloader continuously moves the on-off valve from the position where the suction port is fully opened to the position where it is fully closed to control the amount of gas suctioned. As a result, the compressor main body performs a capacity control operation in which the amount of intake gas is controlled steplessly.Therefore, when the amount of compressed gas consumed on the consumption side of the compressor fluctuates, it responds to changes in the gas pressure. The opening / closing valve moving means of the unloader adjusts the opening degree of the intake port by the opening / closing valve, and discharges the compressed gas amount according to the consumption amount to the receiver tank. When a large fluctuation occurs in the consumption amount of the compressed gas on the consumption side during the no-load operation of the compressor body, between the check valve on the discharge side of the compressor body, the receiver tank, and the first gas passage. When the pressure switch detects that the existing gas pressure has dropped below the first set value, the switching valve is switched from the second position to the first position, and the compressor body shifts to capacity control operation. When the consumption amount of the compressed gas on the consumption side falls below the amount of compressed gas discharged from the compressor body to the receiver tank and it is detected that the pressure switch exceeds the third set value, the switching valve moves from the first position. The no-load operation of the compressor is started again after switching to the second position. However, during the capacity control operation of the compressor body and the operation of the second regulator valve, the second and third operations are performed. In accordance with an increase in the gas pressure supplied to the passage of the unloader, the amount of gas introduced from the suction port of the unloader into the suction passage on the working chamber side of the compressor body increases through the third gas passage. The pressure in the control pressure chamber does not increase as much as the pressure of the compressed gas supplied to the second gas passage increases, and accordingly, the inlet port of the unloader is not closed rapidly by the opening / closing valve. Fluctuations in compressed gas consumption The open / close valve can prevent the occurrence of the so-called hunting phenomenon of the open / close valve, which frequently opens and closes the suction port, and between the check valve on the discharge side of the compressor body, the receiver tank, and the first gas passage. The pressure of the compressor gas existing in the compressor is set to be equal to or slightly higher than the rated discharge pressure of the compressor body under full load operation.
After exceeding the set value of, the opening of the opening / closing valve that controls the intake port of the unloader is controlled steplessly so that the driving power of the compressor stays within the rated output of the driving prime mover. When the third set value, which is set to a value about 1 kgf / cm 2 higher than the rated discharge pressure, is reached, the intake port of the unloader can be completely blocked by the on-off valve, and then the no-load operation can be performed. Even if the compressed gas is consumed intermittently and frequently on the consumer side, it is possible to minimize the pressure drop in the consumer side pipe and the pressure fluctuation range, and drive the compressor to its rated output during full load operation. The prime mover can be used to drive the compressor body with high power efficiency, and stable operation control of the compressor body and the drive prime mover can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における配管図。FIG. 1 is a piping diagram according to an embodiment of the present invention.

【図2】そのアンローダの断面図。FIG. 2 is a sectional view of the unloader.

【図3】そのレギユレータ弁の断面図。FIG. 3 is a sectional view of the reguulator valve.

【図4】制御圧室内の圧力と開閉弁の開度との関係を示
す線図。
FIG. 4 is a diagram showing the relationship between the pressure in the control pressure chamber and the opening degree of the on-off valve.

【図5】開閉弁の開度と吸入空気量比との関係を示す線
図。
FIG. 5 is a diagram showing a relationship between an opening degree of an opening / closing valve and an intake air amount ratio.

【図6】容量制御時のレシーバタンク内の圧力と圧縮機
の駆動動力比との関係を示す線図。
FIG. 6 is a diagram showing the relationship between the pressure in the receiver tank and the drive power ratio of the compressor during capacity control.

【図7】本発明の他の実施例における配管図。FIG. 7 is a piping diagram according to another embodiment of the present invention.

【図8】そのレギユレータ弁の断面図。FIG. 8 is a sectional view of the reguulator valve.

【図9】本発明のその他の実施例における配管図。FIG. 9 is a piping diagram in another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 圧縮機本体 2 圧縮機の作動室 3 アンローダ 21 第1のガス通路 22 第2のガス通路 23 第3のガス通路 26 切換弁 28,29 オリフイス 32 吸入口 33 開閉弁 36,37 スプリング 38 制御圧室 40,50,60 レギユレータ弁 DESCRIPTION OF SYMBOLS 1 Compressor body 2 Compressor working chamber 3 Unloader 21 First gas passage 22 Second gas passage 23 Third gas passage 26 Switching valve 28,29 Orifice 32 Suction port 33 Opening valve 36,37 Spring 38 Control pressure Chamber 40, 50, 60 Regulator valve

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成3年10月2日[Submission date] October 2, 1991

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0017[Correction target item name] 0017

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0017】そして本実施例においては、圧縮機本体1
の無負荷運転中に消費側空気配管11を介してのレシー
バタンク7内の圧縮空気の消費が急増し、レシーバタン
ク7内の圧力が次第に降下して第1の設定値(7.1k
gf/cm) を下廻ると、圧力スイツチPSはこれ
を検出して切換弁26を励磁させ、その弁体27は流通
位置をA部とする第1の位置に切換えられる。これによ
りアンローダ3の制御圧室38は第2のガス通路22、
切換弁26、第3のガス通路23および開口19を介し
て吸入通路12に連通され、制御圧室38内の高圧は吸
入通路12内に逃がされ、同時に第1のレギユレータ弁
40の弁体45が流体通路43を閉じ、容量制御運転を
解除する。レシーバタンク7内の圧力が第1の設定値を
超えている場合は、圧縮機本体1は再び容量制御運転状
態となる。そしてレシーバタンク7内の圧力がほぼ7.
5〜7. 8kgf/cmのときは図6に示すように
アンローダ3の開閉弁33は位置LとLの付近にあ
つて第2のレギユレータ弁50が作動中であり、図4お
よび図5に示すように制御圧室38内の圧力がほぼ1.
0kgf/cm前後で激しい変化がなく、吸入空気量
比もほぼ90〜80%前後で激しい変化を生じていない
ので、開閉弁33の動作は鈍化しており、圧力スイツチ
PSが作動する第3の設定値 (8.0kgf/c
)の前後において消費側の圧縮空気消費に頻繁な変
化が生じても、開閉弁33が吸入口32を頻繁に開閉す
るいわゆるハンチング現象を生ずることなく、しかも圧
縮機の駆動動力比を極めて高い状態に維持することがで
きる。仮に本実施例において第2のレギユレータ弁50
を配設しないこととすると、アンローダ3の制御圧室3
8内の圧力は開閉弁33の位置L〜L間は図4の実
線に沿つて制御されるが、その後第1のレギユレータ弁
40の弁体45が流体通路43を全開した状態以降は制
御圧室38内の圧力上昇を鈍化させる要素は2個の固定
オリフイス28,29しか存在しないので、制御圧室3
8内の圧力は急速に上昇し、レシーバタンク7内の圧力
がまだ充分には蓄圧されていない7.6k gf/cm
もしくはこれより低い圧力のときに開閉弁33が吸入
口32を全閉してしまうことになる。その結果、消費側
における配管内圧力が全体に低下すると共に、急激な圧
縮空気の消費があつたときには第3のガス通路23に設
けたオリフイス29の存在によりアンローダの制御圧室
38内圧力の排出速度が遅く、よつて開閉弁33の開弁
遅れが生じ圧縮機本体1において空気の吸入と圧縮空気
の供給が即座に追従できないという問題が生ずる。その
ため、消費側の配管内圧力の大幅な低下を招くほか、圧
縮ガスの消費が断続的かつ頻繁に行われたときには前記
開閉弁が繰り返し開閉を繰り返すいわゆるハンチング現
象を発生させ、使用機器の駆動に障害が生ずることにな
る。開閉弁33が吸入口32を全閉すると圧縮機本体1
への空気の吸入もレシーバタンク7への圧縮空気の吐出
も行われなくなるので、この場合は圧力スイツチPSに
設定する第3の設定値を8.0kgf/cmに維持す
るとすれば、第1のレギユレータ弁40に設定する第1
の設定値を7.3kgf/cm程度に設定せざるを得
ず、全負荷運転時の吐出空気圧が7kgf/cmであ
る圧縮機本体1に過負荷運転を強いることになる。さら
に消費側の圧縮空気消費によりレシーバタンク7内の圧
力が第3の設定値前後で大きくかつ頻繁に変化せしめら
れたときは、開閉弁33はレシーバタンク7内の圧力が
7.8〜8.0kgf/cmのとき頻繁に吸入口32
を開閉するハンチング減少を生ずるとともに、駆動動力
比においても劣るものとなる。
In the present embodiment, the compressor body 1
The consumption of the compressed air in the receiver tank 7 via the consumption-side air pipe 11 rapidly increases during the no-load operation, and the pressure in the receiver tank 7 gradually decreases to the first set value (7.1 k).
When gf / cm 2 ) is exceeded, the pressure switch PS detects this and excites the switching valve 26, and the valve body 27 is switched to the first position where the flow position is the A portion. As a result, the control pressure chamber 38 of the unloader 3 is moved to the second gas passage 22,
The high pressure in the control pressure chamber 38 is released into the suction passage 12 while being communicated with the suction passage 12 through the switching valve 26, the third gas passage 23, and the opening 19, and at the same time, the valve body of the first regulator valve 40. 45 closes the fluid passage 43 and releases the capacity control operation. When the pressure in the receiver tank 7 exceeds the first set value, the compressor body 1 is brought into the capacity control operation state again. The pressure in the receiver tank 7 is almost 7.
5-7. At 8 kgf / cm 2 , as shown in FIG. 6, the opening / closing valve 33 of the unloader 3 is located near the positions L 2 and L 3 , and the second regulator valve 50 is in operation, as shown in FIGS. 4 and 5. Thus, the pressure in the control pressure chamber 38 is almost 1.
Since there is no drastic change around 0 kgf / cm 2 and no drastic change in the intake air amount ratio around 90-80%, the operation of the on-off valve 33 is slowed down, and the third pressure switch PS operates. Set value of (8.0 kgf / c
Even if the compressed air consumption on the consumption side frequently changes before and after m 2 ), the so-called hunting phenomenon in which the opening / closing valve 33 frequently opens and closes the suction port 32 does not occur, and the driving power ratio of the compressor is extremely high. Can be kept high. For example, in the present embodiment, the second regulator valve 50
If not provided, the control pressure chamber 3 of the unloader 3
The pressure in the valve 8 is controlled along the solid line in FIG. 4 between the positions L 1 and L 2 of the opening / closing valve 33, but thereafter, after the valve body 45 of the first regulator valve 40 fully opens the fluid passage 43. Since there are only two fixed orifices 28 and 29 as elements for slowing down the pressure rise in the control pressure chamber 38, the control pressure chamber 3
The pressure in 8 rises rapidly and the pressure in the receiver tank 7 is not yet sufficiently accumulated at 7.6 kgf / cm.
When the pressure is 2 or lower, the on-off valve 33 will completely close the suction port 32. As a result, the pressure in the pipe on the consumption side is entirely reduced, and when the compressed air is rapidly consumed, the presence of the orifice 29 provided in the third gas passage 23 discharges the pressure in the control pressure chamber 38 of the unloader. The speed is slow, so that there is a delay in opening the on-off valve 33, which causes a problem that the intake of air and the supply of compressed air cannot immediately follow in the compressor body 1. Therefore, in addition to causing a large decrease in the pressure inside the piping on the consumption side, when the compressed gas is consumed intermittently and frequently, the on-off valve causes a so-called hunting phenomenon in which it repeatedly opens and closes, and drives the equipment used. There will be obstacles. When the on-off valve 33 fully closes the suction port 32, the compressor body 1
Since neither intake of air into the receiver tank 7 nor discharge of compressed air into the receiver tank 7 is performed, in this case, if the third set value set in the pressure switch PS is maintained at 8.0 kgf / cm 2 , First set on the reguulator valve 40
Setting the inevitable to set to about 7.3kgf / cm 2, discharge pressure at full load operation is forcing the overload operation the compressor body 1 is 7 kgf / cm 2. Further, when the pressure in the receiver tank 7 is changed largely and frequently around the third set value due to the consumption of compressed air on the consumption side, the opening / closing valve 33 causes the pressure in the receiver tank 7 to be 7.8 to 8. Frequent suction port 32 at 0 kgf / cm 2
As a result, hunting for opening and closing is reduced, and the drive power ratio becomes inferior.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0021[Correction target item name] 0021

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0021】図9に本発明を適用したスクリユ式空気圧
縮機の容量制御装置の他の実施例の配管図を示す。本実
施例は、基本的には図7に示した実施例と同一であつ
て、第3のガス通路23が連通する開口19が、アンロ
ーダ3の2個のスプリング36,37を収容したシリン
ダ室に連通するようにハウジング31に設けられている
点においてのみ異なる。従つて図7に示す実施例と同一
の部分に同一符号を付してその説明は省略する。本実施
例においては、レシーバタンク7内の圧力が第1の設定
値を超えて第の設定値に達するまでの間は、第1のレ
ギユレータ弁40を通り減圧された圧縮空気が前記レギ
ユレータ弁60、第3のガス通路23および開口19を
介してアンローダ3のシリンダ室に供給され、開口39
を通つて吸入通路12に導入される。しかし、レシーバ
タンク7内の圧力が第の設定値を超えて第1のガス通
路21内の高圧の圧縮空気が第2のガス通路22および
開口30を介して制御圧室38内に供給され、圧縮機本
体1が無負荷運転に移行した後において、消費側の圧縮
空気の消費の急増により圧力スイツチPSが第1の設定
値を下回つたことを検知すると、電磁式三方切換弁26
の切換えにより制御圧室38内の高圧の圧縮空気が第2
のガス通路22より前記レギユレータ弁60に供給さ
れ、図7に示す実施例について説明したように弁体75
を短時間に離座させ、一時的に多量の高圧圧縮空気を第
3のガス通路23に送り出す。本実施例においては、こ
の高圧の圧縮空気は第3のガス通路23および開口19
を介してシリンダ室に供給される。従つてシリンダ室に
供給された圧縮空気の高圧はピストン34の背面に、か
つスプリング36,37の付勢力と同一方向に一時的に
作用し、同時に制御圧室38内の圧力は急速に減少する
ので、アンローダ3の開閉弁33の無負荷運転時に吸入
口32を閉塞していた位置から吸入口32を全開する位
置に向つて急速に移動せしめられる。この移動は、図7
に示す実施例に比し、第3のガス通路23に送出された
空気圧がピストン34の背面に作用する分だけ促進され
る。なお図1および図7に示す実施例において、アンロ
ーダ3における開閉弁33の移動手段としてピストン3
4を図示したが、該ピストン34に代え、アンローダ3
のハウジング31により外周縁を該ハウジング31に固
定されるダイアフラムを用いても、全く同一の作用効果
を奏することは自明である。
FIG. 9 shows a piping diagram of another embodiment of the capacity control device for a Skrill type air compressor to which the present invention is applied. This embodiment is basically the same as the embodiment shown in FIG. 7, in which the opening 19 through which the third gas passage 23 communicates is a cylinder chamber in which the two springs 36 and 37 of the unloader 3 are housed. The only difference is that the housing 31 is provided so as to communicate with. Therefore, the same parts as those of the embodiment shown in FIG. 7 are designated by the same reference numerals and the description thereof will be omitted. In the present embodiment, until the pressure in the receiver tank 7 exceeds the first set value and reaches the third set value, the compressed air whose pressure has been reduced through the first reguulator valve 40 is the reguulator valve. 60, the third gas passage 23, and the opening 19 to supply the cylinder chamber of the unloader 3 with the opening 39.
It is introduced into the suction passage 12 through However, the pressure in the receiver tank 7 exceeds the third set value, and the high-pressure compressed air in the first gas passage 21 is supplied into the control pressure chamber 38 via the second gas passage 22 and the opening 30. , After the compressor main body 1 shifts to the no-load operation, when it is detected that the pressure switch PS falls below the first set value due to a rapid increase in consumption of compressed air on the consumption side, the electromagnetic three-way switching valve 26
The high pressure compressed air in the control pressure chamber 38 is
Is supplied to the reguulator valve 60 from the gas passage 22 of the valve body 75, as described in the embodiment shown in FIG.
Are separated from each other in a short time, and a large amount of high-pressure compressed air is temporarily sent out to the third gas passage 23. In this embodiment, the high pressure compressed air is supplied to the third gas passage 23 and the opening 19.
Is supplied to the cylinder chamber via. Therefore, the high pressure of the compressed air supplied to the cylinder chamber temporarily acts on the back surface of the piston 34 and in the same direction as the urging force of the springs 36 and 37, and at the same time, the pressure in the control pressure chamber 38 rapidly decreases. Therefore, the opening / closing valve 33 of the unloader 3 can be rapidly moved from the position where the suction port 32 is closed to the position where the suction port 32 is fully opened during the no-load operation. This movement is shown in FIG.
Compared with the embodiment shown in FIG. 5, the air pressure sent to the third gas passage 23 is accelerated by the amount of acting on the back surface of the piston 34. In the embodiment shown in FIGS. 1 and 7, the piston 3 is used as a moving means of the opening / closing valve 33 in the unloader 3.
4, the unloader 3 is used instead of the piston 34.
It is obvious that even if a diaphragm whose outer peripheral edge is fixed to the housing 31 is used, the same effect can be obtained.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0025[Name of item to be corrected] 0025

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0025】前述したところから明らかなように、圧縮
機本体の吐出側の逆止弁よりレシーバタンクを経て前記
第1のガス通路までの間に存在するガス圧が前記第1の
設定値を超えたときは、このガス圧の増大に応じてアン
ローダの開閉弁移動手段によつて開閉弁を吸入口を全開
する位置から全閉する位置に向けて無段階に移動させて
ガスの吸入量を制御する。これにより圧縮機本体は吸入
ガス量を無段階に制御された容量制御運転を行うから、
圧縮機の消費側の圧縮ガスの消費量に変動が生じた場合
は、前記ガス圧の変化に応答してアンローダの開閉弁移
動手段が開閉弁による吸入口の開度を調整し、消費量に
応じた圧縮ガス量をレシーバタンクに吐出する。圧縮機
本体が無負荷運転中に消費側の圧縮ガスの消費量に大き
な変動が生じた場合、前記圧縮機本体の吐出側の逆止弁
よりレシーバタンクを経て第1のガス通路までの間に存
在するガス圧が前記第1の設定値より低下したことを圧
力スイツチが検出すると、切換弁は第2の位置から第1
の位置に切換えられ、圧縮機本体は容量制御運転に移行
する。そして消費側の圧縮ガスの消費量が圧縮機本体か
らレシーバタンクに吐出する圧縮ガス量を下回つて圧力
スイツチが第3の設定値を超えたことを検出すると、切
換弁は第1の位置から第2の位置に切換えられて再び圧
縮機の無負荷運転が開始されることとなるが、圧縮機本
体の容量制御運転中で第2のレギユレータ弁の作動中に
おいては、前記第2および第3の通路に供給されるガス
圧の増大に応じて第3のガス通路を通つてアンローダの
吸入口より圧縮機本体側の作動室側の吸入通路に導入さ
れるガス量が増大するため、アンローダの制御圧室内の
圧力は前記第2のガス通路に供給される圧縮ガスの圧力
増大ほどには増大せず、従つてアンローダの吸入口も開
閉弁によつて急速に閉じることがないから、消費側の圧
縮ガスの消費量の変動により開閉弁が吸入口を頻繁に開
閉するいわゆる開閉弁のハンチング現象の発生を阻止す
ることができ、かつ圧縮機本体の吐出側の逆止弁よりレ
シーバタンクを経て第1のガス通路までの間に存在する
圧縮ガスの圧力が、圧縮機本体の全負荷運転状態におけ
る定格吐出圧力と同一またはこれより僅かに高く定めた
第1の設定値を超えた後は、圧縮機本体の駆動動力が駆
動原動機の定格出力内に納まるようにアンローダの吸入
口を開閉弁が制御する開度を無段階に制御するととも
に、圧縮機本体の定格吐出圧力より1kgf/cm
度高い値に設定した第3の設定値に到達したときは、ア
ンローダの吸入口を開閉弁で完全に閉塞し、その後無負
荷運転に移行することができるので、消費側における圧
縮ガスの消費が断続的かつ頻繁に行われても、消費側配
管内圧力の低下と圧力変動幅を最小に止めることがで
き、圧縮機本体の全負荷運転時に定格出力となる駆動原
動機を用いて動力効率のよい圧縮機本体の駆動を行うこ
とができ、圧縮機本体および駆動原動機の安定した運転
制御を行うことができる。
As is clear from the above description, the gas pressure existing between the check valve on the discharge side of the compressor body, the receiver tank and the first gas passage exceeds the first set value. When the gas pressure increases, the on-off valve moving means of the unloader continuously moves the on-off valve from the position where the intake port is fully opened to the position where it is fully closed to control the gas intake amount. To do. As a result, the compressor body performs capacity control operation in which the amount of intake gas is controlled steplessly,
When the amount of compressed gas consumed on the consumer side of the compressor fluctuates, the on-off valve moving means of the unloader adjusts the opening of the suction port by the on-off valve in response to the change in the gas pressure to reduce the consumption amount. The corresponding compressed gas amount is discharged to the receiver tank. When a large fluctuation occurs in the consumption amount of the compressed gas on the consumption side during the no-load operation of the compressor body, between the check valve on the discharge side of the compressor body, the receiver tank, and the first gas passage. When the pressure switch detects that the existing gas pressure has dropped below the first set value, the switching valve moves from the second position to the first position.
Is switched to the position of, and the compressor main body shifts to capacity control operation. When the consumption amount of the compressed gas on the consumption side falls below the amount of compressed gas discharged from the compressor body to the receiver tank and it is detected that the pressure switch exceeds the third set value, the switching valve moves from the first position. The no-load operation of the compressor is started again after switching to the second position. However, during the capacity control operation of the compressor body and the operation of the second regulator valve, the second and third operations are performed. In accordance with an increase in the gas pressure supplied to the passage of the unloader, the amount of gas introduced from the suction port of the unloader into the suction passage on the working chamber side of the compressor body increases through the third gas passage. The pressure in the control pressure chamber does not increase as much as the pressure of the compressed gas supplied to the second gas passage increases, and accordingly, the inlet port of the unloader is not closed rapidly by the opening / closing valve. Fluctuations in compressed gas consumption The open / close valve can prevent the occurrence of the so-called hunting phenomenon of the open / close valve, which frequently opens and closes the suction port, and between the check valve on the discharge side of the compressor body, the receiver tank, and the first gas passage. After the pressure of the compressed gas existing in the compressor exceeds the first set value which is the same as or slightly higher than the rated discharge pressure in the full load operating state of the compressor, the drive power of the compressor is driven. The opening that controls the inlet and outlet of the unloader is controlled steplessly so that it stays within the rated output of the prime mover, and the third discharge is set to a value higher than the rated discharge pressure of the compressor body by about 1 kgf / cm 2 . When the set value is reached, the intake port of the unloader can be completely closed by the on-off valve, and then the operation can shift to no-load operation, so even if the consumption of compressed gas on the consuming side is intermittent and frequent. It is possible to minimize the pressure drop in the piping on the consumption side and the pressure fluctuation range, and to drive the compressor body with high power efficiency by using the drive prime mover that provides the rated output during full load operation of the compressor body. The stable operation control of the compressor body and the driving prime mover can be performed.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機本体と、制御圧室に導入されたガ
ス圧に応動して開閉弁が吸入口を開閉し前記圧縮機本体
の作動室に吸入されるガス流量を制御するアンローダ
と、前記作動室の吐出側に逆止弁を介して連通され、吐
出された圧縮ガスを貯溜するレシーバタンクとを備えた
圧縮機において、 前記アンローダの開閉弁に固定され、前記制御圧室内に
供給されたガス圧と前記開閉弁を開方向に付勢するスプ
リングの弾力とにより前記開閉弁を無段階に移動せしめ
る開閉弁移動手段と、 前記レシーバタンクに連通する第1のガス通路と、前記
アンローダの制御圧室に連通する第2のガス通路とを連
結して、前記第1のガス通路内のガス圧が予め定めた第
1の設定値を超えたとき流体通路を開路して、第1のガ
ス通路より第2のガス通路にガス圧を供給する第1のレ
ギユレータ弁と、 前記アンローダの吸入口より圧縮機本体の作動室側の吸
入通路に連通する第3のガス通路と、前記第2のガス通
路と、前記第1のガス通路とを連結して、その弁体を前
記第2のガス通路と第3のガス通路とを連通せしめる第
1の位置と、前記第2のガス通路を第1のガス通路に連
通せしめる第2の位置とに、選択的に切換えるべくした
切換弁と、 前記第3のガス通路に設けられ、前記切換弁を介して供
給されるガス圧が予め定めた第2の設定値を超えたとき
流体通路を開路して、第3のガス通路のガスを前記アン
ローダの吸入口より圧縮機本体の作動室側の吸入通路に
導入する第2のレギユレータ弁と、該第2のレギユレー
タ弁に並列に前記第3のガス通路に設けられ、予め定め
た固定の流体通路を備えたオリフイスと、 前記圧縮機本体の吐出側の逆止弁よりレシーバタンクを
経て前記第1のガス通路までの間に存在するガス圧を検
出する圧力スイツチを含み、前記圧力が予め定めた第3
の設定値を超えたとき、前記切換弁を前記第1の位置よ
り第2の位置に切換え、前記圧力が前記第1の設定値を
下回つたとき、前記切換弁を前記第2の位置より第1の
位置に切換える切換手段とからなることを特徴とする圧
縮機における容量制御装置。
1. A compressor body, and an unloader for controlling a flow rate of gas sucked into an operation chamber of the compressor body by an opening / closing valve opening and closing an intake port in response to a gas pressure introduced into a control pressure chamber, A compressor provided with a receiver tank that communicates with a discharge side of the working chamber via a check valve and stores discharged compressed gas, wherein the compressor is fixed to an opening / closing valve of the unloader and is supplied to the control pressure chamber. Opening / closing valve moving means for moving the opening / closing valve steplessly by the gas pressure and the elastic force of the spring for urging the opening / closing valve in the opening direction, the first gas passage communicating with the receiver tank, and the unloader. A second gas passage communicating with the control pressure chamber is connected to the first gas passage to open the fluid passage when the gas pressure in the first gas passage exceeds a predetermined first set value. Gas pressure from the gas passage to the second gas passage A first reguulator valve for supplying, a third gas passage communicating with an intake passage on the working chamber side of the compressor body from the intake port of the unloader, the second gas passage, and the first gas passage. A first position for connecting the valve body to the second gas passage and the third gas passage, and a second position for connecting the second gas passage to the first gas passage. And a switching valve for selectively switching, and a fluid passage provided in the third gas passage when the gas pressure supplied through the switching valve exceeds a predetermined second set value. A second regulator valve that opens and introduces the gas in the third gas passage from the suction port of the unloader into the suction passage on the working chamber side of the compressor body, and the third regulator valve in parallel with the second regulator valve. Is equipped with a predetermined fixed fluid passage provided in the gas passage of And a pressure switch for detecting the gas pressure existing between the check valve on the discharge side of the compressor body and the receiver gas through the receiver tank to the first gas passage.
When the pressure falls below the first set value, the changeover valve is moved from the second position when the pressure falls below the first set value. A capacity control device for a compressor, comprising: switching means for switching to a first position.
【請求項2】 前記第2のレギユレータ弁は、前記第2
の設定値を調整可能としたものであることを特徴とする
請求項1に記載の圧縮機における容量制御装置。
2. The second reguulator valve comprises:
The capacity control device for a compressor according to claim 1, wherein the set value of is adjustable.
【請求項3】 前記第3のガス通路に設けた第2のレギ
ユレータ弁は、前記切換弁に連通する第1の開口部と、
前記アンローダの吸入口より圧縮機本体の作動室側の吸
入通路に連通する第2の開口部を備えたハウジングと、
該ハウジング内に形成されて前記第1の開口部と第2の
開口部とを連通する流体通路と、該流体通路内に配設さ
れてスプリングにより前記第1の開口部を閉塞すべく付
勢されている弁体とからなり、前記オリフイスは、前記
弁体内に形成されて前記第1の開口部と第2の開口部と
を常時連通せしめる孔であることを特徴とする請求項1
に記載の圧縮機における容量制御装置。
3. A second reguulator valve provided in the third gas passage, and a first opening communicating with the switching valve,
A housing having a second opening communicating with the suction passage on the working chamber side of the compressor body from the suction port of the unloader;
A fluid passage formed in the housing to connect the first opening and the second opening, and a spring disposed in the fluid passage for closing the first opening with a spring. 2. The orifice is a hole formed in the valve body for allowing the first opening and the second opening to communicate with each other at all times.
A capacity control device in the compressor according to.
JP3216486A 1991-08-02 1991-08-02 Capacity control device for compressor Expired - Fee Related JP2952377B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3216486A JP2952377B2 (en) 1991-08-02 1991-08-02 Capacity control device for compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3216486A JP2952377B2 (en) 1991-08-02 1991-08-02 Capacity control device for compressor

Publications (2)

Publication Number Publication Date
JPH06123295A true JPH06123295A (en) 1994-05-06
JP2952377B2 JP2952377B2 (en) 1999-09-27

Family

ID=16689188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3216486A Expired - Fee Related JP2952377B2 (en) 1991-08-02 1991-08-02 Capacity control device for compressor

Country Status (1)

Country Link
JP (1) JP2952377B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5584673A (en) * 1994-03-30 1996-12-17 Hoerbiger Ventilwerke Aktiengesellschaft Device for reducing the pressure of a compressor in the idling and shutdown mode
EP1251280A1 (en) * 2001-04-19 2002-10-23 Virgilio Mietto Intake control valve for an air compressor
CN104481846A (en) * 2014-12-12 2015-04-01 贵州中电振华精密机械有限公司 Double-function balance air inlet valve
CN104632595A (en) * 2014-12-31 2015-05-20 中冶南方工程技术有限公司 Converter gas pressure machine outlet pressure control method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5584673A (en) * 1994-03-30 1996-12-17 Hoerbiger Ventilwerke Aktiengesellschaft Device for reducing the pressure of a compressor in the idling and shutdown mode
EP1251280A1 (en) * 2001-04-19 2002-10-23 Virgilio Mietto Intake control valve for an air compressor
CN104481846A (en) * 2014-12-12 2015-04-01 贵州中电振华精密机械有限公司 Double-function balance air inlet valve
CN104632595A (en) * 2014-12-31 2015-05-20 中冶南方工程技术有限公司 Converter gas pressure machine outlet pressure control method

Also Published As

Publication number Publication date
JP2952377B2 (en) 1999-09-27

Similar Documents

Publication Publication Date Title
US8496445B2 (en) Control system and method for pump output pressure control
US5681151A (en) Motor driven air compressor having a combined vent valve and check valve assembly
CN108397368B (en) Method for controlling engine-driven compressor and engine-driven compressor
JP2003521652A (en) In particular, a method and apparatus for controlling a lifting cylinder of a work machine.
CN100396916C (en) Control valve of variable displacement compressor
CN110206610B (en) Pressure control system based on fixed displacement engine oil pump with simplified structure
EP1552155B1 (en) Compressor with capacity control
EP0127559A1 (en) Variable capacity compressor and method of operating
US4232997A (en) Method and apparatus for controlling compressors
JPH0849662A (en) Lowering device for pressure of compressor
US4390324A (en) Pressure release valve for pumps
JPH06123295A (en) Capacity controller in compressor
KR20170057743A (en) System for controlling compressor
US20220136513A1 (en) Gas compressor
US4212599A (en) Method and device for regulating the output quantity of compressed medium of single and multi-stage screw and turbo compressor systems
JP2952378B2 (en) Capacity control device for compressor
JP6618347B2 (en) Engine-driven compressor start control method and engine-driven compressor
JP2814272B2 (en) Rotary compressor capacity control method
JP2688945B2 (en) Capacity controller for oil-free screw compressor
JPS6411836B2 (en)
CN203499955U (en) Novel variable working condition diaphragm compressor
JP2803238B2 (en) Compressor capacity control device
EP1427941B1 (en) Engine driven compressor
JP7427523B2 (en) Operation control method for engine-driven compressor and engine-driven compressor
JPH06129385A (en) Suction gas blocked type unloader

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees