JPH06123235A - Ultra-high supercharge internal combustion engine - Google Patents

Ultra-high supercharge internal combustion engine

Info

Publication number
JPH06123235A
JPH06123235A JP34760491A JP34760491A JPH06123235A JP H06123235 A JPH06123235 A JP H06123235A JP 34760491 A JP34760491 A JP 34760491A JP 34760491 A JP34760491 A JP 34760491A JP H06123235 A JPH06123235 A JP H06123235A
Authority
JP
Japan
Prior art keywords
piston
engine
engine body
air supply
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34760491A
Other languages
Japanese (ja)
Inventor
Hiroyasu Tanigawa
浩保 谷川
Kazunaga Tanigawa
和永 谷川
Yukinaga Tanigawa
幸永 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP34760491A priority Critical patent/JPH06123235A/en
Publication of JPH06123235A publication Critical patent/JPH06123235A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase heat efficiency in form of an ultra-high supercharge internal combustion engine having its rotary main body by providing state, curved grooves reciprocating two times in the direction opposite to the direction of a piston in which it rotates one time in the inside face of a curve groove in which an engine main body is fitted rotatably. CONSTITUTION:A combustion chamber 2 is formed between respective pistons 3a, and respective guiding holes 4b are formed in the case of an engine main body 1. Respective curved grooves 6a and 6b reciprocating two times in the direction opposite to the direction of each piston 3a in which it rotates one time are provided in a recessed state on the inside faces of respective curved groove cylinders 5a and 5b in which the engine body 1 is fitted rotatably. Furthermore, respective piston pins 7a, 7b are engaged with respective curved groove 6a and 6b through respective guiding holes 4b. An exhaust injection holes group 8 assisting rotation of the engine body 1 by means of exhaust is arranged on the external surface of the engine body 1 and a scavenging hole group 9 is arranged in inside face of the combustion chamber 2. On the other hand, an intake path 11 connecting to both intake chambers 10a is arranged in the engine body 1 and external intake paths 12b are arranged on both sides of each piston 3a.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は,ピストンが往復しな
がら機関本体と共に回転し,機関本体の回転を動力とし
て利用する新機構による2サイクル内燃機関に関するも
のであり,略式名称を曲溝機関とする。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a two-cycle internal combustion engine having a new mechanism in which a piston reciprocates and rotates together with an engine body, and the rotation of the engine body is used as power. To do.

【0002】[0002]

【従来の技術】従来の内燃機関は,ピストンの往復動を
クランク機構を介して動力軸の回転に変換する構成をと
っている。そのためクランク機関による排気損失が35
%,冷却損失が30%にも達するともいわれているが,
ピストン等の往復運動は時計の振り子運動のような理想
の往復運動で損失がないとも考えられている。この発明
は,クランク機構で損失のない運動エネルギーの減少が
ない理想の往復運動が行われていると考えておらず,3
0%前後の損失がゐると考えており,言葉より実証する
のが良いので省エネの往復運動を求めて試作を繰返して
おります。即ち,ピストンが往復しながら機関本体と共
に回転して動力を得る最も簡単な新機構を発明し,特許
を取得しました。特許第1607151号回転往復ピス
トン内燃機関,特許第1609617号機関本体が回転
する航空用燃料噴射内燃機関,特許公報平3−9290
機関本体が回転する内燃機関。これら発明の概要は以下
のとおりである。通常の内燃機関のシリンダに対応する
機関本体に対向してピストンを収容して,ピストン間に
燃焼室を形成する。機関本体が回転自在に機関本体に外
嵌して固定した曲溝筒の内周面には曲溝を凹設してピス
トンから直径方向へ突設したピストンピンを曲溝に転動
自在に嵌め込む。そしてピストンが2往復する間に1回
転するよう曲溝を形成する。このように構成したこれら
の発明は,省エネの往復運動が得られるのであるが未解
決の問題もある。
2. Description of the Related Art A conventional internal combustion engine has a structure in which reciprocating motion of a piston is converted into rotation of a power shaft through a crank mechanism. Therefore, the exhaust loss due to the crank engine is 35
%, Cooling loss is said to reach 30%,
It is also considered that the reciprocating motion of the piston or the like is an ideal reciprocating motion like the pendulum motion of a watch and there is no loss. This invention does not consider that the ideal reciprocating motion without loss of kinetic energy without loss is performed by the crank mechanism,
We think that there will be about 0% loss, and since it is better to prove it from the words, we are repeating the trial production in search of energy-saving reciprocating motion. In other words, we invented and obtained a patent for the simplest new mechanism that obtains power by rotating with the body of the engine while the piston reciprocates. Japanese Patent No. 1607151 rotary reciprocating piston internal combustion engine, Japanese Patent No. 1609617 aviation fuel injection internal combustion engine whose engine body rotates, Japanese Patent Publication No. 3-9290
An internal combustion engine in which the engine body rotates. The outline of these inventions is as follows. A piston is housed so as to face an engine body corresponding to a cylinder of an ordinary internal combustion engine, and a combustion chamber is formed between the pistons. The engine body is rotatably fitted onto the engine body and fixed to the engine body.A curved groove is formed on the inner peripheral surface of the cylinder, and a piston pin protruding in the diameter direction from the piston is rotatably fitted in the curved groove. Put in. A curved groove is formed so that the piston makes one rotation while making two reciprocations. Although these inventions configured as described above can obtain reciprocating motion for energy saving, there is an unsolved problem.

【0003】[0003]

【発明が解決しようとする課題】ところで前記回転往復
ピストン内燃機関に於いては,給気室の容量が非常に大
きく,超高過給内燃機関以外での利用が困難であるた
め,その長所を活用して熱効率を上昇させ,あわせて排
気タービンも改良するものである。
However, in the rotary reciprocating piston internal combustion engine, since the capacity of the air supply chamber is very large and it is difficult to use it except for the super-high supercharged internal combustion engine, its advantages are obtained. It will be used to increase the thermal efficiency and also improve the exhaust turbine.

【0004】[0004]

【課題を解決するための手段】上記課題のうち超高過給
内燃機関としてその長所を活用する手段として,ピスト
ン3に改良を加えて給気室10の圧縮比を飛躍的に高め
ることにより,ピストンの往復運動を更に省エネの往復
運動にすると共に,超高過給内燃機関の掃気角を更に小
さくし,たとえば掃気角をクランク角に換算して普通1
20゜〜160°を60゜〜100°というように小さ
くして,より多くの容積形エネルギーとしてピストン3
a,3bを駆動して熱効率を上昇させ,掃気圧力を飛躍
的に高めることにより,排気噴射口群8からの排気の噴
射速度を高めて,強力に排気タービン17を駆動する。
[Means for Solving the Problems] As means for utilizing the advantages of the ultrahigh supercharged internal combustion engine among the above problems, by improving the piston 3 to dramatically increase the compression ratio of the air supply chamber 10, The reciprocating motion of the piston is made more energy-saving, and the scavenging angle of the supercharged internal combustion engine is further reduced.
By reducing 20 ° to 160 ° to 60 ° to 100 °, the piston 3 has more volumetric energy.
By driving a and 3b to increase the thermal efficiency and dramatically increase the scavenging pressure, the injection speed of the exhaust gas from the exhaust gas injection port group 8 is increased, and the exhaust turbine 17 is strongly driven.

【0005】上記課題のうち排気タービンの改良につい
ては,すでに特許取得のもの及び特許出願中のものから
選択又は改良して構成する。
Regarding the improvement of the exhaust turbine among the above-mentioned problems, it is configured by selecting or improving from those already acquired patents and patent applications.

【0006】給気室10の圧縮比を飛躍的に高める手段
としては,ピストン内を利用していた給気路をピストン
3の外周に移動して外給気路12を設けて,最短で最小
容積の外給気路12とすると共に構造を簡単にし,ピス
トン3の後部を圧縮比を高め易い形状の後部蓋13によ
り密閉する。即ち,給気室蓋18との隙間を最小とする
ため小型のピストンでは平面と平面の組合せとなり,大
型のピストンでは凸面と凹面の組合せとなるよう,後部
蓋13と給気室蓋18を形成する。
As a means for dramatically increasing the compression ratio of the air supply chamber 10, the air supply passage used in the piston is moved to the outer periphery of the piston 3 to provide the external air supply passage 12, and the shortest and the shortest. The volume of the external air supply passage 12 is reduced, the structure is simplified, and the rear portion of the piston 3 is sealed by the rear lid 13 having a shape that easily increases the compression ratio. That is, in order to minimize the gap with the air supply chamber cover 18, the rear cover 13 and the air supply chamber cover 18 are formed so that the small piston has a combination of flat surfaces and the large piston has a combination of a convex surface and a concave surface. To do.

【0007】ピストン3の後部を密閉するとピストン3
の頭部を内部から給気によって冷却することができな
い。従って潤滑油の霧により曲溝と共にピストン3の頭
部を内部から冷却する。即ち,ピストン突起14を図
3,図5に示すように後部蓋13の部分のみとして,ピ
ストン貫通穴19及びピストン空洞20を設けて,ピス
トン案内穴4を介して曲溝6に連絡し,ピストン3とピ
ストンピン7の回転往復運動により,潤滑油の霧を造っ
てピストン3の頭部を内部から循環冷却する。
When the rear part of the piston 3 is sealed, the piston 3
The head cannot be cooled by air supply from inside. Therefore, the head of the piston 3 is cooled from the inside together with the curved groove by the mist of the lubricating oil. That is, as shown in FIGS. 3 and 5, the piston projection 14 is provided only on the rear lid 13 and the piston through hole 19 and the piston cavity 20 are provided to communicate with the curved groove 6 through the piston guide hole 4. The rotary reciprocating motion of the piston 3 and the piston 3 creates a mist of lubricating oil to circulate and cool the head of the piston 3 from the inside.

【0008】排気タービン17を強力に駆動する一方向
流れ掃気とするため,給気室10a,10bを外給気路
12a,12b及び給気路11により連絡し,図2に示
す掃気穴群9と連絡して燃焼室2の左端に開口させ,排
気噴射口群8を燃焼室2の内周右側から機関本体1の外
周に,ほぼインボリュート曲線状に貫設して排気を排気
タービン17のタービン翼群22に噴射する。
In order to make the exhaust turbine 17 one-way flow scavenging that strongly drives, the air supply chambers 10a, 10b are connected by the external air supply passages 12a, 12b and the air supply passage 11, and the scavenging hole group 9 shown in FIG. To the left end of the combustion chamber 2, and the exhaust injection port group 8 is provided from the right side of the inner periphery of the combustion chamber 2 to the outer periphery of the engine body 1 in an almost involute curve shape to exhaust the exhaust gas to the turbine of the exhaust turbine 17. Inject to the blade group 22.

【0009】排気タービン17は図1,図2,図10,
図11に示すように機関本体1の中央部に回転自在に外
嵌するもので,排気噴射口群8の噴射排気により排気タ
ービン17を回転させるタービン翼群22を有し,又タ
ービン側主動大歯車23を具備しており,そのピッチ円
径に近い外径の一対の転動支持輪24a,24bが両側
に固着されている。この転動支持輪24a,24bによ
り排気タービン17を全方向に支持し,タービン側主動
大歯車23により排気タービン17の回転を歯車装置2
5で減速して,機関本体1に伝達するものです。
The exhaust turbine 17 is shown in FIGS.
As shown in FIG. 11, it is rotatably fitted on the center of the engine body 1 and has a turbine blade group 22 that rotates the exhaust turbine 17 by the injection and exhaust of the exhaust injection port group 8. A gear 23 is provided, and a pair of rolling support wheels 24a, 24b having an outer diameter close to the pitch circle diameter are fixed to both sides. The rolling support wheels 24a and 24b support the exhaust turbine 17 in all directions, and the turbine-side main drive gear 23 rotates the exhaust turbine 17 to rotate the gear device 2
It is decelerated by 5 and transmitted to the engine body 1.

【0010】歯車装置25は図1,図12に示すように
歯車箱26に枢支された状態で収容されており,排気タ
ービン17を全方向に支持しながら,その回転を減速し
て機関本体1に伝達するものです。従って,3組以上
(図では6組)のタービン側第1従動歯車27が必要で
あります。
As shown in FIGS. 1 and 12, the gear unit 25 is housed in a state that it is pivotally supported in a gear box 26. The gear unit 25 supports the exhaust turbine 17 in all directions while decelerating its rotation to reduce the engine body. It is something to convey to 1. Therefore, 3 or more sets (6 sets in the figure) of turbine side first driven gear 27 are required.

【0011】歯車箱26に枢支されたタービン側支軸2
9を図1の中央上部に図示しており,同様に枢支された
本体側支軸30を下部に図示してある。この2本の支軸
を1組として6組を歯車箱26に収容していて,図1,
図12に示すように6本のタービン側支軸29には,タ
ービン側主動大歯車23に噛合するタービン側第1従動
歯車27,及びタービン側第1主動小歯車31をそれぞ
れ固着していて,タービン側第1従動歯車27にはその
ピッチ円径に近い外径の一対の転動支持小輪28a,2
8bを両側に固着して,排気タービン17を全方向に支
持しながら,その回転を機関本体1側に伝達する。本体
側支軸30には,タービン側第1主動小歯車31に噛合
する本体側第2従動歯車32,及び機関本体1を回転さ
せる本体側従動大歯車34に噛合する本体側第2主動小
歯車33をそれぞれ固着する。
Turbine-side support shaft 2 pivotally supported by a gear box 26
9 is shown in the upper center of FIG. 1, and the main body side support shaft 30 similarly pivotally supported is shown in the lower part. Six sets are housed in the gear box 26 with the two spindles as one set.
As shown in FIG. 12, six turbine-side support shafts 29 are respectively fixed with a turbine-side first driven gear 27 and a turbine-side first driving small gear 31 that mesh with the turbine-side main driving gear 23. The turbine-side first driven gear 27 has a pair of rolling support small wheels 28 a, 2 having an outer diameter close to the pitch circle diameter thereof.
8b is fixed to both sides to support the exhaust turbine 17 in all directions while transmitting its rotation to the engine body 1 side. The main body side support shaft 30 has a main body side second driven gear 32 that meshes with the turbine side first main driving small gear 31, and a main body side second driven small gear that meshes with a main body side driven large gear 34 that rotates the engine main body 1. Fix each 33.

【0012】[0012]

【作 用】上記のように構成した機関本体が回転する
超高過給内燃機関は,ピストン3の後部が拡大されて機
関本体1に貫設されたピストン案内穴4に摺動自在に嵌
めこまれていて,ピストン3の頭部の断面積より大き
く,通常その行程容積はピストン頭部の行程容積より非
常に大きく,即ち排気噴射口群8が閉じてからの行程容
積の2倍程度と大きくなり,更に大きくすることが可能
なため,給気室10の圧縮比を大きくすることにより,
例えば10:1にすることにより,大きな掃気圧力が得
られ掃気時間を短縮できるし,掃気時間を短縮する程,
大きな過給圧力が得られる,というように通常の内燃機
関では不可能な超高過給を容易に実施できる。即ち,通
常の内燃機関のクランクと連接棒を取去って,構造を簡
単にすることにより大きな効果が得られる。
[Operation] In the supercharged internal combustion engine configured as described above, in which the engine body rotates, the rear portion of the piston 3 is enlarged and slidably fitted into the piston guide hole 4 penetrating the engine body 1. It is rarely larger than the cross-sectional area of the head of the piston 3, and its stroke volume is usually much larger than the stroke volume of the piston head, that is, about twice the stroke volume after the exhaust injection port group 8 is closed. Since it can be further increased, by increasing the compression ratio of the air supply chamber 10,
For example, by setting it to 10: 1, a large scavenging pressure can be obtained and the scavenging time can be shortened.
It is possible to easily achieve ultra-high supercharging, which is not possible with ordinary internal combustion engines, such as obtaining a large supercharging pressure. That is, a great effect can be obtained by removing the crank and connecting rod of a normal internal combustion engine and simplifying the structure.

【0013】本発明の最大の特徴は省エネの往復運動に
よって内燃機関を構成することです。完全弾性衝突では
衝突の際に運動エネルギーが減少しないことが証明さて
おります。即ち,密閉された気体にピストンが衝突する
と気体の圧力が上昇する状態です。通常の内燃機関のピ
ストン等の往復運動が完全弾性衝突になっていないこと
は誰の目にも明らかです。即ち,運動エネルギーの減少
が30%前後にもなるのではと予想しております。従っ
てピストンの往復運動をすべて完全弾性衝突にすること
により熱効率を30%程度上昇させて2倍の60%程度
にでき,更に排気タービンにより20%程度上昇させて
最高80%前後の熱効率を目標にしております。従って
ピストン3もピストンピン7により全方向弾性支持して
おり,ピストン3の往復運動も給気室10の圧縮比を飛
躍的に高めることにより完全弾性衝突に大きく近付ける
ことができます。即ち,構造を簡単にすることにより,
人類の夢である完全回転機関に遜色のない運動エネルギ
ーの減少が少ない,超高過給往復機関が得られます。
The greatest feature of the present invention is that the internal combustion engine is constructed by energy-saving reciprocating motion. It has been proved that in a completely elastic collision, the kinetic energy does not decrease during the collision. That is, when the piston collides with the sealed gas, the pressure of the gas rises. It is clear to everyone that the reciprocating motion of the piston of a normal internal combustion engine is not a perfect elastic collision. In other words, we expect that the decrease in kinetic energy will be around 30%. Therefore, by making all the reciprocating motions of the piston completely elastic collisions, the thermal efficiency can be increased by about 30% and doubled to about 60%, and further increased by about 20% by the exhaust turbine to achieve a maximum thermal efficiency of about 80%. I am. Therefore, the piston 3 is also elastically supported by the piston pin 7 in all directions, and the reciprocating motion of the piston 3 can greatly approach the complete elastic collision by dramatically increasing the compression ratio of the air supply chamber 10. That is, by simplifying the structure,
You can obtain an ultra-high supercharged reciprocating engine with less reduction in kinetic energy, which is comparable to the perfect rotating engine, which is a dream of humankind.

【0014】排気タービン17を強力に駆動するための
一方流れ掃気は,混合気を使用した場合その吹き抜けを
防止する効果も大きく,又給気室10の圧縮比を飛躍的
に高めることにより,排気を強力に噴射できるため排気
タービンの熱効率を上昇できる。
The one-flow scavenging for strongly driving the exhaust turbine 17 has a great effect of preventing blow-through when the air-fuel mixture is used, and by dramatically increasing the compression ratio of the air supply chamber 10, the exhaust gas is exhausted. Because it can inject strongly, the thermal efficiency of the exhaust turbine can be increased.

【0015】[0015]

【実施例】第1実施例について図面を参照しながら左右
にあるものは符号a,bを付して説明します。図1,図
2,図7,図8,図9に機関本体1を示すもので,この
機関本体1は通常の内燃機関のシリンダーに相当する。
4a,4bはピストン案内穴であり,機関本体1の長軸
方向に左右に回転中心軸を挾んで対向して設けている。
34は本体側従動大歯車であり,図1,図2,図7では
機関本体1の中央部左よりの外周に固着している。8は
排気噴射口群であり,図2,図7,図8に示すように後
述のピストン3a,3bが後退して下死点付近にあると
きは中央燃焼室2の右側に位置し,機関本体1の内周面
から外周面に開口し,図8に示すようにほぼインボリュ
ート曲線状に形成され,機関本体1の噴射排気により機
関本体1の回転を助勢し,排気の噴射速度により後述の
排気タービン17を駆動し,歯車装置を介して機関本体
1の回転を助勢する。9は掃気穴群であり,図2,図
7,図9に示すようにピストン3a,3bが後退して下
死点付近にあるときは燃焼室2の左側に位置し,燃焼室
2の掃気に使用するもので図9に示すように機関本体1
の回転方向(矢印)に回転中心方向にそれぞれ任意の角
度で混合気を噴射して掃気するもので,給気路11及び
ピストン3a,3bの外給気路12a,12bを介し
て,給気室10a,10bに連絡する。21は点火栓で
1ケ以上を回転バランス良く燃焼室2の外周中央より内
周に貫設螺着し,その配線は点火配線穴35を介して電
極軸36に配線する。37はスラストカラーで,37a
は本体側従動大歯車34を利用する。
[Embodiment] The first embodiment will be described with reference to the drawings on the left and right by a and b. 1, FIG. 2, FIG. 7, FIG. 8 and FIG. 9 show an engine body 1, which corresponds to a cylinder of a normal internal combustion engine.
Reference numerals 4a and 4b denote piston guide holes, which are provided so as to face each other in the longitudinal direction of the engine body 1 with the center axis of rotation sandwiched therebetween.
Reference numeral 34 denotes a main body side driven large gear, which is fixed to the outer periphery of the engine main body 1 from the left of the central portion in FIGS. 1, 2, and 7. Reference numeral 8 denotes an exhaust injection port group, which is located on the right side of the central combustion chamber 2 when pistons 3a and 3b, which will be described later, are retracted and near the bottom dead center as shown in FIGS. The main body 1 is opened from the inner peripheral surface to the outer peripheral surface and is formed in a substantially involute curve shape as shown in FIG. The exhaust turbine 17 is driven to assist the rotation of the engine body 1 via the gear device. Reference numeral 9 denotes a scavenging hole group, which is located on the left side of the combustion chamber 2 when the pistons 3a and 3b are retracted and near the bottom dead center as shown in FIGS. Used for the engine body 1 as shown in FIG.
The air-fuel mixture is injected and scavenged at an arbitrary angle in the direction of rotation (arrow) in the direction of rotation of the air, and the air is supplied through the air supply passage 11 and the external air supply passages 12a and 12b of the pistons 3a and 3b. Contact rooms 10a, 10b. Reference numeral 21 denotes an ignition plug, which is threadedly attached to one or more of the combustion chamber 2 from the center of the outer periphery to the inner periphery with good rotational balance, and its wiring is wired to the electrode shaft 36 through the ignition wiring hole 35. 37 is a thrust color, 37a
Uses the main body side driven large gear 34.

【0016】図3,図4,図5に左右一対のうち右側の
ピストン3bを示す。このピストン3bは左側の3aと
同一に形成し,機関本体1内に対向して往復自在に収容
してピストン3a,3b間に燃焼室2を形成する前部蓋
38及び外筒39,外筒39の後部から半径方向に対向
して突設し機関本体1のピストン案内穴4に嵌め込むピ
ストン突起14,外筒39の中部から後部に対向して凹
設し燃焼室2に給気する外給気路12,給気室10の圧
縮比を飛躍的に高める後部蓋13,ピストン内部を曲溝
6側から冷却するピストン貫通穴19及びピストン空洞
20,後述のピストンピン7を嵌着するピストンピン収
容筒40から構成している。
FIG. 3, FIG. 4 and FIG. 5 show the right piston 3b of the left and right pair. The piston 3b is formed in the same manner as the left side 3a, and is housed in the engine body 1 so as to face each other and reciprocally so as to form the combustion chamber 2 between the pistons 3a and 3b. A piston projection 14 that projects radially from the rear of the engine 39 and is fitted into the piston guide hole 4 of the engine body 1, and an outer cylinder 39 that is recessed from the middle of the outer cylinder 39 and faces the rear to supply air to the combustion chamber 2. Air supply passage 12, rear cover 13 for dramatically increasing the compression ratio of air supply chamber 10, piston through hole 19 and piston cavity 20 for cooling the inside of the piston from the curved groove 6 side, and piston for fitting piston pin 7 described later. It is composed of a pin housing cylinder 40.

【0017】図6に示すピストンピン7は,図1,図3
に示すようにピストン3a,3bのピストン収容筒40
a,40bにそれぞれ嵌着するものである。ピストンピ
ン7は頂部が傘状をしており,軸部には各転動輪を転動
さす先軌道41,元軌道42,ピン軌道16が凹設して
ある。この軌道は先転動輪43及び元転動輪44及び本
体転動輪15をころ軸受のように組立てる軌道でもあ
る。又先転動輪43の外径を元転動輪44の外径より大
きくしてある。従って曲溝6の片方の軌道を2段にして
拡大し,先転動輪43が燃焼室側の軌道を転動し,元転
動輪44が給気室側の軌道を転動する構成にしてある。
本体転動輪15は機関本体1のピストン案内穴4の両面
を軌道として,ピストン3と共に往復する。
The piston pin 7 shown in FIG.
As shown in FIG.
a and 40b, respectively. The top portion of the piston pin 7 has an umbrella shape, and a tip race 41 for rolling each rolling wheel, an original race 42, and a pin race 16 are recessed in the shaft portion. This track is also a track for assembling the front rolling wheels 43, the original rolling wheels 44, and the main body rolling wheels 15 like a roller bearing. Further, the outer diameter of the front rolling wheel 43 is made larger than the outer diameter of the original rolling wheel 44. Therefore, one raceway of the curved groove 6 is expanded in two stages so that the leading rolling wheels 43 roll on the combustion chamber side raceway and the original rolling wheels 44 roll on the air supply chamber side raceway. .
The main body rolling wheel 15 reciprocates together with the piston 3 with both sides of the piston guide hole 4 of the engine main body 1 as tracks.

【0018】機関本体1を回転自在に外嵌する曲溝筒5
a,5bは図1,図2に示している。この曲溝筒5a,
5bは,機関本体1の両スラストカラー37a,37b
の外側に対向して外嵌し,内周面にそれぞれ曲溝6a,
6bを凹設している。そして曲溝6にはそれぞれピスト
ンピン7の先転動輪43,元転動輪44を転動自在に嵌
め込み,ピストン3a,3bがそれぞれ2往復する間に
機関本体1が1回転するよう曲溝6a,6bは対向にほ
ぼサイン曲線状に形成している。又,45は吸気穴で両
曲溝筒5a,5bの外側にそれぞれ対向に貫設してお
り,その内周面は機関本体1の回転により,機関本体1
のピストン案内穴4a,4bとそれぞれ開閉する回転弁
46a,46bを形成している。
Curved groove tube 5 on which the engine body 1 is rotatably fitted.
a and 5b are shown in FIGS. This curved groove cylinder 5a,
5b is both thrust collars 37a, 37b of the engine body 1.
Of the curved grooves 6a, 6a,
6b is recessed. The leading rolling wheel 43 and the original rolling wheel 44 of the piston pin 7 are rotatably fitted into the curved groove 6 so that the engine body 1 rotates once while the pistons 3a and 3b reciprocate twice, respectively. 6b is formed to face each other in a substantially sine curve shape. Reference numeral 45 denotes an intake hole, which is formed so as to face each other outside the curved groove cylinders 5a and 5b so as to face each other.
And piston valves 4a and 4b, and rotary valves 46a and 46b that open and close, respectively.

【0019】図1,図2に左右の給気室蓋18a,18
b兼電極軸36,動力軸48を図示している。機関本体
1の両端部にそれぞれ固着して給気室10a,10bを
形成し,電極軸36部及び動力軸48部をそれぞれ左右
の曲溝筒蓋47a,47bに枢支している。電極軸36
には図にない電極があり,電極と点火栓21を連絡する
点火配線穴35を図2に示すように電極軸36,給気室
蓋18a,機関本体1に貫設している。給気室蓋18a
の一端は電極軸36を形成しており,補機用主動歯車5
1が固定されている。
1 and 2, the left and right air supply chamber lids 18a, 18 are shown.
b and electrode shaft 36 and power shaft 48 are shown. Air supply chambers 10a and 10b are formed by being fixed to both ends of the engine body 1, respectively, and an electrode shaft 36 portion and a power shaft 48 portion are pivotally supported by the left and right curved grooved lids 47a and 47b, respectively. Electrode shaft 36
There is an electrode not shown in the figure, and an ignition wiring hole 35 for connecting the electrode and the spark plug 21 is provided through the electrode shaft 36, the air supply chamber lid 18a and the engine body 1 as shown in FIG. Air supply chamber lid 18a
Has one end formed with an electrode shaft 36.
1 is fixed.

【0020】図1の47a,47bは曲溝筒蓋で,曲溝
筒5a,5bの外端面に固着していて,給気室蓋18
a,18bと一体に形成された電極軸36及び動力軸4
8を枢支しており,従って機関本体1も枢支している。
49は補機用従動歯車で前述の補機用主動歯車51に噛
合し,曲溝筒蓋47aに枢支された支軸50に固定して
いる。この曲溝筒蓋47aには図外潤滑油ポンプ,点火
装置等の補機を固着する。
Reference numerals 47a and 47b in FIG. 1 denote curved groove cylinder lids, which are fixed to the outer end surfaces of the curved groove cylinders 5a and 5b.
electrode shaft 36 and power shaft 4 formed integrally with a and 18b
8 and therefore the engine body 1 is also pivotally supported.
Reference numeral 49 is a driven gear for auxiliary equipment, which meshes with the main drive gear 51 for auxiliary equipment and is fixed to a support shaft 50 pivotally supported by the curved groove lid 47a. Auxiliary equipment such as a lubricating oil pump (not shown) and an ignition device are fixed to the curved groove lid 47a.

【0021】図1,図2,図10,図11に排気タービ
ン17を示す。この排気タービン17は機関本体1の中
央部に回転自在に外嵌するもので,機関本体1の排気噴
射口群8の噴射排気により,排気タービン17を回転さ
せるタービン翼群22を有し,又タービン側主動大歯車
23を具備している。24a,24bは一対の転動支持
輪であって,タービン側主動大歯車23のピッチ円径に
近い外径を有して歯車の両側に固着する。
The exhaust turbine 17 is shown in FIGS. 1, 2, 10 and 11. The exhaust turbine 17 is rotatably fitted on the central portion of the engine body 1 and has a turbine blade group 22 for rotating the exhaust turbine 17 by injection and exhaust of the exhaust injection port group 8 of the engine body 1. The turbine-side main drive gear 23 is provided. Reference numerals 24a and 24b denote a pair of rolling support wheels, which have an outer diameter close to the pitch circle diameter of the turbine-side main drive gear 23 and are fixed to both sides of the gear.

【0022】図1,図12に歯車装置25を示す。図1
の中央上部に歯車箱26に枢支されたタービン側支軸2
9を図示しており,下部にも同様に枢支された本体側支
軸30を図示している。この2本の支軸を1組として6
組を歯車箱26に収容している。図12は各歯車のピッ
チ円のみを実線で図示したもので,図12で示すように
6本のタービン側支軸29には,タービン側主動大歯車
23に噛合する。タービン側第1従動歯車27及びター
ビン側第1主動小歯車31が固定されていて,タービン
側第1従動歯車27にはそのピッチ円径に近い外径の一
対の転動支持小輪28a,28bを両側に固着してい
る。この転動支持小輪28a,28bは前述の排気ター
ビン17を全方向に支持するものである。従ってタービ
ン側第1従動歯車27は3組以上必要であり,実施例で
は6組使用している。6本の本体側支軸30にはタービ
ン側第1主動小歯車31に噛合する本体側第2従動歯車
32,及び機関本体1を回転させる本体側従動大歯車3
4に噛合する本体側第2主動小歯車33をそれぞれ固定
している。このような構成にすることにより大きな変速
比が得られる。たとえば実施例では,10:1の速比に
できる。機関本体1が左回転で1,000rpmのと
き,排気タービン17は10,000rpmで右回転す
る。又,排気タービン17をはずみ車として兼用でき
る。即ち,運動エネルギーが速度の2乗に比例するため
高速の回転体程,はずみ車としても有効である。機関本
体1に同程度の外径のはずみ車を取付けたときと比較す
ると,排気タービン17の重量を百分の1程度にできる
可能性があり,即ち,はずみ車を考慮する必要がなくな
る。
1 and 12 show the gear device 25. Figure 1
Turbine side support shaft 2 pivotally supported by a gear box 26 at the upper center of the
9 is also shown, and a main body side support shaft 30 that is also pivotally supported is also shown in the lower part. 6 with these two spindles as one set
The set is housed in the gear box 26. FIG. 12 shows only the pitch circles of the gears in solid lines. As shown in FIG. 12, the six turbine-side support shafts 29 mesh with the turbine-side main drive gear 23. The turbine-side first driven gear 27 and the turbine-side first main driving small gear 31 are fixed, and the turbine-side first driven gear 27 has a pair of rolling support small wheels 28a, 28b having an outer diameter close to the pitch circle diameter thereof. Are fixed on both sides. The rolling support small wheels 28a, 28b support the exhaust turbine 17 in all directions. Therefore, three or more sets of turbine-side first driven gears 27 are required, and six sets are used in the embodiment. The six main body side support shafts 30 include a main body side second driven gear 32 that meshes with the turbine side first main driving small gear 31, and a main body side driven large gear 3 that rotates the engine main body 1.
Main body side second main driving small gears 33 meshing with 4 are fixed. With such a configuration, a large gear ratio can be obtained. For example, in the embodiment, the speed ratio can be 10: 1. When the engine body 1 rotates counterclockwise at 1,000 rpm, the exhaust turbine 17 rotates clockwise at 10,000 rpm. The exhaust turbine 17 can also be used as a flywheel. That is, since the kinetic energy is proportional to the square of the speed, a rotating body with a higher speed is more effective as a flywheel. Compared with the case where a flywheel having the same outer diameter is attached to the engine body 1, the weight of the exhaust turbine 17 can be reduced to about one-hundredth, that is, it is not necessary to consider the flywheel.

【0023】図1,図2,図13に歯車箱26を示す。
この歯車箱26には排気タービン17の回転を減速して
機関本体1に伝える,前述の歯車装置25を収容してお
り,上下左右に4分割して歯車装置25及び排気タービ
ン17を組立てるものである。図13に歯車箱26及び
全体の外形を示す。歯車箱26の外側フランジ52b寄
りに排気穴53が開口し,フランジ52a,52間にバ
ランス兼冷却空気穴54がそれぞれ6箇所づつ開口して
おり,特に水平接手部に開口しております。即ち,排気
穴53はタービン側支軸29よりできるだけ離して設
け,タービン側支軸29は歯車箱26の枢支しやすい所
に設けるためで,同様にバランス兼冷却空気穴54も本
体側支軸30よりできるだけ離して開口します。従って
支軸を水平接手部に枢支するときは,水平接手部以外に
開口します。歯車箱26は図1に示すように,排気ター
ビン17に隣接しており,潤滑油の霧が充満するため,
図にないが通常のラビリンス気止め装置を設けて,空気
の流れを調整するバランス空気供給口を多数設けます。
又,排気穴53が貫通しているため,冷却空気との兼用
となり,潤滑油も冷却と潤滑の兼用となります。
The gear box 26 is shown in FIGS. 1, 2 and 13.
The gear box 26 accommodates the above-described gear device 25 that decelerates the rotation of the exhaust turbine 17 and transmits it to the engine body 1. The gear device 25 and the exhaust turbine 17 are assembled by dividing the gear device 25 into four parts vertically and horizontally. is there. FIG. 13 shows the gear box 26 and the overall outer shape. Exhaust holes 53 are opened near the outer flange 52b of the gear box 26, and six balance / cooling air holes 54 are opened between the flanges 52a and 52, especially at the horizontal joint. That is, the exhaust hole 53 is provided as far away as possible from the turbine side support shaft 29, and the turbine side support shaft 29 is provided in a place where the gear box 26 can be easily pivoted. Open as far as possible from 30. Therefore, when pivotally supporting the spindle on the horizontal joint, open it in the area other than the horizontal joint. As shown in FIG. 1, the gear box 26 is adjacent to the exhaust turbine 17 and filled with mist of lubricating oil.
Although not shown in the figure, a normal labyrinth air stop device is installed and a number of balanced air supply ports are provided to adjust the air flow.
Also, since the exhaust hole 53 penetrates, it also serves as cooling air, and the lubricating oil also serves as cooling and lubrication.

【0024】図14に第2実施例を示す。第1実施例に
平成2年特許願第23975号,機関本体が回転する燃
料噴射内燃機関の明細書の実施例に記載してある,固定
軸81を取付けたものです。ピストン3a,3bの形状
を変えてこのように構成したものは,機関本体が回転す
る燃料噴射内燃機関となり,燃焼室2の圧縮比を大きく
することにより,通常の焼玉機関を超高過給にしたよう
なものから,通常の圧縮着火機関を超高過給にしたよう
なものまで,用途に応じて多種多様に構成できます。
FIG. 14 shows a second embodiment. The fixed shaft 81 is attached to the first embodiment as described in the patent application No. 23975 of 1990, the embodiment of the specification of the fuel injection internal combustion engine in which the engine body rotates. The piston 3a, 3b configured in this way by changing the shape is a fuel injection internal combustion engine in which the engine body rotates, and by increasing the compression ratio of the combustion chamber 2, a normal hot ball engine is supercharged. It can be configured in various ways, depending on the application, from the ones that have been set up to the ones in which a normal compression ignition engine is supercharged.

【0025】図15,図16,図17に第2実施例のピ
ストン3を示す。第1実施例との相違点は,前述の固定
軸81に回転往復自在に外嵌するピストン内筒55を設
けることです。従ってピストン突起14を復活して,ピ
ストンピン収容筒40をピストン突起14内に延長しま
す。又,ピストン3の頭部の内部から冷却するためのピ
ストン貫通穴19,及びピストン空洞20は,図15,
図17のようにピストン突起14,及び外筒39,ピス
トン内筒55間に設けます。
FIGS. 15, 16 and 17 show the piston 3 of the second embodiment. The difference from the first embodiment is that a piston inner cylinder 55 that is fitted onto the fixed shaft 81 so as to be rotatable and reciprocally fitted is provided. Therefore, the piston protrusion 14 is restored and the piston pin housing cylinder 40 is extended into the piston protrusion 14. Further, the piston through hole 19 for cooling from the inside of the head of the piston 3 and the piston cavity 20 are shown in FIG.
As shown in Fig. 17, install between the piston protrusion 14, the outer cylinder 39, and the piston inner cylinder 55.

【0026】[0026]

【発明の効果】本発明は以上説明のように構成している
ので,以下に記載する効果を有するが,既に作用の項で
最大の特徴と効果を記載しておりますので,残りの効果
について説明します。内燃機関に於いて希薄混合気を燃
焼させると燃費が良くなることが知られており,又,過
給することにより出力が増大します。この2つの問題を
極限まで利用して,燃費が良く,小型軽量大出力低振動
の内燃機関を得るものです。即ち機関本体1を回転させ
ることにより給気に回転運動を行わせ,更に燃焼室2を
掃気するとき大量で超高過給,高圧力の混合気を,図9
に示すように機関本体1の回転方向(矢印)に高速噴射
することにより,短時間掃気を実現して熱効率を上昇さ
せ,混合気を更に高速回転させることにより,ピストン
3a,3bが上死点に近づくまでに,空気の重さの3倍
から4倍というガソリン蒸気の重さを利用して,遠心力
により燃焼室2の外周付近,即ち,点火栓付近を濃い混
合気として点火燃焼させます。このようにして燃焼させ
ますと,機関本体1の回転数の上昇と共に,より希薄な
混合気を燃焼させることができます。又,燃焼室2の掃
気が不完全で燃焼ガスが残る場合でも,燃焼ガスは空気
より比重が軽いため,ピストン3a,3bが上死点に近
づくまでには,燃焼室2の回転中心付近に集まることは
図1,図9から容易に想像ができます。即ち,燃料は温
度が高い程完全燃焼し易く,燃焼を助ける効果がありま
す。又,燃焼が燃焼室2の外周付近に限定されたと仮定
しても,超高過給してあるため大きな容積形エネルギー
を有し,即ち,少ない燃料の燃焼により大きな圧力が得
られ,圧力は対向ピストン全体に作用するため,燃焼面
から見た燃費が非常に良くなり,最も簡単に構成した超
ショートストロークの対向ピストンに作用させることに
より,小型軽量大出力低振動の内燃機関が得られる。
[Effects of the Invention] Since the present invention is configured as described above, it has the effects described below, but since the maximum features and effects have already been described in the section of action, the remaining effects will be described. I will explain. It is known that burning a lean air-fuel mixture in an internal combustion engine improves fuel efficiency, and supercharging increases output. By making the most of these two problems, we are able to obtain an internal combustion engine with good fuel economy, small size, light weight, large output and low vibration. That is, when the engine main body 1 is rotated to perform a rotary motion of the charge air, and when the combustion chamber 2 is further scavenged, a large amount of super-high supercharged, high-pressure mixture is generated.
As shown in Fig. 4, high-speed injection in the direction of rotation of the engine body 1 (arrow) realizes short-time scavenging to increase thermal efficiency, and the mixture is rotated at a higher speed, so that the pistons 3a and 3b are at top dead center. By using the weight of gasoline vapor, which is 3 to 4 times the weight of air, near the outer periphery of the combustion chamber 2, that is, near the spark plug, is ignited and burned as a rich mixture until approaching . When burned in this way, the leaner mixture can be burned as the engine speed of the engine 1 rises. Even when the scavenging of the combustion chamber 2 is incomplete and the combustion gas remains, since the combustion gas has a lower specific gravity than air, the combustion gas is close to the rotation center of the combustion chamber 2 until the pistons 3a and 3b approach the top dead center. The gathering can be easily imagined from Figures 1 and 9. In other words, the higher the temperature of the fuel, the easier it is for complete combustion, which has the effect of helping combustion. Even if it is assumed that the combustion is limited to the vicinity of the outer circumference of the combustion chamber 2, it has a large volumetric energy because it is supercharged, that is, a large pressure is obtained by the combustion of a small amount of fuel, and the pressure is Since it acts on the entire opposed piston, the fuel consumption seen from the combustion surface is very good. By acting on the opposed piston with the ultra-short stroke, which is the simplest structure, a compact, lightweight, large output, low vibration internal combustion engine can be obtained.

【0027】上記のような超高過給内燃機関を得るため
には,ピストン3の形状を簡単にして,給気室10の圧
縮比を飛躍的に高める必要があります。即ち,燃焼室2
に給気する給気路をピストン3の外側に移動して外給気
路12を設けると非常に簡単に構成できるし,燃焼室2
にも近道となり,ピストン後部に後部蓋13を設けてピ
ストン後部を密閉できます。従って給気室10の圧縮比
を飛躍的に高められます。
In order to obtain the above supercharged internal combustion engine, it is necessary to simplify the shape of the piston 3 and dramatically increase the compression ratio of the air supply chamber 10. That is, the combustion chamber 2
If the external air supply passage 12 is provided by moving the air supply passage for supplying air to the outside of the piston 3, it can be configured very simply, and the combustion chamber 2
It is also a shortcut, and the rear lid 13 can be installed on the rear of the piston to seal the rear of the piston. Therefore, the compression ratio of the air supply chamber 10 can be dramatically increased.

【0028】ピストン3は軽い程良く,摩擦損失も少な
い程よろしい。従ってピストン突起14は後端の必要部
分のみとします。又,ピストンピン7にはピン軌道16
を凹設して,本体転動輪15によるころがり接触として
摩擦損失を低減します。ピストンピン7をこのように構
成しますと,ピストン空洞20と曲溝6の通路が非常に
大きくなるため,ピストン頭部の前部蓋38を効果的に
冷却できます。
The lighter the piston 3, the better, and the smaller the friction loss, the better. Therefore, the piston protrusion 14 is limited to the necessary part at the rear end. Also, the piston pin 7 has a pin track 16
Is provided as a recess to reduce friction loss by making rolling contact with the main body rolling wheel 15. If the piston pin 7 is constructed in this way, the passage of the piston cavity 20 and the curved groove 6 becomes very large, so that the front lid 38 of the piston head can be effectively cooled.

【0029】第2実施例は,本発明を機関本体が回転す
る燃料噴射超高過給内燃機関として実施した場合の例で
す。燃料噴射内燃機関を超高過給して短時間掃気と高過
給を同時に行うことにより,燃費が良く,小型大出力の
内燃機関ができます。この場合もピストン3の形状を簡
単にして,給気室10の圧縮比を飛躍的に高める必要が
あり,そのようにしてあります。燃焼室2に燃料を噴射
するためには,前述〔0024〕〔0025〕のよう
に,固定軸81を回転中心軸方向に設け,ピストン3に
ピストン内筒55を貫設することになりますが,固定軸
81には潤滑油の流量がありますので,ピストン3の冷
却が非常に良くなり,大型の内燃機関が得られます。
又,圧縮着火機関として実施できますので,燃費を更に
良くすることができます。
The second embodiment is an example in which the present invention is carried out as a fuel injection super-high supercharged internal combustion engine in which the engine body rotates. By supercharging the fuel-injected internal combustion engine at the same time to perform short-term scavenging and high-charging at the same time, a fuel-efficient, compact, high-power internal combustion engine can be obtained. In this case as well, it is necessary to simplify the shape of the piston 3 and dramatically increase the compression ratio of the air supply chamber 10. In order to inject fuel into the combustion chamber 2, the fixed shaft 81 is provided in the direction of the rotation center axis and the piston inner cylinder 55 is provided through the piston 3 as described in [0024] and [0025] above. Since the fixed shaft 81 has a flow rate of lubricating oil, the cooling of the piston 3 is very good and a large internal combustion engine can be obtained.
Also, it can be implemented as a compression ignition engine, which can further improve fuel efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図 1】本発明の第1実施例を示す断面図であり,一
部断面を回転して図示している。
FIG. 1 is a cross-sectional view showing a first embodiment of the present invention, in which a partial cross section is rotated for illustration.

【図 2】本発明の第1実施例を示す断面図で,ピスト
ン3が90゜回転して下死点に移動している。
FIG. 2 is a sectional view showing the first embodiment of the present invention, in which the piston 3 rotates 90 ° and moves to the bottom dead center.

【図 3】第1実施例のピストン3を示す一部断面図で
ある。
FIG. 3 is a partial cross-sectional view showing a piston 3 of the first embodiment.

【図 4】図3に示すピストン3のA−A視図である。4 is an AA view of the piston 3 shown in FIG.

【図 5】図3に示すピストン3の平面図で,一部断面
図である。
5 is a plan view of the piston 3 shown in FIG. 3, and is a partial sectional view.

【図 6】第1実施例のピストンピン7を示す一部断面
図である。
FIG. 6 is a partial sectional view showing a piston pin 7 of the first embodiment.

【図 7】第1実施例の機関本体1を示す一部断面図で
ある。
FIG. 7 is a partial cross-sectional view showing the engine body 1 of the first embodiment.

【図 8】図7に示す機関本体1のB−B断面図であ
る。
8 is a BB cross-sectional view of the engine body 1 shown in FIG.

【図 9】図7に示す機関本体1のC−C断面図であ
る。
9 is a sectional view taken along line CC of the engine body 1 shown in FIG.

【図 10】第1実施例の排気タービン17を示す一部
断面図である。
FIG. 10 is a partial cross-sectional view showing the exhaust turbine 17 of the first embodiment.

【図 11】図10に示す排気タービン17の側面図で
ある。
11 is a side view of the exhaust turbine 17 shown in FIG.

【図 12】第1実施例の歯車装置25を示す略図であ
り,歯車のピッチ円径を実線により図示してある。
FIG. 12 is a schematic view showing the gear device 25 of the first embodiment, in which the pitch circle diameter of the gear is shown by a solid line.

【図 13】第1実施例の外形を示す正面図である。FIG. 13 is a front view showing the outer shape of the first embodiment.

【図 14】第2実施例を示す断面図である。FIG. 14 is a sectional view showing a second embodiment.

【図 15】第2実施例のピストン3を示す一部断面図
である。
FIG. 15 is a partial cross-sectional view showing a piston 3 of a second embodiment.

【図 16】図15に示すピストン3のE−E視図であ
る。
16 is a EE view of the piston 3 shown in FIG.

【図 17】図15に示すピストン3の平面図であり,
一部断面で示す。
FIG. 17 is a plan view of the piston 3 shown in FIG.
Shown in partial section.

【符号の説明】[Explanation of symbols]

左右に同じようなものがあるときは,左側にaの符号を
付け右をbとします。 1…機関本体 2…燃焼室 3…ピストン 4…
ピストン案内穴 5…曲溝筒 6…曲溝 7…ピストンピン 8…
排気噴射口群 9…掃気穴群 10…給気室 1
1…給気路 12…外給気路 13…後部蓋 14…ピストン突起 15…本体転動輪 16…ピ
ン軌道 17…排気タービン 18…給気室蓋
19…ピストン貫通穴 20…ピストン空洞 21
…点火栓 22…タービン翼群 23…タービン側
主動大歯車 24…転動支持輪 25…歯車装置 26…歯車箱
27…タービン側第1従動歯車 28…転動支持
小輪 29…タービン側支軸 30…本体側支軸
31…タービン側第1主動小歯車 32…本体側第
2従動歯車 33…本体側第2主動小歯車 34…本体側従動大歯
車 35…点火配線穴 36…電極軸 37…スラストカラー 38…前部
蓋 39…外筒 40…ピストンピン収容筒 41…先軌道 42…
元軌道 43…先転動輪 44…元転動輪 45
…吸気穴 46…回転弁 47…曲溝筒蓋 48…動力軸 49…補機用従動歯車 50…支軸
51…補機用主動歯車 52…フランジ 53
…排気穴 54…バランス兼冷却空気穴 55…ピストン内筒 81…固定軸
If there are similar items on the left and right, add the sign a to the left side and set the right side to b. 1 ... Engine body 2 ... Combustion chamber 3 ... Piston 4 ...
Piston guide hole 5 ... Curved groove cylinder 6 ... Curved groove 7 ... Piston pin 8 ...
Exhaust injection port group 9 ... Scavenging hole group 10 ... Air supply chamber 1
1 ... Air supply passage 12 ... External air supply passage 13 ... Rear lid 14 ... Piston protrusion 15 ... Main body rolling wheel 16 ... Pin track 17 ... Exhaust turbine 18 ... Air supply chamber lid
19 ... Piston through hole 20 ... Piston cavity 21
... Spark plug 22 ... Turbine blade group 23 ... Turbine-side main driving gear 24 ... Rolling support wheel 25 ... Gear device 26 ... Gear box 27 ... Turbine-side first driven gear 28 ... Rolling-support small wheel 29 ... Turbine-side support shaft 30 ... Main body side support shaft
31 ... Turbine side first main driving small gear 32 ... Main body side second driven gear 33 ... Main body side second driving small gear 34 ... Main body side driven large gear 35 ... Ignition wiring hole 36 ... Electrode shaft 37 ... Thrust collar 38 ... Front part Lid 39 ... Outer cylinder 40 ... Piston pin housing cylinder 41 ... Lead track 42 ...
Original track 43 ... Leading wheel 44 ... Original rolling wheel 45
… Intake hole 46… Rotary valve 47… Curved groove tube cover 48… Power shaft 49… Drive gear for auxiliary machine 50… Support shaft 51… Main drive gear for auxiliary machine 52… Flange 53
… Exhaust hole 54… Balance and cooling air hole 55… Piston inner cylinder 81… Fixed shaft

───────────────────────────────────────────────────── フロントページの続き (72)発明者 谷川 幸永 岡山県岡山市江並428−35 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yukinaga Tanigawa 428-35 Enami, Okayama City, Okayama Prefecture

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】対向して収容したピストン(3a)(3
b)間に燃焼室(2)を形成し,かつ軸方向に対向して
ピストン案内穴(4a)(4b)を設けた機関本体
(1)に,機関本体(1)が回転自在に曲溝筒(5a)
(5b)を対向にして外嵌しピストン(3a)(3b)
が同方向へ1回転する間に互いに反対方向へ2往復させ
る曲溝(6a)(6b)を曲溝筒(5a)(5bの内周
面にそれぞれ凹設してピストン(3a)(3b)からそ
れぞれ直径方向へ突設したピストンピン(7a)(7
b)を,ピストン案内穴(4a)(4b)を通して曲溝
(6a)(6b)にそれぞれ嵌め込むとともに,曲溝筒
(5a)(5b)の間で機関本体(1)の外周面には,
燃焼室(2)の片側に開口して排気により機関本体
(1)の回転を助勢する排気噴射口群(8)を貫設し,
燃焼室(2)の反片側の内周面に掃気穴群(9)を設
け,両側給気室(10a)(10b)にそれぞれ連絡す
る給気路(11)を機関本体(1)内に,外給気路(1
2a)(12b)をピストン(3a)(3b)の両側に
設けたことを特徴とした機関本体が回転する超高過給内
燃機関。
1. A piston (3a) (3) housed facing each other.
The engine body (1) is rotatably curved in the engine body (1) having the combustion chamber (2) formed between the b) and the piston guide holes (4a) (4b) facing each other in the axial direction. Cylinder (5a)
Pistons (3a) and (3b) fitted with (5b) facing each other
The pistons (3a) and (3b) are formed by forming curved grooves (6a) and (6b) that make two reciprocations in opposite directions while making one rotation in the same direction, respectively on the inner peripheral surfaces of the curved groove tubes (5a) and (5b). From the piston pin (7a) (7
b) is fitted into the curved grooves (6a) (6b) through the piston guide holes (4a) (4b), respectively, and the outer peripheral surface of the engine body (1) is fitted between the curved groove cylinders (5a) (5b). ,
An exhaust gas injection port group (8) which penetrates one side of the combustion chamber (2) and assists the rotation of the engine body (1) by exhaust gas is provided.
A scavenging hole group (9) is provided on the inner peripheral surface on the opposite side of the combustion chamber (2), and an air supply passage (11) that communicates with both air supply chambers (10a), (10b) is provided in the engine body (1). , External air supply route (1
An ultra-high supercharged internal combustion engine in which the engine body rotates, characterized in that pistons (3a) and (3b) are provided on both sides of the pistons (3a) and (3b).
【請求項2】ピストン(3)は,外給気路(12)を外
周に対向に設け,後部蓋(13)を設けて圧縮比を高め
易くし,ピストン突起(14)を後部蓋(13)部のみ
として開口部を設け空洞を貫設した,請求項1記載の機
関本体が回転する内燃機関。
2. The piston (3) is provided with external air supply passages (12) facing each other on the outer circumference, and a rear lid (13) is provided to facilitate increasing the compression ratio, and the piston projection (14) is provided to the rear lid (13). The internal combustion engine according to claim 1, wherein the opening is provided only as a part) and the cavity is provided through the opening.
【請求項3】ピストンピン(7)には本体転動輪(1
5)を設け,そのピン軌道(16)をピストンピン
(7)に凹設したことを特徴とした,請求項1記載の機
関本体が回転する超高過給内燃機関。
3. A body rolling wheel (1) is attached to the piston pin (7).
5) The super-high supercharged internal combustion engine according to claim 1, characterized in that a pin orbit (16) is provided in the piston pin (7).
【請求項4】ピストン(3)は,回転中心軸方向にピス
トン内筒(55)を設け,外筒(39)には外給気路
(12)を対向に凹設し,後部蓋(13)を設けて圧縮
比を高め易くし,ピストン突起(14)にピストン貫通
穴(19)を対向に設け,外筒(39)ピストン内筒
(55)間にピストン空洞(20)を設けた,請求項1
記載の機関本体が回転する超高過給内燃機関。
4. The piston (3) is provided with a piston inner cylinder (55) in the direction of the central axis of rotation, and an outer air supply passage (12) is provided in the outer cylinder (39) so as to face the rear cover (13). ) Is provided to facilitate increasing the compression ratio, the piston projection (14) is provided with piston through holes (19) facing each other, and the piston cavity (20) is provided between the outer cylinder (39) and the piston inner cylinder (55). Claim 1
An ultrahigh supercharged internal combustion engine in which the engine body described rotates.
JP34760491A 1991-10-29 1991-10-29 Ultra-high supercharge internal combustion engine Pending JPH06123235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34760491A JPH06123235A (en) 1991-10-29 1991-10-29 Ultra-high supercharge internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34760491A JPH06123235A (en) 1991-10-29 1991-10-29 Ultra-high supercharge internal combustion engine

Publications (1)

Publication Number Publication Date
JPH06123235A true JPH06123235A (en) 1994-05-06

Family

ID=18391344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34760491A Pending JPH06123235A (en) 1991-10-29 1991-10-29 Ultra-high supercharge internal combustion engine

Country Status (1)

Country Link
JP (1) JPH06123235A (en)

Similar Documents

Publication Publication Date Title
JP3016485B2 (en) Reciprocating 2-cycle internal combustion engine without crank
JP3943078B2 (en) Piston reciprocating engine with rotary cylinder
RU2161712C2 (en) Internal combustion engine with opposed pistons
CN100429431C (en) Power transmission mechanism with linear and rotation movement conversion
CN1873197B (en) Revolving internal-combustion engine
JPS62203923A (en) Swing piston type internal combustion engine
TW212824B (en) Multibank power plant having rotary internal combustion engine
CN208619228U (en) A kind of cylinder cam-type crankless internal-combustion engines
CN108571381A (en) Three stroke inner-cooled rotary engine
US4834032A (en) Two-stroke cycle engine and pump having three-stroke cycle effect
CN102678288B (en) Spherical double-ring rotary internal combustion engine
CN201874679U (en) Elliptic track-groove redirection connecting-rod piston type rotating engine
CN108644009A (en) A kind of internal combustion engine end cap and rotary combustion engine
JPH06280603A (en) Fuel injection internal combustion engine whose engine body rotates
JPH06123235A (en) Ultra-high supercharge internal combustion engine
CN208900210U (en) Three stroke inner-cooled rotary engine
CN206346830U (en) Bicyclic cylinder twin crankshaft engine
CN205714421U (en) Piston-rotating internal combustion engine
CN102032043B (en) Single-row reciprocating piston type rotor engine
CN101408130A (en) Internal combustion engine with four cylinders, four strokes, reciprocating piston and double-humped cam
WO1996018808A1 (en) Improvements in two-stroke engines
JPH0693874A (en) Three-combustion-chamber engine with main body rotating
JPS6282236A (en) Opposed-piston type coaxial engine
CN201705468U (en) Straight-axis internal combustion engine with bidirectional guide rails
CN101813025B (en) Straight shaft internal combustion engine with two-way guide rails