JPS6282236A - Opposed-piston type coaxial engine - Google Patents

Opposed-piston type coaxial engine

Info

Publication number
JPS6282236A
JPS6282236A JP22216785A JP22216785A JPS6282236A JP S6282236 A JPS6282236 A JP S6282236A JP 22216785 A JP22216785 A JP 22216785A JP 22216785 A JP22216785 A JP 22216785A JP S6282236 A JPS6282236 A JP S6282236A
Authority
JP
Japan
Prior art keywords
pistons
piston
engine
output shaft
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22216785A
Other languages
Japanese (ja)
Inventor
Shigeyoshi Karasawa
柄澤 重嘉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP22216785A priority Critical patent/JPS6282236A/en
Publication of JPS6282236A publication Critical patent/JPS6282236A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/32Engines characterised by connections between pistons and main shafts and not specific to preceding main groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B3/00Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F01B3/0079Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis having pistons with rotary and reciprocating motion, i.e. spinning pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B3/00Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F01B3/04Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis the piston motion being transmitted by curved surfaces
    • F01B3/06Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis the piston motion being transmitted by curved surfaces by multi-turn helical surfaces and automatic reversal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/26Engines with cylinder axes coaxial with, or parallel or inclined to, main-shaft axis; Engines with cylinder axes arranged substantially tangentially to a circle centred on main-shaft axis

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)

Abstract

PURPOSE:To aim at the promotion of miniaturization and lightweightiness as well as to make improvements in airtight properties and abrasion resistance, by installing a one wavelength, sine wavelike guide groove or a cam mechanism on a piston outer wall being machined in cylindrical form, and inserting an output shaft into a through hole at the central part of both pistons. CONSTITUTION:Pistons 1a and 1b are symmetically set up in a cylinder 3, and an interval between these pistons comes to a combustion chamber 8. Rotary motion and reciprocation of these pistons 1a and 1b both are simultaneously performed by a one wavelength, sine wavelike cam mechanism by the guide groove 12 installed on an outer wall of these pistons 1a and 1b. Turning output is taken out of an output shaft 2 piercing through the central part of both these pistons 1a and 1b. Thus, miniaturization and lightweightiness are well promoted and, what is more, airtight properties and abrasion resistance are improved.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は低振動、小型軽量、
低価格、省力化を目的としたエンジン装置に関する。
[Detailed Description of the Invention] (Industrial Application Field) This invention is characterized by low vibration, small size, light weight,
This article relates to an engine device aimed at low cost and labor saving.

(従来の技術) 従来の内燃機関のレシプロタイプのエ
ンジンにおいて、大部分はクランク機構を用いたもので
あり、ピストンの往復運動を回転運動に、回転運動を往
復運動に変換する装置であり他に三角形状のローターを
偏心回転するロータリータイプのエンジンとに大別でき
る。
(Prior Art) Most conventional reciprocating internal combustion engines use a crank mechanism, which is a device that converts the reciprocating motion of the piston into rotary motion and the rotary motion into reciprocating motion. It can be broadly classified into rotary type engines that rotate eccentrically with a triangular rotor.

(発明が解決しようとする問題点) レシプロタイプの
エンジンにおけるクランク軸には、ピストンの往復運動
による応力が大きく加わり、耐応力を上げる設計になる
為と、更にバランスを保つ為のカウンターウェイトが付
す為に重量が増す結果となる。
(Problem to be solved by the invention) The crankshaft in a reciprocating type engine is subjected to a large amount of stress due to the reciprocating movement of the piston, and the design is designed to increase the stress resistance, and a counterweight is added to maintain balance. This results in an increase in weight.

又、エンジン本体においては、シリンダーヘッド部分、
シリンダーブロック部分、クランクケース部分とに大別
できるが、これも重量と部品点数が多く、大型化し、複
雑な形状の部品を必要とし、ピストンは往復動によって
エンジン本体に1動を生じさせる為、防震に対する配慮
が特に必要となり、マウントに苦心をしなければならな
い。
In addition, in the engine body, the cylinder head part,
It can be roughly divided into the cylinder block part and the crankcase part, but these parts are also heavy, have a large number of parts, are large, and require parts with complex shapes, and the piston causes one movement in the engine body by reciprocating, so Special consideration must be given to earthquake prevention, and great care must be taken to mount it.

ロータリータイプのエンジンにおいては、可動部局てが
回転運動をしている方向に働く為に効率が非常に高く、
優秀なエンジンではあるが、三角形状のローターの各頂
点ではシリンダー壁に線接触をしており、ローターの側
面共、同時にシリンダー側壁に内接させなければならず
、気密性、耐摩耗性の向上が最大のポイントとなる。
In a rotary type engine, efficiency is extremely high because all moving parts work in the direction of rotation.
Although it is an excellent engine, each vertex of the triangular rotor is in line contact with the cylinder wall, and the sides of the rotor must also be inscribed in the cylinder side wall at the same time, improving airtightness and wear resistance. is the biggest point.

シリンダー内壁の加工においては、ローターの偏心回転
によって三角形状の各頂点の軌跡による曲率加工が複雑
な制御の下に行われなければならない為に、加工及び組
豆時の高精度が要求される。
In machining the inner wall of the cylinder, curvature machining must be performed under complicated control due to the trajectory of each triangular apex due to the eccentric rotation of the rotor, so high accuracy is required during machining and assembly.

(間肩点を解決する為の手段) この発明は目的を達成させる為に、次の様な構成として
いる。
(Means for solving the problem) In order to achieve the object, the present invention has the following configuration.

まず、発明に保るエンジンは、円筒形加工したピストン
の外壁に、カム機構である一波長の正弦波伏の案内溝を
設け、シリンダー内壁からのピンにローラーを接続して
これをピストンの案内溝に納めである。
First, in the engine according to the invention, a guide groove with a single wavelength sine wave, which is a cam mechanism, is provided on the outer wall of a cylindrical piston, and a roller is connected to a pin from the inner wall of the cylinder to guide the piston. It is stored in a ditch.

また、ピストンには中心部に、非円形加工した出力軸の
断面形状と同形の貫通口を設けている。
Further, the piston is provided with a through hole in the center thereof that has the same cross-sectional shape as the non-circular output shaft.

シリンダーは、内部をピストンと同じ円筒加工をして、
ピストンが回転可能にしてあり、2つのピストンを燃焼
室を中心に対称に配置して、出力軸は両ピストンの中心
部の貫通口に挿入されている。
The cylinder has the same cylindrical interior as the piston,
The pistons are rotatable, the two pistons are arranged symmetrically around the combustion chamber, and the output shaft is inserted into a through hole in the center of both pistons.

出力軸は断面形状を六角形にして、ネジれに対する剛性
を高めることができる。
The output shaft can have a hexagonal cross-section to increase its rigidity against torsion.

(作用) 円運動の軌跡を時間軸へ展開させると正弦波
の軌跡が生ずる。
(Function) When the locus of circular motion is expanded to the time axis, a sine wave locus is generated.

この正弦波を用いて、シリンダーとピストン間とのカム
機構に利用することによって、ピストンの往復運動をピ
ストン自身の回転運動に、回転運動を往復運動にそれぞ
れ変換することができ、ピストンの中心部に挿入しであ
る出方軸上を、ピストンは回転しながら往復運動をし、
出方軸には、断面形状を非円形加工しである為出方軸が
ピストンと同時に回転をしているので、回転力のみ伝達
されて回転が出力できる。
By using this sine wave in the cam mechanism between the cylinder and the piston, it is possible to convert the reciprocating motion of the piston into its own rotational motion, and the rotational motion into reciprocating motion. The piston rotates and reciprocates on the exit shaft when inserted into the
Since the output shaft has a non-circular cross-sectional shape, it rotates at the same time as the piston, so only rotational force is transmitted and rotation can be output.

また、同質量の2つのピストンを同一軸上で対称運動す
ることにより、ピストンの往復運動で生ずる振動は相互
に相殺され、理論上、振動は零となりエンジン本体は静
かな運転が可能となる。
Furthermore, by moving two pistons of the same mass symmetrically on the same axis, the vibrations caused by the reciprocating motion of the pistons cancel each other out, and in theory, the vibrations become zero, allowing quiet operation of the engine body.

(実施例) 第1図に示した円筒状のピストン1に、カ
ム機構である案内溝12をピストン外壁に施し、ピスト
ンlの中心部に出方軸層の貫通口13を設ける。
(Example) In the cylindrical piston 1 shown in FIG. 1, a guide groove 12, which is a cam mechanism, is provided on the outer wall of the piston, and a through hole 13 for the exiting shaft layer is provided in the center of the piston 1.

ピストン1の案内@12は、シリンダー3からの固定し
たビン7にローラー9を設けて接続される為、ピストン
の1往復に、ピストンの1回転が可能となる。
Since the guide @ 12 of the piston 1 is connected to the fixed pin 7 from the cylinder 3 by providing a roller 9, the piston can make one rotation for one reciprocation of the piston.

第2図に示した出力軸2には、外形をピストン−中心部
の貫通口13に対応する為の角型形状に加工して、ピス
トンの摺動を可能にし、ピストンの回転のみを伝達する
The output shaft 2 shown in Fig. 2 has a rectangular outer shape that corresponds to the through hole 13 in the center of the piston, allowing the piston to slide and transmitting only the rotation of the piston. .

また、出力軸2には内部を中空加工して、両端に角型形
状の開口部2aを、その内側に開口部2bを、混合ガス
の通気孔としてそれぞれ加工して出力軸2の両端を、シ
リンダー3の軸受部14に対応する為円形加工され、図
面の左端には円筒形状の側面に吸気孔6を設け、気化器
と対応する。
In addition, the output shaft 2 is hollow inside, and square openings 2a are formed at both ends, and openings 2b are formed inside the openings 2b as ventilation holes for the mixed gas. It is machined into a circular shape to correspond to the bearing part 14 of the cylinder 3, and an intake hole 6 is provided on the side of the cylindrical shape at the left end of the drawing to correspond to the carburetor.

気化器側にも吸気孔6と対応する開口部を設は出力軸の
回転に伴い、吸気孔6は開閉動作が可能となる。
An opening corresponding to the intake hole 6 is also provided on the carburetor side, so that the intake hole 6 can be opened and closed as the output shaft rotates.

第3図はエンジン本体を示し、2行程対向ピストン式同
軸エンジンの基本構成として、説明すると、ピストンl
a、ピストン1bはシリンダー3の内部に対称配置をし
、ピストン間は燃焼室−8となる。
Figure 3 shows the engine body, and the basic configuration of a two-stroke opposed piston type coaxial engine is as follows:
a, the pistons 1b are arranged symmetrically inside the cylinder 3, and a combustion chamber -8 is formed between the pistons.

ピストン1aの案内溝12aに昨月するローラー 9 
aは、シリンダー3の外部からの固定ビン7aによりロ
ーラー98に挿入され、固定ビン7aはシリンダー壁に
固定される。
Last month's roller in the guide groove 12a of the piston 1a 9
a is inserted into the roller 98 by a fixing pin 7a from outside the cylinder 3, and the fixing pin 7a is fixed to the cylinder wall.

出力軸受部14a114bはシリンダー3の両端に位置
し、出力軸2を支え、且つ、混合ガス停留M8m 、8
bを形成する。
The output bearing portions 14a114b are located at both ends of the cylinder 3, support the output shaft 2, and serve as the mixed gas reservoirs M8m, 8.
form b.

(動作例) 第3図の出方軸2に係合するピストンla
、lbは出力軸の回転によって、回転しながらカム機構
による案内溝に応じて移動を始め、ピストン1aqlb
は対称配列しである為に燃焼室8内を加圧し、その時は
、混合ガス停留M 8 a、8bは負圧を生じる。
(Operation example) Piston la engaging with the exit shaft 2 in Fig. 3
, lb begins to move according to the guide groove formed by the cam mechanism while rotating due to the rotation of the output shaft, and the piston 1aqlb
Since they are arranged symmetrically, the inside of the combustion chamber 8 is pressurized, and at that time, the mixed gas stations M 8 a and 8 b generate negative pressure.

負圧の生じた混合ガス停留室8a18bは、出力軸開口
部2aと吸気孔6とに通じている為、気化器より出力軸
内を通って混合ガスを吸引し、混合ガス停留室8a %
 8bへと導ひく。
The mixed gas retention chamber 8a18b in which negative pressure is generated communicates with the output shaft opening 2a and the intake hole 6, so the mixed gas is sucked from the vaporizer through the output shaft, and the mixed gas retention chamber 8a18b is closed.
Leads to 8b.

更に回転が進んでピストンla、lbが上死点位置まで
来ると、徐々に両端に向って進み、燃焼室8は負圧を生
じ始める。
As the rotation progresses further and the pistons la and lb reach the top dead center position, they gradually move toward both ends, and the combustion chamber 8 begins to generate negative pressure.

この時、混合ガス停晋室8a 13bは逆に加圧され、
吸気孔6は出力軸の回転側面にある為に、気化器に対し
て閉じられた状態が続く。
At this time, the mixed gas stop chambers 8a and 13b are pressurized,
Since the intake hole 6 is located on the rotating side of the output shaft, it remains closed to the carburetor.

ピストンla、lbが両端に近ずいた時、出力軸開口部
2bが開き始め、これにより混合ガス停留室ga 、 
8bは加圧され、又、燃焼室8は減圧された状態の為に
中の混合ガスは勢いよく燃焼室8へ侵入する。
When the pistons la and lb approach both ends, the output shaft opening 2b begins to open, thereby causing the mixed gas retention chamber ga,
8b is pressurized, and since the combustion chamber 8 is in a reduced pressure state, the mixed gas therein enters into the combustion chamber 8 with force.

この時、燃焼室8の内部は排気孔5も同時に開く為、混
合ガスは出力軸開口部2bを通って排気孔5にも達し、
燃料の吹き抜は現象を防止する上からも、出力軸2の回
転位置に合わせて出力軸開口部2bは、排気孔5に対し
て逆向きの、最も遠くに位置する必要がある。
At this time, since the exhaust hole 5 inside the combustion chamber 8 is also opened at the same time, the mixed gas passes through the output shaft opening 2b and reaches the exhaust hole 5.
In order to prevent the phenomenon of fuel blow-out, the output shaft opening 2b needs to be located farthest away from the exhaust hole 5 in accordance with the rotational position of the output shaft 2.

ピストンla、lbの浮動により出力軸開口部2bと排
気孔5は閉じられ、燃焼室8は圧縮状態になり、混合ガ
スは加圧される。
The output shaft opening 2b and the exhaust hole 5 are closed by the floating of the pistons la and lb, the combustion chamber 8 is put into a compressed state, and the mixed gas is pressurized.

ビ8ト′の上死点付近1点火栓!4°より点火され、混
、パ1ガスは爆発燃焼し、これによりピストンla、ピ
ストン1bは両端へ向けて移動をし、排気孔5の開いた
瞬間、排気ガスは排気孔5より排気される。
1 spark plug near top dead center of Bi8to'! The mixture is ignited from 4 degrees, and the mixed gas explodes and burns, causing the pistons la and piston 1b to move toward both ends, and the moment the exhaust hole 5 opens, the exhaust gas is exhausted from the exhaust hole 5. .

この為、燃焼室8は一瞬真空状態になる為、出力軸開口
部2bより混合ガスは燃焼室8へ流れ込み、これらの繰
り返しによる動作にて機関は続行し得る。
For this reason, the combustion chamber 8 momentarily becomes a vacuum state, so that the mixed gas flows into the combustion chamber 8 through the output shaft opening 2b, and the engine can continue to operate by repeating these operations.

(前作例)2.W4図は4行程対向ピストン式同軸エン
ジンの基本構成を示し、これを説明すると、まず、シリ
ンダー3aの中心部にスリット5aを設け、このスリッ
ト5aは吸、排気の為の開口部となり、エンジンヘッド
部に相当するヘッド15に吸気バルブ1vと排気バルブ
2vを設け、スリット5a上にセットされる。
(Example of previous work) 2. Figure W4 shows the basic configuration of a 4-stroke opposed piston type coaxial engine. To explain this, first, a slit 5a is provided in the center of the cylinder 3a, and this slit 5a becomes an opening for intake and exhaust, and the engine head An intake valve 1v and an exhaust valve 2v are provided on the head 15 corresponding to the section, and are set on the slit 5a.

吸気バルブ1vと排気バルブ2vとには、それぞれパイ
プを介して、吸気側には気化器からと、排気側には排気
筒へと対応している。
The intake valve 1v and the exhaust valve 2v are connected to the carburetor on the intake side and to the exhaust pipe on the exhaust side through pipes, respectively.

また、ヘッド15には吸、排気バルブを駆動させる為の
カム軸を設けている。
Further, the head 15 is provided with a camshaft for driving intake and exhaust valves.

ピストンlc、ピストン1dにおいては、前述の第3図
に示したと同様に2つのピストンの外壁に、案内溝12
c、12dにローラー9c 、 9dと、シリンダー壁
に固定された固定ビン7c17dとによるカム機構にて
、2つのピストンは対称に位置して運動し、出力軸2A
はピストン中心部の貫通口に挿入され、ピストンの回転
及び往復運動とを同時にならしめ、出力軸2Aには回転
力のみ出力される。
In the piston lc and the piston 1d, guide grooves 12 are formed on the outer walls of the two pistons as shown in FIG. 3 above.
The two pistons are positioned symmetrically and move by a cam mechanism using rollers 9c and 9d at c and 12d and a fixed pin 7c and 17d fixed to the cylinder wall, and the output shaft 2A
is inserted into a through hole in the center of the piston, smoothes the rotation and reciprocation of the piston at the same time, and outputs only rotational force to the output shaft 2A.

まず、外部より出力軸2Aに回転力を加えることにより
、出力軸2Aに連なるピストン1c11dは回転すると
同時にカム機構の案内溝に沿って移動をする。
First, by applying a rotational force to the output shaft 2A from the outside, the piston 1c11d connected to the output shaft 2A rotates and simultaneously moves along the guide groove of the cam mechanism.

そして相互のピストンは対称運動を行わす為、接近した
状態では圧縮行程となり、両端へ移動した状態では吸引
作用を行わすことができる。
Since the pistons move symmetrically, when they are close to each other, they are in a compression stroke, and when they are moved to both ends, they can perform a suction action.

この為、ヘッド15に設けた吸気バルブ1v、排気バル
ブ2vを連動して、4行程エンジンとして働かせること
ができる。 (第5図)中心部に位置したピストンの圧
縮行程から両端に向けて相互のピストンにより、燃焼室
8Aは負圧を生ずる為、吸気バルブ1vを開いて気化器
より混合ガスを吸引し、相互のピストンが両端に達した
時点で吸気バルブ1vを閉じ、やがてピストンlc、ピ
ストン1dは燃焼室8Aの中心部に向って移動を始める
Therefore, the intake valve 1v and the exhaust valve 2v provided in the head 15 can be linked to operate as a four-stroke engine. (Fig. 5) Since the combustion chamber 8A generates negative pressure due to the mutual pistons moving from the compression stroke of the piston located in the center toward both ends, the intake valve 1v is opened to suck the mixed gas from the carburetor, and the pistons move toward both ends. When the pistons reach both ends, the intake valve 1v is closed, and soon the pistons lc and 1d start moving toward the center of the combustion chamber 8A.

燃焼室8Aは閉された容器となり加圧され、圧縮行程と
なる。
The combustion chamber 8A becomes a closed container and is pressurized, resulting in a compression stroke.

ピストンlc 、ldが接近して上死点位置付近に達し
た状態で、点火栓4c、4dにて点火、混合ガスが爆発
燃焼してピストンlc 、ldは両端に向は押し込まれ
る。
With the pistons lc and ld approaching and reaching near the top dead center position, the spark plugs 4c and 4d ignite, the mixed gas explodes and burns, and the pistons lc and ld are pushed toward both ends.

相互のピストンlc、ldは両端に達した下死点位置よ
り、回転の慣性によって燃焼室8Aの中心部へ向け、ピ
ストンの下死点付近で排気バルブ2vを開くと、燃焼ガ
スは排気バルブ2vを通って排出され、ピストンlc、
ldは上死点位置まで移動をしてシリンダー内の残留ガ
スの掃気を行い次の行程に備え、これが1行程となりこ
の繰り返しにより機関が継続される。
The mutual pistons lc and ld are directed toward the center of the combustion chamber 8A by rotational inertia from the bottom dead center position where they have reached both ends, and when the exhaust valve 2v is opened near the bottom dead center of the piston, the combustion gas flows through the exhaust valve 2v. is discharged through the piston lc,
ld moves to the top dead center position, scavenges the residual gas in the cylinder, and prepares for the next stroke. This becomes one stroke, and the engine continues by repeating this process.

(発明の効果) a、当該発明のエンジンにおいては、シリンダー内に総
てが組み込まれた形状となる為、部品点数の減じた、小
型、軽量化が計れる。
(Effects of the Invention) a. Since the engine of the invention has a shape in which everything is built into the cylinder, the number of parts can be reduced, and the engine can be made smaller and lighter.

b、カム機構を用いた同軸エンジンでは、従来のクラン
ク機構のエンジンと比較して、従来のエンジンではクラ
ンク機構の#if!からピストンと出力軸とは互いに直
交関係にある為、縦型形状となる厚みの増すエンジン本
体になるが、当該発明のエンジンの場合はm型形状とな
り、取り付け、占qスペースなどの面で有利となる。
b. In a coaxial engine using a cam mechanism, compared to an engine with a conventional crank mechanism, #if! of the crank mechanism in a conventional engine. Since the piston and the output shaft are perpendicular to each other, the engine body becomes vertical and thick, but the engine of the invention has an m-shape, which is advantageous in terms of installation, space, etc. becomes.

C1出力軸に懸かる応力は、従来のクランク機構の出力
軸と比較して格段少さくでき、又、従来機関の出力軸に
おいては回転バランスを保つ為のカウンターウェイトを
設ける為、重量が増す結果となるが、当該発明のエンジ
ンの出力軸にはかなりの軽量化が可能である。
The stress applied to the C1 output shaft can be significantly reduced compared to the output shaft of a conventional crank mechanism, and the output shaft of a conventional engine is equipped with a counterweight to maintain rotational balance, which results in an increase in weight. However, the weight of the output shaft of the engine according to the invention can be significantly reduced.

d、当該発明のピストン系は、フライホイール効果が大
きい為、外部に設けるフライホイールは小型、軽量化す
ることができる。
d. Since the piston system of the invention has a large flywheel effect, the flywheel provided externally can be made smaller and lighter.

e、以l:の結果、当該発明のエンジンでは、大きさ、
重量共、従来形のエンジンと比較して小型、軽量化がで
きる。
As a result of e, hereafter, in the engine of the invention, the size,
It is smaller and lighter than conventional engines.

f、 lG3図の2行程エンジンの場合においては、出
力軸内に混合ガスを通過させる為、出力軸の冷却と混合
ガスへの加熱による気化率の同上が計れる。
In the case of the two-stroke engine shown in Fig. f, lG3, the mixed gas is passed through the output shaft, so the vaporization rate can be measured by cooling the output shaft and heating the mixed gas.

g、ピストン自体が軸受の役目を果す為、出力軸には軸
ひずみが軽減される。
g. Since the piston itself acts as a bearing, axial strain on the output shaft is reduced.

h、当該発明の対向ピストンによる、同質憬のピストン
を同一軸上での逆向き運動を与えるので、ピストンの振
動は相互に打ち消し合い、理論上、11!!動は零とな
る静かなエンジンとすることができる。
h. Since the opposed pistons of the invention give opposite motions on the same axis to the pistons, the vibrations of the pistons cancel each other out, and theoretically, the vibration of the pistons is 11! ! It is possible to create a quiet engine with zero vibration.

i、ピストンが回転しながら往復連句をする為、シリン
ダー壁との接触面には従来の機関よりも、偏摩耗を減少
させることができ耐久力の向上が計れる。
i. Since the piston performs a reciprocating couplet while rotating, uneven wear on the contact surface with the cylinder wall can be reduced compared to conventional engines, and durability can be improved.

j、従来のピストンには内部構造の影響から熱応力のア
ンバランスにより、複雑な制御のだ円研削が必要となる
が、当該発明のピストン形状は真円加工ができ、加工に
対する省力化が計れる。
j. Conventional pistons require complicatedly controlled elliptical grinding due to the imbalance of thermal stress due to the influence of the internal structure, but the piston shape of the present invention can be machined into a perfect circle, saving labor in machining. .

k、当該発明は一体形の燃焼室が形成でき、燃焼室が継
目の無い高圧容器となる為に構命上、有利となる。
k. The invention is structurally advantageous because it is possible to form an integral combustion chamber and the combustion chamber becomes a seamless high-pressure vessel.

1、当該発明のエンジンの多気筒化の場合の構成は、各
気筒からのピストンロッドに歯車を介して出力し、中央
に位置する総合出力歯車の円周上に接続して、その中央
の総合出力歯車より出力を取り出す、放射状配列ができ
る。
1. In the case of a multi-cylinder engine according to the invention, the output is sent to the piston rod from each cylinder via a gear, connected on the circumference of a centrally located general output gear, and connected to the central general output gear. A radial arrangement is possible that takes out the output from the output gear.

この為、各気筒からは出力軸に対して均等な出力伝達が
できる。
Therefore, the output can be transmitted equally from each cylinder to the output shaft.

m、多気筒型エンジンの場合、波射状配列の4行程エン
ジンのバルブ駆動の為のカム軸は、中心部に位置した総
合出力歯車より延長した軸にカム装置を設けて、各気筒
に順次、作用を与え共用する為、装置が簡略化できる。
In the case of a multi-cylinder engine, the camshaft for driving the valves of a four-stroke engine with a radial arrangement is equipped with a cam device on a shaft extending from the general output gear located in the center, and the camshaft is installed on a shaft that extends from the general output gear located in the center, and the camshaft is installed on a shaft that extends from the general output gear located at the center, and the camshaft is used to drive the valves of the four-stroke engine. , the device can be simplified because the functions are shared.

n、当該発明のエンジンにおける、単体でも振動が少な
い設計になる為、従来型では多気筒化して振動を分散し
低減を計っていたが、気筒数を少な目に装着したエンジ
ンでも好結果が得られる。
n. The engine of the invention is designed to have less vibration even when it is alone, so conventional models had multiple cylinders to disperse and reduce vibrations, but good results can be obtained even with an engine equipped with fewer cylinders. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図はピストンの斜視図を示す 第2図は2行程対向ピストン式同軸エンジンの、出力軸
を部分斜視図で示す 第3図は2行程対向ピストン式同軸エンジンの、基本構
成のエンジン本体を側面断面図で示す第4図は4行程対
向ピストン式同軸エンジンの、基本構成のエンジン本体
を側面断面図で示す第5図は第4図に係合する部分側面
断面図を示す1−ピストンを示す 2−2行程対向ピストン式同軸エンジンの出力軸3−シ
リンダー 4一点火栓 5−排気孔 6−吸気孔 7〒力ム機構の固定ピン 8−燃焼室 9−カム機構のローラー 12−ピストン案内溝 13−ピストン中心部のi通口 14−出力軸受部 15−4行程同軸エンジンのヘッド部 1v−吸気バルプ 2v−排気バルブ 2a−混合ガス停笛室の出力軸開口部 2b=燃焼室の出力軸開口部 以下、2行程対向ピストン式同軸エンジンによるla、
lb−ピストン 7a−固定ビン 3a、3b−混合ガス停留室 9a−ローラー 14a、14b−出力軸受部 以下、4行程対向ピストン式同軸エンジンによるlc、
ld−ピストン 2A−出力軸 3a−シリンダー 4c、4d一点火栓 5a−吸、排気の為のスリット 7c、7d−固定ビン 8A−燃焼案 9c、9d−ローラー 12 C,12d−案内溝 14c+14’−出力軸受部 持許出m人 晒澤重惑 図面 2行程対向ビス]−ン式同軸エンジン 4行程対向ピストン式同軸エンジン 図面
Fig. 1 shows a perspective view of a piston. Fig. 2 shows a partial perspective view of the output shaft of a two-stroke opposed piston type coaxial engine. Fig. 3 shows the basic configuration of the engine body of a two-stroke opposed piston type coaxial engine. FIG. 4 shows a side sectional view of the basic engine body of a four-stroke opposed-piston coaxial engine. FIG. Output shaft 3 - Cylinder 4 - Spark plug 5 - Exhaust hole 6 - Intake hole 7 - Fixing pin of force ram mechanism 8 - Combustion chamber 9 - Roller of cam mechanism 12 - Piston guide of a 2-stroke opposed piston coaxial engine shown. Groove 13 - I-port in the center of the piston 14 - Output bearing part 15 - Head part of the 4-stroke coaxial engine 1v - Intake valve 2v - Exhaust valve 2a - Output shaft opening of the mixed gas stop chamber 2b = Output of the combustion chamber Below the shaft opening, la by a 2-stroke opposed piston type coaxial engine,
lb - Piston 7a - Fixed bins 3a, 3b - Mixed gas retention chamber 9a - Rollers 14a, 14b - Output bearing section and below, LC by a 4-stroke opposed piston type coaxial engine,
ld - Piston 2A - Output shaft 3a - Cylinder 4c, 4d Single spark plug 5a - Slit for intake and exhaust 7c, 7d - Fixed bin 8A - Combustion plan 9c, 9d - Roller 12 C, 12d - Guide groove 14c + 14' - Output Bearing Part Licensing Diagram by Sarasawa 2 stroke opposed screw]-type coaxial engine 4 stroke opposed piston type coaxial engine drawing

Claims (1)

【特許請求の範囲】[Claims] シリンダー内の燃焼室を狭んで、対向する二つのピスト
ンを配置して、ピストンの外壁に設けた案内溝による一
波長の正弦波状のカム機構により、ピストンの回転運動
と往復運動とを同時に行なわせる機関としたもので、両
ピストンの中心部を貫通する出力軸より回転出力を取り
出す装置としたもので、ピストンと出力軸とは同軸の関
係を成す機関としたもの。
The combustion chamber in the cylinder is narrowed, two pistons are placed facing each other, and a single-wavelength sinusoidal cam mechanism created by a guide groove on the outer wall of the piston allows the pistons to rotate and reciprocate at the same time. This is an engine that extracts rotational output from an output shaft that passes through the center of both pistons, and the pistons and output shafts are in a coaxial relationship.
JP22216785A 1985-10-05 1985-10-05 Opposed-piston type coaxial engine Pending JPS6282236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22216785A JPS6282236A (en) 1985-10-05 1985-10-05 Opposed-piston type coaxial engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22216785A JPS6282236A (en) 1985-10-05 1985-10-05 Opposed-piston type coaxial engine

Publications (1)

Publication Number Publication Date
JPS6282236A true JPS6282236A (en) 1987-04-15

Family

ID=16778225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22216785A Pending JPS6282236A (en) 1985-10-05 1985-10-05 Opposed-piston type coaxial engine

Country Status (1)

Country Link
JP (1) JPS6282236A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05263655A (en) * 1992-03-23 1993-10-12 Touhan Seiko:Kk Auto-rotating piston engine
US6986328B2 (en) * 2002-04-19 2006-01-17 Herbert Huettlin Rotary piston machine
US7438027B1 (en) * 1971-07-08 2008-10-21 Hinderks Mitja V Fluid transfer in reciprocating devices
JP2013500416A (en) * 2009-07-24 2013-01-07 ゲタス ゲゼルシャフト フル サーモダイナミシェ アントリーブッシステメ エムベーハー Axial piston engine, method of operating axial piston engine, and method of manufacturing heat exchanger for axial piston engine
JP2015129516A (en) * 2008-03-17 2015-07-16 ダウク, アンタールDAOUK, Antar internal combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7438027B1 (en) * 1971-07-08 2008-10-21 Hinderks Mitja V Fluid transfer in reciprocating devices
JPH05263655A (en) * 1992-03-23 1993-10-12 Touhan Seiko:Kk Auto-rotating piston engine
US6986328B2 (en) * 2002-04-19 2006-01-17 Herbert Huettlin Rotary piston machine
JP2015129516A (en) * 2008-03-17 2015-07-16 ダウク, アンタールDAOUK, Antar internal combustion engine
JP2013500416A (en) * 2009-07-24 2013-01-07 ゲタス ゲゼルシャフト フル サーモダイナミシェ アントリーブッシステメ エムベーハー Axial piston engine, method of operating axial piston engine, and method of manufacturing heat exchanger for axial piston engine

Similar Documents

Publication Publication Date Title
US5992356A (en) Opposed piston combustion engine
JP3016485B2 (en) Reciprocating 2-cycle internal combustion engine without crank
US4011842A (en) Piston machine
US7721684B2 (en) Internal combustion engine
US4658768A (en) Engine
US5553574A (en) Radial cam internal combustion engine
US20010017122A1 (en) Internal-combustion engine with improved reciprocating action
JP3143564B2 (en) Cam type engine
US4485769A (en) Engine
US10267225B2 (en) Internal combustion engine
KR20000029539A (en) Rotational motion mechanism and engine
US4932373A (en) Motion converting mechanism
JP2003530507A (en) Internal combustion engine with variable piston operation
CA1037871A (en) Piston and cylinder machines
US6435145B1 (en) Internal combustion engine with drive shaft propelled by sliding motion
KR20100135259A (en) Internal combustion engine
US4543919A (en) Engine
US6279518B1 (en) Rotary engine having a conical rotor
JPS6282236A (en) Opposed-piston type coaxial engine
US5517952A (en) Rotating shuttle engines with integral valving
US11098586B2 (en) Engine crank and connecting rod mechanism
AU673507B2 (en) Radial internal combustion engine
US4788944A (en) Internal combustion engine
RU226493U1 (en) INTERNAL COMBUSTION ENGINE
GB2503488A (en) A Piston to Shaft Coupling