JPH06121915A - Tritium-hydrogen gas separation membrane - Google Patents

Tritium-hydrogen gas separation membrane

Info

Publication number
JPH06121915A
JPH06121915A JP4103539A JP10353992A JPH06121915A JP H06121915 A JPH06121915 A JP H06121915A JP 4103539 A JP4103539 A JP 4103539A JP 10353992 A JP10353992 A JP 10353992A JP H06121915 A JPH06121915 A JP H06121915A
Authority
JP
Japan
Prior art keywords
tritium
gas
hydrogen
separation membrane
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4103539A
Other languages
Japanese (ja)
Other versions
JPH0710336B2 (en
Inventor
Sumio Yamada
純男 山田
Tsutomu Nakagawa
勤 仲川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP4103539A priority Critical patent/JPH0710336B2/en
Publication of JPH06121915A publication Critical patent/JPH06121915A/en
Publication of JPH0710336B2 publication Critical patent/JPH0710336B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To obtain a gas separation membrane with which light hydrogen, heavy hydrogen, and tritium can be separated at one time by blending partially dithiocarbamated polyvinyl chloride with acrylonitrile-butadiene rubber (NBR) and then effecting photobromination in an inhomogeneous system. CONSTITUTION:This gas separation membrane is used for separation and concentration of light hydrogen, heavy hydrogen, and tritium. In this case, the gas separation membrane is obtd. by blending partially dithiocarbamated polyvinyl chloride with acrylonitrile-butadiene rubber (NBR) and effecting photobromination in an inhomogeneous system to give antiradiation property to the membrane. In order to measure the permeation coefft., for example, a measuring device equipped with various instruments such as gas permeation cell 1, gas supply manometer 2, pressure measuring head 3, Pirani gauge 13, and electric pressure sensor 14 is used. Thereby, the obtd. gas separation membrane is used to separate and concentrate light hydrogen, heavy hydrogen and tritium at one time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】本発明は気体状の軽水素、重水素と放射性
トリチウム(三重水素)を分離、濃縮するための耐放射
線性の分離膜に関する。
The present invention relates to a radiation-resistant separation membrane for separating and concentrating gaseous light hydrogen, deuterium and radioactive tritium (tritium).

【0002】[0002]

【産業上の利用分野】トリチウムの生成源の主なもの
は、原子炉(軽水炉、高速炉と重水炉)と核融合実験で
ある。一方トリチウムの環境放出基準は空気中濃度限度
2×10Bq/cm(気体)以下と法律で決められ
ており、外部環境への放出は著しく制約されている。燃
料再処理プラント、重水炉などで生じるトリチウムをな
るべく放出しないようにするには、どうしてもトリチウ
ムの軽水素あるいは重水素からの分離が必要となってく
る。自然界における存在率から考えると、重水素を軽水
素から分離する場合は、重水素の存在率が1.5×10
−4と低いことから困難さを伴うが、トリチウムの場合
は10−11程度の存在率が予想されるので分離は一層
困難である。
[Industrial application] The main sources of tritium are nuclear reactors (light water reactors, fast reactors and heavy water reactors) and fusion experiments. On the other hand, the environmental release standard of tritium is determined by law to be the concentration limit in air of 2 × 10 4 Bq / cm 3 (gas) or less, and the release to the external environment is significantly restricted. In order to minimize the release of tritium generated in the fuel reprocessing plant, heavy water reactor, etc., it is necessary to separate tritium from light hydrogen or deuterium. Considering the abundance in the natural world, when deuterium is separated from light hydrogen, the abundance of deuterium is 1.5 × 10 5.
Although it is low as -4 , it is difficult, but in the case of tritium, an abundance of about 10 -11 is expected, and therefore separation is more difficult.

【0003】今後原子力発電が急速に伸長していくと、
それに伴う原子力発電によって生産放出されるトリチウ
ム、特に発電炉での使用済みの燃料の再処理の際に出る
トリチウムがきわめて多くなることから近年トリチウム
問題として注目されている。しかしトリチウムの問題は
トリチウムの適切な除去方法の確立が技術的に困難であ
ることと、トリチウム汚染を抑制する具体的な方法が現
状ではほとんどないことの問題は一層深刻である。
As nuclear power generation grows rapidly in the future,
As a result, tritium produced and released by nuclear power generation, especially tritium generated during reprocessing of spent fuel in a power generation reactor, becomes extremely large, and has recently attracted attention as a tritium problem. However, the problems of tritium are more serious in that it is technically difficult to establish an appropriate method for removing tritium, and that there are few concrete methods for controlling tritium contamination at present.

【0004】一方、汚染除去という問題から離れて、水
素の同位体分離が行われる目的、言い換えれば分離さ
れ、濃縮精製された水素同位体の用途は、大まかにいえ
ば2通りある。一つは重水の原子力への利用とトリチウ
ムの核融合分野への需要である。他は炭素、酸素、窒
素、硫黄などと同様に安定同位元素である重水を使った
機器分析への応用と、放射性同位元素のトリチウムを使
った理工学とライフサイエンスを中心にした研究分野で
の需要である。
On the other hand, apart from the problem of decontamination, the purpose of the isotope separation of hydrogen, in other words, the use of the separated and concentrated and purified isotope of hydrogen, is roughly two. One is the use of heavy water for nuclear power and the demand for tritium fusion. Others include application to instrumental analysis using heavy water, which is a stable isotope like carbon, oxygen, nitrogen, and sulfur, and in research fields centered on science and engineering and life science using tritium as a radioactive isotope. Demand.

【0005】一般に同位体分離には、安定同位体相互の
分離と、係わる放射性同位体を他の元素から分離する場
合に使われる。同位体を一般に100%近くまで分離す
ることは困難であり、厳密に定義すれば濃縮である。
Generally, isotope separation is used when separating stable isotopes from each other and separating radioactive isotopes concerned from other elements. Isotopes are generally difficult to separate to near 100%, and strictly defined are enrichments.

【0006】[0006]

【従来の技術及びその問題点】水素同位体の分離の歴史
は古く、重水素の濃縮は早くから工業化され、現在重水
や多くの重水素を含む化合物が市販されており、種々の
目的に使用されている。今後、重水素については重水炉
などでの需要がますます増大することが予想され、また
トリチウムについては重水炉および核燃料廃棄物から回
収する必要が高まっている。将来の核融合炉実現のため
には、トリチウムを回収する技術の確立が不可欠であ
る。
2. Description of the Related Art The separation of hydrogen isotopes has a long history, deuterium concentration was industrialized from an early stage, and heavy water and compounds containing a large amount of deuterium are now commercially available and used for various purposes. ing. Demand for heavy hydrogen in heavy water reactors is expected to increase in the future, and the need for recovery of tritium from heavy water reactors and nuclear fuel waste is increasing. In order to realize a fusion reactor in the future, it is essential to establish a technology for recovering tritium.

【0007】先ず同位体分離を一般的観点からみると、
同位体分離は、個別的分離法と統計的分離法に分けられ
る。個別的分離法は、単位段の分離係数が理想的には無
限外に近いもので、電磁分離法、光分離法(レーザー分
離法)などがある。一方、統計的分離法では、単位段の
分離係数は水素の場合を除くときわめて分離が悪く、1
に近い。この方法には、可逆分離法として化学交換法、
分別蒸留法などがあり、不可逆分離法として気体拡散
法、遠心分離法、熱拡散法、ノズル分離法、分子蒸留
法、電解法、電気泳動法などがある。
First, from a general viewpoint of isotope separation,
Isotope separation can be divided into individual separation method and statistical separation method. In the individual separation method, the separation coefficient of a unit stage is ideally close to infinity, and there are an electromagnetic separation method, an optical separation method (laser separation method), and the like. On the other hand, in the statistical separation method, the separation coefficient of the unit stage is extremely poor except when hydrogen is used.
Close to. This method includes a chemical exchange method as a reversible separation method,
There is a fractional distillation method, and the irreversible separation method includes a gas diffusion method, a centrifugal separation method, a thermal diffusion method, a nozzle separation method, a molecular distillation method, an electrolysis method, an electrophoresis method, and the like.

【0008】重水素の濃縮法としては、水の蒸留法、化
学交換法(水/水素系の交換反応と水の電解を組せたプ
ロセス(CECE))、二重温度交換法などがある。こ
れらの分離プロセスの経済性を比較する場合、分離係数
が1つの目安になるが、エネルギー消費の問題も同時に
重要である。簡単にこれらの濃縮法の特徴を述べると、
電解法(CECE)は分離係数は大きいが、副産物の水
素を利用する方法がなければエネルギー消費が大きい。
二重温度交換法は比較的分離係数が低く、エネルギー消
費も大きい。しかも腐食性に富む悪臭、有害な硫化水素
を使わねばならない。このように従来法は概してエネル
ギー消費量が大きく、大規模に行うことができるという
利点があるが、同時に建設費、すなわち初期設備投資が
大きくなるなどの欠点がある。
Examples of the deuterium concentration method include a water distillation method, a chemical exchange method (a process in which a water / hydrogen exchange reaction and water electrolysis are combined (CECE)), and a double temperature exchange method. When comparing the economics of these separation processes, the separation factor is one measure, but the problem of energy consumption is also important. To briefly describe the features of these concentration methods,
The electrolysis method (CECE) has a large separation coefficient, but consumes a large amount of energy unless there is a method using hydrogen as a by-product.
The dual temperature exchange method has a relatively low separation factor and consumes a large amount of energy. Moreover, it is necessary to use hydrogen sulfide, which has a bad odor and is highly corrosive. As described above, the conventional method has an advantage that it consumes a large amount of energy as a whole and can be carried out on a large scale, but at the same time has a drawback that the construction cost, that is, the initial capital investment becomes large.

【0009】現在トリチウムの分離法として考えられる
方法は、1)水/硫化水素の交換反応、2)水/水素の
交換反応、3)水素の精留、4)水の真空蒸留、5)ガ
ス−固体クロマトグラフィー、6)電解、7)熱拡散、
8)溶媒抽出、9)LIS(レーザー分離法)などがあ
げられる。
The methods currently considered as the separation method of tritium are 1) water / hydrogen sulfide exchange reaction, 2) water / hydrogen exchange reaction, 3) hydrogen rectification, 4) vacuum distillation of water, and 5) gas. -Solid chromatography, 6) electrolysis, 7) thermal diffusion,
8) solvent extraction, 9) LIS (laser separation method) and the like.

【0010】このようにトリチウムの分離、一般的に言
えば同位体の分離は、同位体効果の僅かな差異を利用し
て行う。それには大きく分けて物理的な同位効果の差異
を利用した方法[3),4),5),7),8),
9)]と化学的な差異を利用した方法[1),2),
6)]とに分類できる。視点を変えると、同位体の物性
と反応機構の違いによって分けられる。
As described above, the separation of tritium, generally speaking, the separation of isotopes is carried out by utilizing a slight difference in the isotope effect. There are roughly three methods that utilize the difference of physical isotopes [3), 4), 5), 7), 8),
9)] and methods utilizing chemical differences [1), 2),
6)]. From a different point of view, they are divided according to the physical properties of isotopes and the difference in reaction mechanism.

【0011】[0011]

【発明が解決しようとする課題】本発明は、従来法のエ
ネルギー多消費、煩雑性、腐食性、有害性などの欠点を
克服し、規模によってはいろいろ変えられる簡便な装置
と簡単な操作で、省エネルギー的に、連続的に、また工
業的に実施するにも有利な、軽水素、重水素とトリチウ
ムの同時分離、濃縮のための気体分離膜を提供するため
になされたものである。これまで重水素やトリチウムを
軽水素から分離、濃縮する方法について物理的あるいは
化学的な同位体効果を使った様々な方法が検討され、実
施されてきた。しかし本発明に係わる膜分離法のよう
に、軽水素、重水素とトリチウムを同時に分離、濃縮で
きる方法はなかった。また本発明の膜分離法では分離、
濃縮されたものが純粋な単体の気体として取り出せるこ
とも大きな特徴の1つである。
DISCLOSURE OF THE INVENTION The present invention overcomes the drawbacks of the conventional method, such as high energy consumption, complexity, corrosiveness, and harmfulness, and can be variously changed depending on the scale with a simple device and simple operation. The purpose of the present invention is to provide a gas separation membrane for simultaneous separation and concentration of light hydrogen, deuterium and tritium, which is advantageous for energy-saving, continuous, and industrial implementation. Until now, various methods using physical or chemical isotope effects have been studied and implemented as methods for separating and concentrating deuterium and tritium from light hydrogen. However, unlike the membrane separation method according to the present invention, there was no method capable of simultaneously separating and concentrating light hydrogen, deuterium and tritium. Further, in the membrane separation method of the present invention,
One of the major characteristics is that the concentrated product can be taken out as a pure simple substance gas.

【0012】[0012]

【課題を解決するための手段】本発明者は水素同位体の
気体分離膜の素材について鋭意研究を重ねた結果、部分
的にジチオカーバメート化したポリ塩化ビニル(PV
C)をアクリロニトリル−ブタジェンゴム(NBR)と
ブレンドし、不均質系で光臭素化を行って調製した膜を
利用すれば、軽水素、重水素とトリチウムの気体を膜分
離法によって分離、濃縮できることを見いだし、本発明
をなすに至った。
Means for Solving the Problems As a result of earnest studies on the material for a gas separation membrane of hydrogen isotope, the present inventor has found that partially dithiocarbamated polyvinyl chloride (PV
If a membrane prepared by blending C) with acrylonitrile-butadiene rubber (NBR) and performing photobromination in a heterogeneous system can be used, it is possible to separate and concentrate light hydrogen, deuterium and tritium gas by a membrane separation method. They have found the present invention and made the present invention.

【0013】[0013]

【作用】本発明の分離膜は水素同位体の気体分離膜の特
性をもつと同時に、放射性同位元素であるトリチウムに
対する耐久性のあることを特徴とする分離膜である。こ
れは、本発明の分離膜が部分的にジチオカーバメート化
したPVCを成分ポリマーとして用いているため、ジチ
オカーバメートの不安定ラジカルの捕捉特性から放射線
耐久性機能が付与されるからである。本発明の分離膜が
基本的にはPVC樹脂とNBRゴムからなるポリマーア
ロイであるため、廉価材料の組合せであることから材料
としては経済性に優れている。また溶融流動性のよいこ
とから成形性にも優っている。製膜加工法についても本
発明で採用した溶液流延法だけでなく、ホットプレスに
よる熱圧縮法も応用できる。つまり、本分離膜は耐放射
線性を備えた水素同位体の気体分離膜の機能の他、経済
性、製膜加工性に優れたマルチ機能をもつポリマーアロ
イ素材から成り立っている。
The separation membrane of the present invention is characterized by having the characteristics of a gas separation membrane of hydrogen isotope and being durable against tritium which is a radioactive isotope. This is because the separation membrane of the present invention uses partially dithiocarbamate-converted PVC as a component polymer, and thus has a radiation durability function due to the unstable radical scavenging property of dithiocarbamate. Since the separation membrane of the present invention is basically a polymer alloy composed of PVC resin and NBR rubber, it is a combination of low-priced materials and is therefore economically excellent as a material. In addition, it has excellent melt flowability and therefore excellent moldability. As for the film forming method, not only the solution casting method adopted in the present invention but also the thermal compression method by hot pressing can be applied. In other words, this separation membrane is made of a polymer alloy material having a multi-function excellent in economical efficiency and film forming processability in addition to the function of a hydrogen isotope gas separation membrane having radiation resistance.

【0014】[0014]

【実施例】以下に本発明を実施例により更に具体的に説
明するが本発明はこれらによって限定されるものではな
い。
EXAMPLES The present invention will be described in more detail with reference to examples below, but the present invention is not limited thereto.

【0015】実施例1 アクリロニトリルの含有量が41wt%のアクリロニト
リル−ブタジェン共重合体(NBR)を反応に供する前
に、未反応のモノマーや重合時の不純物を取り除くため
に、精製した1,4−ジオキサンに一たん溶かして溶液
としたものをメタノール中に徐々に滴下し、再沈精製
し、続いて真空乾燥した。製膜は、乾燥したNBRの
1,4−ジオキサン溶液をつくり、シャーレに入れた水
銀上に浮かべたガラス板上にキャストし、ふたをして光
を遮蔽した状態で自然乾燥し、最後に真空乾燥して行っ
た。
Example 1 Prior to subjecting an acrylonitrile-butadiene copolymer (NBR) having an acrylonitrile content of 41 wt% to the reaction, purified 1,4-purified 1,4-to remove unreacted monomers and impurities during polymerization. What was once dissolved in dioxane to form a solution was gradually added dropwise to methanol for reprecipitation purification, and subsequently vacuum dried. For film formation, make a dry NBR 1,4-dioxane solution, cast it on a glass plate floated on mercury in a petri dish, cover it with air and let it dry naturally, and finally vacuum. It went dry.

【0016】ポリ塩化ビニル(PVC)は、反応前に
1,4−ジオキサンとメタノールで溶解再沈して精製
し、真空下で乾燥した。精製したPVCのN,N−ジメ
チルホルムアミド(DMF)溶液をつくり、これとは別
にこのPVCの1/2モルに当たるN,N−ジメチルジ
チオカルバミン酸ナトリウムのDMF溶液を準備する。
この両溶液を温度計、還流冷却器、攪拌装置をつけたフ
ラスコに入れ、55℃で5時間反応させた。反応後水−
メタノール混合液に反応液を滴下してポリマーを沈殿さ
せた。これをろ別し、洗浄後乾燥した白色粉末がN,N
−ジメチルジチオカルバメート化PVC(PMD)であ
る。
Prior to the reaction, polyvinyl chloride (PVC) was purified by dissolving and reprecipitating it with 1,4-dioxane and methanol, and dried under vacuum. A purified N, N-dimethylformamide (DMF) solution of PVC is prepared, and separately, a DMF solution of sodium N, N-dimethyldithiocarbamate corresponding to ½ mol of this PVC is prepared.
Both solutions were placed in a flask equipped with a thermometer, a reflux condenser and a stirrer, and reacted at 55 ° C for 5 hours. After reaction water
The reaction solution was added dropwise to the methanol mixed solution to precipitate the polymer. This was filtered off, washed and dried to give N, N
-Dimethyldithiocarbamate PVC (PMD).

【0017】このPMDと先に精製したNBRを80:
20(重量比)の割合にDMF中に溶かして混合し、1
0%のブレンドポリマー溶液をつくった。この溶液をガ
ラス板上にキャストし、乾燥がある程度進行した段階
で、50℃に昇温した加熱真空乾燥器に移して乾燥を続
けた。
80% of this PMD and the previously purified NBR
Dissolve in DMF at a ratio of 20 (weight ratio) and mix to give 1
A 0% blended polymer solution was made. This solution was cast on a glass plate, and when drying proceeded to a certain extent, the solution was transferred to a heating vacuum dryer heated to 50 ° C. to continue drying.

【0018】ブレンド膜はガラス板から剥離せずに、飽
和臭素水(3.46%)を入れたシャーレの液面下1c
mのところに水平に保持して、ブレンド膜から10cm
の距離に置いた低圧水銀灯(615V、25mA)より
直ちに紫外線を照射して光臭素化反応を開始した。照射
時間は通常1時間とした。反応後水でよく洗浄し、最終
的に光臭素化ブレンド膜を得た。
The blended film was not peeled off from the glass plate, and 1c below the liquid surface of a petri dish containing saturated bromine water (3.46%).
Hold horizontally at 10 m from the blend film
Immediately, ultraviolet rays were irradiated from a low pressure mercury lamp (615 V, 25 mA) placed at a distance of 1 to start the photobromination reaction. The irradiation time was usually 1 hour. After the reaction, the product was thoroughly washed with water to finally obtain a photobrominated blend film.

【0019】水素と重水素の気体透過性の測定は高真空
法によって行った。10cmHg〜80cmHgの気体
を導入した高圧側から、10−5〜10−6mmHgの
高真空に保持した低圧側へ膜を透過してくる気体の圧力
増加を測定することにより次式(1)より水素と重水素
の透過係数(P)を求めた。透過気体の圧力の測定はバ
ラトロン真空計(電気的圧力センサー)にレコーダを付
属させた装置で行った。
The gas permeability of hydrogen and deuterium was measured by the high vacuum method. By measuring the pressure increase of the gas that permeates the membrane from the high pressure side into which a gas of 10 cmHg to 80 cmHg is introduced to the low pressure side held in a high vacuum of 10 −5 to 10 −6 mmHg, the following formula (1) is obtained. The permeation coefficient (P) of hydrogen and deuterium was determined. The pressure of the permeated gas was measured by a device with a recorder attached to a Baratron vacuum gauge (electrical pressure sensor).

【0020】 ここで、Vは低圧側体積(cm)、Tは測定時の室温
(℃)、pは高圧側気体の圧力(cmHg)、Aは透過
膜面積(cm)、dp/dtは低圧側の圧力変化(m
mHg cmであった。透過係数(透過速度)の測定は同一条
件で3回行い、その平均値をもって表した。膜厚は1/
100mm精度のマイクロメーターで測定した。実際の
膜厚は62μmと85μmであった。
[0020] Here, V is the low-pressure side volume (cm 3 ), T is the room temperature (° C.) at the time of measurement, p is the high-pressure side gas pressure (cmHg), A is the permeable membrane area (cm 2 ), and dp / dt is the low-pressure side. Pressure change (m
mHg It was cm 2 . The permeation coefficient (permeation rate) was measured three times under the same conditions, and the average value was shown. The film thickness is 1 /
It was measured with a micrometer having an accuracy of 100 mm. The actual film thickness was 62 μm and 85 μm.

【0021】トリチウム気体の透過係数の測定にはトリ
チウム測定用の特殊セルマノメーターを利用した。測定
に使用したトリチウム気体はcarrier free
の気体としてブレーカブルジョイント付きアンプル管に
封入された形で供給されたものを使用した。同位体存在
比90%以上、放射能数量1Ci(37 GBq)のも
のを2個使用した。
A special cell manometer for measuring tritium was used to measure the permeability coefficient of tritium gas. The tritium gas used for the measurement was carrier free.
The gas supplied in the form enclosed in an ampoule tube with a breakable joint was used as the gas. Two isotopes having an isotope abundance ratio of 90% or more and a radioactivity quantity of 1 Ci (37 GBq) were used.

【0022】トリチウムが封入されたアンプル管を上部
セルの供給側に溶接した後、測定すべき光臭素化ブレン
ド膜をセルに装着し、上部セルと下部セルをボルト・ナ
ットで締め付けて接合し、気体供給側と透過側を長時間
真空ポンプで排気する。系内が十分に真空脱気が行われ
た後、系を閉じ、小型水銀マノメーターの水銀柱の動き
を1/100mm精度の読取顕微鏡で観察し、予想され
る測定時間内では洩れや脱気のないことを確認する。
After welding the ampoule tube filled with tritium to the supply side of the upper cell, the photobrominated blend film to be measured is attached to the cell, and the upper cell and the lower cell are fastened and joined with bolts and nuts, The gas supply side and the permeation side are evacuated with a vacuum pump for a long time. After the inside of the system has been sufficiently deaerated under vacuum, the system is closed and the movement of the mercury column of a compact mercury manometer is observed with a 1/100 mm precision reading microscope. There is no leakage or deaeration within the expected measurement time. Make sure that.

【0023】準備が終わった段階で、ブレーカブルジョ
イントを割ってトリチウムガスを供給側の膜面に導入
し、透過係数の測定を開始する。トリチウムの透過係数
は、膜を通して透過側に透過してくるトリチウムの圧力
増加を水銀柱の高さの時間的変化から読み取り、先の
(1)式を用いて求めた。
When the preparation is completed, the breakable joint is broken to introduce tritium gas into the membrane surface on the supply side, and the measurement of the permeation coefficient is started. The permeation coefficient of tritium was obtained by using the above equation (1) by reading the pressure increase of tritium permeating to the permeation side through the membrane from the temporal change of the height of the mercury column.

【0024】なおトリチウムの透過係数の測定実験を行
う前に、予備実験として、トリチウムと同等圧力の軽水
素を同一の特殊セルマノメーターに導入して水素の透過
係数を測定し、特殊セルマノメーターの装置を較正し
た。
Before conducting the measurement experiment of the permeation coefficient of tritium, as a preliminary experiment, light hydrogen having the same pressure as tritium was introduced into the same special cell manometer to measure the permeation coefficient of hydrogen, and the apparatus of the special cell manometer was measured. Was calibrated.

【0025】本実験において放射線汚染の防止と、更に
安全性を確保するため、特殊セルマノメーター全体を気
密なアクリル板製のグローブボックスに入れて、万一ト
リチウム気体が洩れてもそれ以上汚染が拡散することを
防止する措置をとって実験を行った。
In this experiment, in order to prevent radiation contamination and ensure safety, the entire special selmanometer was put in an airtight glove box made of an acrylic plate, and even if tritium gas leaks, the contamination will spread further. The experiment was carried out by taking measures to prevent this.

【0026】本発明の分離膜によって室温で軽水素(H
)、重水素(D)とトリチウム(T)の透過係数
を測定すると表1のような結果が得られた。更に透過係
数の値から理想的分離係数を求め表1に示した。なおこ
こで使用した透過係数の単位はcc(STP)cm/c
・sec・cmHgである。
With the separation membrane of the present invention, light hydrogen (H 2
2 ), the permeation coefficient of deuterium (D 2 ) and tritium (T 2 ) was measured, and the results shown in Table 1 were obtained. Further, the ideal separation coefficient was determined from the value of the transmission coefficient and is shown in Table 1. The unit of the transmission coefficient used here is cc (STP) cm / c.
It is m 2 · sec · cmHg.

【0027】表2には本発明の分離膜について、60
oからのγ線を6.5Mrad(65KGy)照射する
ことによって得られるガス発生量を測定して、その実験
結果を示した。
Table 2 shows the separation membrane of the present invention at 60 C.
The gas generation amount obtained by irradiating γ-rays from o with 6.5 Mrad (65 KGy) was measured, and the experimental results are shown.

【0028】[0028]

【発明の効果】表1に表されるように、本発明の光臭素
化ブレンド分離膜によって室温で得られた、軽水素、重
水素とトリチウムの透過係数の結果と、透過係数の値か
ら求められる理想的分離係数から、透過係数がc.g.
s.単位で10−9あり、十分大きいことや、軽水素に
対する重水素とトリチウムの理想的分離係数が明らかに
1/1000の桁で差異があることから、本発明の分離
膜を用いて気体分離法を行えば、重水素とトリチウムが
分離、濃縮することができる。
As shown in Table 1, obtained from the results of the permeation coefficient of light hydrogen, deuterium and tritium obtained at room temperature by the photobrominated blend separation membrane of the present invention and the value of the permeation coefficient. From the ideal separation factor of the transmission coefficient c. g.
s. The unit is 10 −9, which is sufficiently large and the ideal separation coefficient between deuterium and tritium with respect to light hydrogen obviously differs by a factor of 1/1000. Therefore, the gas separation method using the separation membrane of the present invention is performed. By doing, deuterium and tritium can be separated and concentrated.

【0029】表2に示されたガス発生量の実験結果か
ら、ブレンドの成分材料であるPVCと比較すると、本
発明のブレンド膜の分解ガス発生量が著しく少なく、明
確に耐放射線性が高いことが示されている。すなわち、
本発明の分離膜は長期間のトリチウム処理にも十分耐え
得ることが特徴である。
From the experimental results of the gas generation amount shown in Table 2, as compared with PVC which is a component material of the blend, the generated amount of decomposed gas of the blend film of the present invention is remarkably small and the radiation resistance is clearly high. It is shown. That is,
A feature of the separation membrane of the present invention is that it can sufficiently withstand a long-term tritium treatment.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明において透過係数を測定するために使用
する測定装置の一例を示す。
FIG. 1 shows an example of a measuring device used for measuring a transmission coefficient in the present invention.

【符号の説明】[Explanation of symbols]

1 … 気体透過セル 2 … 気体供給マノメータ 3 … 圧力測定ヘッド 4 … 恒温水槽 5 … センシティブリレー 6 … 拡散ポンプ 7 … 油回転ポンプ 8 … コールドトラップ 9 … マクレオドゲージ 10 … ガス溜め 11 … ガラスコック 12 … 予備のガス溜め 13 … ピラニーゲージ 14 … パラトロン圧力真空計 1 ... Gas permeation cell 2 ... Gas supply manometer 3 ... Pressure measuring head 4 ... Constant temperature water tank 5 ... Sensitive relay 6 ... Diffusion pump 7 ... Oil rotary pump 8 ... Cold trap 9 ... Macleod gauge 10 ... Gas reservoir 11 ... Glass cock 12 ... Spare gas reservoir 13… Pirani gauge 14… Paratron pressure gauge

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 部分的にジチオカーバメート化したポリ
塩化ビニルをアクリロニトリル−ブタジエンゴム(NB
R)とブレンドし、不均質系で光臭素化を行って得られ
た、耐放射線性のある、トリチウム、重水素と水素の気
体分離膜。
1. A partially dithiocarbamate-modified polyvinyl chloride is added to an acrylonitrile-butadiene rubber (NB
Radiation resistant tritium, deuterium and hydrogen gas separation membranes blended with R) and photobrominated in a heterogeneous system.
JP4103539A 1992-03-30 1992-03-30 Tritium-hydrogen gas separation membrane Expired - Lifetime JPH0710336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4103539A JPH0710336B2 (en) 1992-03-30 1992-03-30 Tritium-hydrogen gas separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4103539A JPH0710336B2 (en) 1992-03-30 1992-03-30 Tritium-hydrogen gas separation membrane

Publications (2)

Publication Number Publication Date
JPH06121915A true JPH06121915A (en) 1994-05-06
JPH0710336B2 JPH0710336B2 (en) 1995-02-08

Family

ID=14356652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4103539A Expired - Lifetime JPH0710336B2 (en) 1992-03-30 1992-03-30 Tritium-hydrogen gas separation membrane

Country Status (1)

Country Link
JP (1) JPH0710336B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4863711A (en) * 1986-01-21 1989-09-05 The Dow Chemical Company Process for preparing nodular pigmentary titanium dioxide
US8709603B2 (en) 2007-07-30 2014-04-29 Michel Oulie Article based on a composition containing a crosslinked blend of elastomers
CN108939921A (en) * 2018-09-05 2018-12-07 清华大学 Membrane separation device and method for carbon isotope separation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4863711A (en) * 1986-01-21 1989-09-05 The Dow Chemical Company Process for preparing nodular pigmentary titanium dioxide
US8709603B2 (en) 2007-07-30 2014-04-29 Michel Oulie Article based on a composition containing a crosslinked blend of elastomers
CN108939921A (en) * 2018-09-05 2018-12-07 清华大学 Membrane separation device and method for carbon isotope separation

Also Published As

Publication number Publication date
JPH0710336B2 (en) 1995-02-08

Similar Documents

Publication Publication Date Title
RU2568184C2 (en) Method for detritiation of soft household wastes and apparatus therefore
US3274750A (en) Permeable polymeric membrane gas separation
US3560362A (en) Method and apparatus for promoting chemical reactions by means of radioactive inert gases
JPS5621604A (en) Separation of liquid by semipermeable composite membrane
JPH06121915A (en) Tritium-hydrogen gas separation membrane
EP1736439A3 (en) Method and apparatus for concentrating tritiated water
JPS59177117A (en) Separation of hydrogen-helium
CN111440354B (en) Preparation method and application of bisphenol A molecularly imprinted composite membrane with through hierarchical pore structure
Sevigny et al. Separation of tritiated water using graphene oxide membrane
JP2018004588A (en) Method for separating and removing tritium from tritium-containing radiation-contaminated water
Miller et al. Quantitative studies of radiation-induced reactions. Part 2.—The oxidation of ferrous sulphate by alpha-particles
EP0367363A2 (en) Compositions and process for separating fluid mixtures
Shelkovnikova et al. Stability of phenol-formaldehyde ion-exchange sorbents in aqueous solutions
EP2951836A1 (en) Method and practical device composition for purification of air from gaseous tritium and concentration of tritium in a constant volume of water
Williams et al. The solubility of sodium hydride in sodium
Sourirajan Separation of gases by flow under pressure through porous membranes
Nakayama et al. Pressure Balanced Type Membrane Covered Polarographic Oxygen Detectors for Use in High Temperature-High Pressure Water,(I) Application of Guard Electrode to Improve Detector Performance at Temperatures above 200° C
SU1534560A1 (en) Photochemical current source
Persky et al. An apparatus for the production of high isotopic purity deuterium
JPH0130533B2 (en)
IT201800003185A1 (en) PROCESS WITH POROUS SUPPORT FOR THE EXTRACTION OF HYDROGEN AND ISOTOPES FROM LIQUID METALS, AND RELATIVE APPARATUS
Young Stoichiometry
WO2024071106A1 (en) Hydrogen isotope transport device and hydrogen isotope transport method
JPS63190700A (en) Methane fermentation control apparatus
Ensinger et al. Nuclear track microfilters: gas separation ability and β-radiation stability

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term