JPH06121554A - Ultrasonic motor - Google Patents

Ultrasonic motor

Info

Publication number
JPH06121554A
JPH06121554A JP4266936A JP26693692A JPH06121554A JP H06121554 A JPH06121554 A JP H06121554A JP 4266936 A JP4266936 A JP 4266936A JP 26693692 A JP26693692 A JP 26693692A JP H06121554 A JPH06121554 A JP H06121554A
Authority
JP
Japan
Prior art keywords
transmission shaft
output transmission
output
moving body
ultrasonic motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4266936A
Other languages
Japanese (ja)
Inventor
Takashi Nojima
貴志 野島
Katsumi Imada
勝巳 今田
Katsu Takeda
克 武田
Masanori Sumihara
正則 住原
Takahiro Nishikura
孝弘 西倉
Osamu Kawasaki
修 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4266936A priority Critical patent/JPH06121554A/en
Publication of JPH06121554A publication Critical patent/JPH06121554A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an ultrasonic motor which can rotate stably at high efficiency even upon application of radial load to an output transmission shaft. CONSTITUTION:An elastic member 29 is placed between a mover 27 and an output transmission shaft 28 for transmitting rotation of the mover 27 to an external load. An output take-out part 28b of the output transmission shaft 28 is provided on the side of a bearing 31 located on the oscillator 24 side in order to regulate the rotational position of the output transmission shaft 28 thus taking out output from the oscillator 24 side of the output transmission shaft 28. Since the distance between a fulcrum, i.e., the bearing 31, and a working point is short, deformation of the output transmission shaft 28 due to load functioning thereon can be retarded when abnormal force is applied radially to the output transmission shaft 28. Furthermore, deformation absorbing effect of the elastic member 29 mounted on the mover 27 can be exhibited by providing the output transmission shaft 28 with a free end at a part coming into contact with the elastic member 29.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、圧電体により励振した
弾性振動を駆動力とする超音波モータ、特に超音波モー
タの出力伝達機構に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic motor which uses elastic vibration excited by a piezoelectric body as a driving force, and more particularly to an output transmission mechanism of the ultrasonic motor.

【0002】[0002]

【従来の技術】近年、圧電セラミックなどの圧電体およ
び金属などの弾性基板により構成された振動体を交流電
圧で駆動して弾性振動を励振し、これを駆動力とする超
音波モータが注目されている。以下に、図面を参照しな
がら従来の超音波モータについての説明を行う。
2. Description of the Related Art In recent years, attention has been paid to an ultrasonic motor which drives a vibrating body composed of a piezoelectric body such as a piezoelectric ceramic and an elastic substrate such as a metal with an AC voltage to excite elastic vibration, and which uses the driving force as a driving force. ing. Hereinafter, a conventional ultrasonic motor will be described with reference to the drawings.

【0003】図2は従来の超音波モータの縦断面図であ
る。図2において、弾性基板1の一面に、圧電体2を張
り合わせて振動体3が構成されており、この弾性基板1
の他方の面には、複数個の突起体1aが設置されてい
る。4は弾性体、5は耐摩耗性材料よりなる摩擦材であ
り、互いに貼り合わせて移動体6が構成されている。7
は外部に移動体6の回転を伝達する出力伝達軸であり、
この出力伝達軸7の移動体6側端部に、移動体6の回転
を安定に効率よく伝達するための突起部7aが設けられ
ていて、この突起部7aからさらに外方に突出した出力
取出部7bより外部に回転が取り出される。8は出力伝
達軸7の突起部7aと移動体6の間に介在された摩擦係
数の大きな弾性部材であり、出力伝達軸7の異常振動な
どを吸収補正し、移動体6の回転を安定に効率よく出力
伝達軸7に伝える。9は振動体3の振動を阻害すること
なく振動体3の支持する支持部材、10はベアリング、
11は皿ばねである。12は皿ばね11の加圧力を調整
する加圧力調整手段であり、圧力調整された皿ばね11
により移動体6は摩擦材5を介して振動体3に加圧接触
させられている。13は超音波モータを支持するベース
部であり、振動体3は支持部材9を介してこのベース部
13に設置されるとともに、ベアリング10もこのベー
ス部13に設置されて、出力伝達軸7の位置規制を行っ
ている。
FIG. 2 is a vertical sectional view of a conventional ultrasonic motor. In FIG. 2, a vibrating body 3 is formed by laminating a piezoelectric body 2 on one surface of the elastic substrate 1.
A plurality of protrusions 1a are provided on the other surface of the. Reference numeral 4 is an elastic body, and 5 is a friction material made of a wear resistant material, which are bonded to each other to form a moving body 6. 7
Is an output transmission shaft that transmits the rotation of the moving body 6 to the outside,
At the end of the output transmission shaft 7 on the side of the moving body 6, there is provided a protrusion 7a for transmitting the rotation of the moving body 6 stably and efficiently, and the output extraction further protruding outward from the protrusion 7a. The rotation is taken out from the portion 7b. Reference numeral 8 denotes an elastic member having a large friction coefficient, which is interposed between the protrusion 7a of the output transmission shaft 7 and the moving body 6 and absorbs and corrects abnormal vibration of the output transmission shaft 7 to stabilize the rotation of the moving body 6. The power is efficiently transmitted to the output transmission shaft 7. Reference numeral 9 denotes a supporting member that supports the vibrating body 3 without inhibiting the vibration of the vibrating body 3, and 10 denotes a bearing,
Reference numeral 11 is a disc spring. Reference numeral 12 is a pressing force adjusting means for adjusting the pressing force of the disc spring 11, and the pressure-controlled disc spring 11 is used.
Thus, the moving body 6 is brought into pressure contact with the vibrating body 3 via the friction material 5. Reference numeral 13 is a base portion that supports the ultrasonic motor, and the vibrating body 3 is installed on the base portion 13 via the support member 9, and the bearing 10 is also installed on the base portion 13, so that the output transmission shaft 7 The position is regulated.

【0004】このように構成された超音波モータにおい
て、圧電体2に交番電界を印加すると、振動体3には周
方向に進行する曲げ振動が励振され、摩擦材5と振動体
3の突起体1aの間に作用する摩擦力により、移動体6
が進行波の進行方向と逆向きに駆動される。
In the ultrasonic motor configured as described above, when an alternating electric field is applied to the piezoelectric body 2, a bending vibration that advances in the circumferential direction is excited in the vibrating body 3, and the friction material 5 and the protruding body of the vibrating body 3 are excited. The moving body 6 is caused by the frictional force acting between 1a.
Is driven in the direction opposite to the traveling direction of the traveling wave.

【0005】図3は上記超音波モータにおける圧電体2
の電極構造の一例を示す平面図で、周方向に4波の曲げ
振動を励振するように構成されている。図3において、
A0,B0は、それぞれ励振される進行波の2分の1の
波長相当の小領域からなる駆動電極である。C0は4分
の1の波長相当、D0は4分の3の波長相当の長さの電
極であり、駆動電極A0,B0に4分の1の波長相当の
位置的なずれを作るために設けられている。したがっ
て、A0の駆動電極とB0の駆動電極とは互いに、位置
的に4分の1波長(=90度)の位相差を持つ。また、
駆動電極A0,B0内の隣合う2分の1の波長相当の各
小電極部は、厚みの方向に交互に反対に分極されてい
る。圧電体2の弾性基板1との接着面は図3に示された
面と反対側の面であり、電極は全面電極である。使用時
には斜線で示したように、A0の駆動電極とB0の駆動
電極を構成する小領域は、それぞれ短絡して用いられ
る。
FIG. 3 shows the piezoelectric body 2 in the ultrasonic motor.
FIG. 3 is a plan view showing an example of the electrode structure of FIG. 1, which is configured to excite four-wave bending vibration in the circumferential direction. In FIG.
A0 and B0 are drive electrodes each including a small region corresponding to a half wavelength of the traveling wave excited. C0 is an electrode having a length corresponding to a quarter wavelength, and D0 is an electrode having a length corresponding to a quarter wavelength, and is provided to make a positional shift corresponding to a quarter wavelength on the drive electrodes A0 and B0. Has been. Therefore, the drive electrode of A0 and the drive electrode of B0 have a phase difference of a quarter wavelength (= 90 degrees) with each other. Also,
Adjacent one-half wavelength equivalent small electrode portions in the drive electrodes A0 and B0 are alternately polarized in opposite directions in the thickness direction. The bonding surface of the piezoelectric body 2 with the elastic substrate 1 is the surface opposite to the surface shown in FIG. 3, and the electrode is a full-surface electrode. When used, as indicated by hatching, the small regions forming the drive electrode A0 and the drive electrode B0 are short-circuited and used.

【0006】この駆動電極A0,B0に(1)式、
(2)式で表される電圧V1およびV2をそれぞれ印加
すれば、振動体3には(3)式で表される円周方向に進
行する曲げ振動の進行波が励振される。
The drive electrodes A0 and B0 have the formula (1),
When the voltages V1 and V2 represented by the equation (2) are respectively applied, the traveling wave of bending vibration traveling in the circumferential direction represented by the equation (3) is excited in the vibrating body 3.

【0007】 V1=V0sin(ωt) (1) V2=V0cos(ωt) (2) ξ=ξ0cos(ωt−kx) (3) ただし、V0は電圧の最大値、ωは角周波数、tは時
間、ξは曲げ振動の振幅値、ξ0は曲げ振動の振幅の最
大値、kは波数、xは位置を示す。
V1 = V0sin (ωt) (1) V2 = V0cos (ωt) (2) ξ = ξ0cos (ωt−kx) (3) where V0 is the maximum voltage value, ω is the angular frequency, t is the time, ξ is the bending vibration amplitude value, ξ0 is the maximum bending vibration amplitude value, k is the wave number, and x is the position.

【0008】図4は動作原理を説明する説明図である。
図4において、振動体に進行波を励振することによっ
て、振動体3の表面のA点は、長軸w、単軸uの楕円運
動をし、振動体3に加圧して設置された移動体6は摩擦
材5を介して、振動体3の表面の任意の点が描く楕円の
頂点A近傍で接触し、摩擦力により波の進行方向とは逆
方向に(4)式で表される速度vで運動する様子を示し
ている。
FIG. 4 is an explanatory view for explaining the operation principle.
In FIG. 4, when a traveling wave is excited in the vibrating body, the point A on the surface of the vibrating body 3 makes an elliptic motion of the long axis w and the single axis u, and the moving body placed under pressure on the vibrating body 3 is installed. 6 is in contact with the vicinity of the apex A of the ellipse drawn by an arbitrary point on the surface of the vibrating body 3 through the friction material 5, and due to the frictional force, the velocity expressed by the equation (4) in the direction opposite to the traveling direction of the wave. It shows a state of exercising with v.

【0009】 v=ω×u (4) 図5は振動体の駆動端子からみた等価回路であり、電気
的容量Cel4、電気系−機械系変換トランス(変換係
数N)15、機械的弾性定数Cml6、質量Lml7、
機械的損失Rml8とで表され、力Fとして出力され
る。圧電体に電圧Vを印加すると、総電流il9が流れ
る。この総電流il9は、電気的容量Cel4に流れる
電流である電気腕電流ie20と電気系−機械系変換ト
ランス15に流れる電流である機械腕電流im21とか
らなる。この機械腕電流im21が、電気系−機械系変
換トランス15により(5)式で表される変位速度vd
に変換される。
V = ω × u (4) FIG. 5 is an equivalent circuit seen from the drive terminal of the vibrating body, which has an electric capacity Cel4, an electric system-mechanical system conversion transformer (conversion coefficient N) 15, and a mechanical elastic constant Cml6. , Mass Lml7,
It is expressed as mechanical loss Rml8 and is output as force F. When the voltage V is applied to the piezoelectric body, the total current il9 flows. The total current il9 is composed of an electric arm current ie20 which is a current flowing through the electric capacity Cel4 and a mechanical arm current im21 which is a current flowing through the electric system-mechanical system conversion transformer 15. This mechanical arm current im21 is the displacement speed vd represented by the equation (5) by the electric system-mechanical system conversion transformer 15.
Is converted to.

【0010】 vd=dξ/dt (5) したがって、総電流il9、或いは機械腕電流im21
によって、変位ξを求めることができる。
Vd = dξ / dt (5) Therefore, the total current il9 or the mechanical arm current im21
The displacement ξ can be obtained by

【0011】これらのことより移動体の回転速度は、振
動体の曲げ振動の振幅の瞬時値に比例し、曲げ振動の振
幅の瞬時値は振動体を構成する圧電体に流れる機械腕電
流imに比例する。そこで、この機械腕電流imを検出
し、これを利用することにより移動体の回転速度を安定
に制御することができる。
From these facts, the rotation speed of the moving body is proportional to the instantaneous value of the bending vibration amplitude of the vibrating body, and the instantaneous value of the bending vibration amplitude corresponds to the mechanical arm current im flowing in the piezoelectric body forming the vibrating body. Proportional. Therefore, the rotation speed of the moving body can be stably controlled by detecting the mechanical arm current im and using it.

【0012】[0012]

【発明が解決しようとする課題】しかしながら、図2の
構造の超音波モータでは出力伝達軸7の出力取出部7b
にラジアルな荷重が加わると、この荷重はベアリング1
0を支点として作用するので、支点と作用点の距離が大
きくなり、小さな荷重でも出力伝達軸7は大きくたわ
み、出力伝達軸7の突起部7aと弾性部材8、弾性部材
8と移動体4の接触状態が変化して不安定になるととも
に、移動体6の摩擦材5と振動体3の突起体1aの接触
状態も変化する。超音波モータは移動体6と振動体3の
間の摩擦を利用して出力を取り出しているので、両者の
接触状況が変化すると、移動体6から出力伝達軸7への
回転の伝達効率、および振動体3から移動体6への回転
の伝達効率が低下して、安定に効率よく外部に出力を取
り出すことができなくなるという問題がある。
However, in the ultrasonic motor having the structure shown in FIG. 2, the output take-out portion 7b of the output transmission shaft 7 is used.
When a radial load is applied to the bearing, this load is applied to the bearing 1.
Since 0 acts as a fulcrum, the distance between the fulcrum and the acting point becomes large, the output transmission shaft 7 is largely deflected even with a small load, and the protrusion 7a of the output transmission shaft 7 and the elastic member 8 or the elastic member 8 and the moving body 4 are separated. The contact state changes and becomes unstable, and the contact state between the friction material 5 of the moving body 6 and the protrusion 1a of the vibrating body 3 also changes. Since the ultrasonic motor takes out the output by utilizing the friction between the moving body 6 and the vibrating body 3, when the contact state between the two changes, the transmission efficiency of the rotation from the moving body 6 to the output transmission shaft 7, and There is a problem that the efficiency of transmission of rotation from the vibrating body 3 to the moving body 6 is reduced, and it becomes impossible to take out the output to the outside stably and efficiently.

【0013】本発明は上記問題を解決するもので、出力
伝達軸にラジアルな荷重が作用した場合にも、安定に効
率よく駆動することができる超音波モータを提供するこ
とを目的とするものである。
The present invention solves the above problems, and an object of the present invention is to provide an ultrasonic motor which can be stably and efficiently driven even when a radial load is applied to the output transmission shaft. is there.

【0014】[0014]

【課題を解決するための手段】上記課題を解決するため
に、本発明の超音波モータは、出力伝達軸に作用する負
荷の影響が、特に出力軸にラジアルな力が働いても、移
動体と振動体の接触部および弾性部材と出力伝達軸、弾
性部材と移動体の接触状態に大きな変化現れないよう
に、出力伝達軸の位置決めを行うベアリングがある側に
出力取出部を設けたものであり、たとえば従来例として
取り上げた超音波モータのようにベアリングが振動体側
に設置されている場合は、出力伝達軸の振動体側から出
力を取り出すようにした。
In order to solve the above-mentioned problems, the ultrasonic motor of the present invention has a moving body which is affected by a load acting on the output transmission shaft, particularly when a radial force acts on the output shaft. And the contact part of the vibrating body, the elastic member and the output transmission shaft, and the contact state of the elastic member and the moving body do not show a large change. Therefore, for example, when the bearing is installed on the vibrating body side as in the ultrasonic motor taken as the conventional example, the output is taken out from the vibrating body side of the output transmission shaft.

【0015】[0015]

【作用】上記構成により、出力伝達軸の位置決めを行う
ベアリングがある側に出力取出部を設け、ベアリングが
設置された側である、出力伝達軸の振動体側または移動
体側より機械出力を取り出すことにより、出力伝達軸に
ラジアル方向の異常な力が働いても、支点となるベアリ
ングと作用点の距離が短いので、出力伝達軸に作用する
負荷による出力伝達軸の変形が小さくでき、その結果、
移動体と振動体の接触状況への影響を小さくできる。ま
た、出力伝達軸の弾性部材との接触部を自由端として、
移動体上に設けられた弾性部材による変位吸収効果を有
効にすることにより、軸の加工精度の悪さなど、および
出力伝達軸に作用する負荷による出力伝達軸の変形、変
位などの影響を移動体と振動体の接触面に伝えること無
く、安定に効率よく超音波モータを駆動することができ
る。
With the above structure, the output take-out portion is provided on the side where the bearing for positioning the output transmission shaft is provided, and the mechanical output is taken out from the side where the bearing is installed, that is, the vibrating body side or the moving body side of the output transmission shaft. , Even if an abnormal radial force is exerted on the output transmission shaft, the distance between the fulcrum bearing and the action point is short, so the deformation of the output transmission shaft due to the load acting on the output transmission shaft can be reduced, and as a result,
The influence on the contact situation between the moving body and the vibrating body can be reduced. Also, the contact portion of the output transmission shaft with the elastic member is a free end,
By making the displacement absorbing effect of the elastic member provided on the moving body effective, the moving body is affected by the poor machining accuracy of the shaft and the deformation and displacement of the output transmission shaft due to the load acting on the output transmission shaft. The ultrasonic motor can be stably and efficiently driven without being transmitted to the contact surface of the vibrating body.

【0016】[0016]

【実施例】以下に本発明の一実施例を図を参照しながら
説明する。図1は本発明の一実施例である超音波モータ
の縦断面図である。図1において、弾性基板22の一面
に、圧電体23を張り合わせて振動体24が構成されて
おり、この弾性基板22の他方の面には、複数個の突起
体22aが設置されている。25は弾性体、26は耐摩
耗性材料よりなる摩擦材であり、互いに貼り合わせて移
動体27が構成されている。28は移動体27の回転を
外部に伝達する出力伝達軸であり、この出力伝達軸28
の移動体27側端部に、移動体27よりの回転を効率よ
く伝達するための突起体28aが設けられており、移動
体27とは反対側の振動体24側の方へ延長された出力
取出部28bより外部に回転が取り出される。29は出
力伝達軸28の突起部28aと移動体27の間に介在さ
れた弾性部材であり、振動体24と移動体27の接触面
のうねり、出力伝達軸28の振れなどを吸収補正する。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a vertical sectional view of an ultrasonic motor according to an embodiment of the present invention. In FIG. 1, a vibrating body 24 is configured by laminating a piezoelectric body 23 on one surface of the elastic substrate 22, and a plurality of protrusions 22 a are installed on the other surface of the elastic substrate 22. Reference numeral 25 is an elastic body, and 26 is a friction material made of a wear-resistant material, which are bonded together to form a moving body 27. Reference numeral 28 denotes an output transmission shaft that transmits the rotation of the moving body 27 to the outside.
Is provided with a protrusion 28a for efficiently transmitting rotation from the moving body 27, and an output extended toward the vibrating body 24 side opposite to the moving body 27. The rotation is taken out from the take-out portion 28b. Reference numeral 29 is an elastic member interposed between the protrusion 28a of the output transmission shaft 28 and the moving body 27, and absorbs and corrects the waviness of the contact surface between the vibrating body 24 and the moving body 27, the shake of the output transmission shaft 28, and the like.

【0017】30は振動体24の振動を阻害することな
く振動体24を支持する支持部材である。31は振動体
24側に設けられたベアリングAであり、出力伝達軸2
8の位置規制を行っている。32は皿ばね、33は皿ば
ね32の加圧力を調整する加圧力調整手段であり、圧力
調整された皿ばね32により、移動体27は摩擦材26
を介して振動体24に加圧接触されている。34は出力
伝達軸28の出力取出部28bの他端を支持するベアリ
ングBである。35は超音波モータを支持するベース部
であり、振動体24は支持部材30を介してこのベース
部35に設置されるとともにベアリング31,34もこ
のベース部35に設置されている。
Reference numeral 30 is a support member for supporting the vibrating body 24 without disturbing the vibration of the vibrating body 24. Reference numeral 31 denotes a bearing A provided on the vibrating body 24 side, and the output transmission shaft 2
8 position regulation is performed. Reference numeral 32 is a disc spring, and 33 is a pressurizing force adjusting means for adjusting the pressurizing force of the disc spring 32.
It is in pressure contact with the vibrating body 24 via. Reference numeral 34 is a bearing B that supports the other end of the output extracting portion 28b of the output transmission shaft 28. Reference numeral 35 denotes a base portion that supports the ultrasonic motor. The vibrating body 24 is installed on the base portion 35 via the support member 30, and the bearings 31 and 34 are also installed on the base portion 35.

【0018】このように構成された超音波モータについ
て以下その動作を説明する。圧電体23に交番電界を印
加すると、振動体24には周方向に曲げ振動の進行波が
励振され、移動体27の摩擦材26と突起体22aの間
に作用する摩擦力により、移動体27は進行波の進行方
向と逆向きに駆動され回転する。この回転は弾性部材2
9を介して出力伝達軸28に伝達される。ここで、超音
波モータの外部に対して回転の取り出しは、出力伝達軸
28の振動体24に対して移動体27と反対側の出力取
出部28bから取り出すことにより、出力伝達軸28に
ラジアル方向の異常な力が働いても、支点となるベアリ
ングA31と作用点の距離が短いので、出力伝達軸28
の変形を小さくでき、その結果、移動体27と振動体2
4の接触状況への影響を小さくできる。
The operation of the ultrasonic motor thus constructed will be described below. When an alternating electric field is applied to the piezoelectric body 23, a traveling wave of bending vibration is excited in the vibrating body 24 in the circumferential direction, and the moving body 27 is moved by the frictional force acting between the friction material 26 of the moving body 27 and the protrusion 22a. Is driven and rotated in the direction opposite to the traveling direction of the traveling wave. This rotation is caused by the elastic member 2
It is transmitted to the output transmission shaft 28 via 9. Here, the rotation of the ultrasonic motor with respect to the outside is taken out from the output take-out portion 28b of the output transmission shaft 28 on the side opposite to the moving body 27 with respect to the vibrating body 24, so that the output transmission shaft 28 is radially moved. Even if an abnormal force is applied to the output transmission shaft 28, since the distance between the fulcrum bearing A31 and the point of action is short.
Deformation of the moving body 27 and the vibrating body 2 can be reduced.
It is possible to reduce the influence of No. 4 on the contact situation.

【0019】そして、出力伝達軸28の出力取出部28
bにラジアルな荷重が作用しても出力伝達軸28の突起
部28aは、自由端であり拘束を受けることなく自由に
変位することができ、確実に弾性部材29を移動体27
と出力伝達軸28の突起体28aで挟み込むことがで
き、また弾性部材29の補正効果により振動体24と移
動体27の接触面にはラジアルな荷重の影響は現れにく
い。この結果、出力取出部28bにラジアルな荷重が作
用しても、振動体24から移動体27へ、また移動体2
7から出力伝達軸28への回転の伝達が安定に効率よく
行われ、超音波モータを安定に効率良く駆動することが
できる。
The output take-out portion 28 of the output transmission shaft 28
Even if a radial load is applied to b, the protrusion 28a of the output transmission shaft 28 is a free end and can be freely displaced without being constrained, so that the elastic member 29 can be securely moved.
It can be sandwiched between the protrusions 28a of the output transmission shaft 28, and due to the correction effect of the elastic member 29, the effect of radial load is unlikely to appear on the contact surface between the vibrating body 24 and the moving body 27. As a result, even if a radial load is applied to the output take-out portion 28b, the vibrating body 24 moves to the moving body 27 and the moving body 2 moves.
The rotation is transmitted from 7 to the output transmission shaft 28 stably and efficiently, and the ultrasonic motor can be stably and efficiently driven.

【0020】なお、本発明は上記実施例に限定されるも
のではなく、本発明の主旨に基づいて種々の変形が可能
である。たとえば、軸受けが移動体側に設置されている
ときには、移動体側から出力を取り出せば、前述の実施
例と同様な効果が得られるのは言うまでもない。
The present invention is not limited to the above embodiment, but various modifications can be made based on the gist of the present invention. For example, when the bearing is installed on the side of the moving body, it goes without saying that if the output is taken out from the side of the moving body, the same effect as the above-described embodiment can be obtained.

【0021】[0021]

【発明の効果】以上のように本発明の超音波モータによ
れば、出力伝達軸にラジアルな荷重が作用した場合に
も、ラジアルな荷重による軸の撓みを小さくでき、さら
に移動体と振動体の接触面および移動体と出力伝達軸の
動力伝達に影響を減少することができ、動作が安定し
た、しかも駆動効率の良い超音波モータを提供すること
ができる。
As described above, according to the ultrasonic motor of the present invention, even when a radial load is applied to the output transmission shaft, the bending of the shaft due to the radial load can be reduced, and the moving body and the vibrating body can be reduced. It is possible to reduce the influence on the contact surface and the power transmission between the moving body and the output transmission shaft, and it is possible to provide an ultrasonic motor with stable operation and high driving efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の超音波モータの縦断面図FIG. 1 is a vertical sectional view of an ultrasonic motor according to an embodiment of the present invention.

【図2】従来例の超音波モータの縦断面図FIG. 2 is a vertical sectional view of a conventional ultrasonic motor.

【図3】超音波モータにおける圧電体の電極構造を示す
平面図
FIG. 3 is a plan view showing an electrode structure of a piezoelectric body in an ultrasonic motor.

【図4】超音波モータの動作原理説明図FIG. 4 is an explanatory diagram of the operation principle of the ultrasonic motor.

【図5】超音波モータにおける圧電体の等価回路図FIG. 5 is an equivalent circuit diagram of a piezoelectric body in an ultrasonic motor.

【符号の説明】[Explanation of symbols]

24 振動体 27 移動体 28 出力伝達軸 28b 出力取出部 29 弾性部材 31,34 ベアリング 35 ベース部 24 vibrating body 27 moving body 28 output transmission shaft 28b output extracting section 29 elastic member 31, 34 bearing 35 base section

───────────────────────────────────────────────────── フロントページの続き (72)発明者 住原 正則 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 西倉 孝弘 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 川崎 修 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Masanori Sumihara 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Takahiro Nishikura, 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd. (72) Inventor Osamu Kawasaki 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 圧電体を交流電圧で駆動し、前記圧電体
と弾性体とから構成される振動体に弾性進行波を励振す
ることにより、前記振動体上に加圧接触して設置された
移動体を回転させる超音波モータであって、前記移動体
と前記移動体の回転を外部負荷に伝達する出力伝達軸の
間に弾性部材を介在させ、前記振動体側または移動体側
に前記出力伝達軸の回転位置規制を行う軸受けを設置
し、外部出力を前記出力伝達軸の前記振動体側または移
動体側から取り出すことを特徴とする超音波モータ。
1. A piezoelectric body is driven by an AC voltage, and an elastic traveling wave is excited in a vibrating body composed of the piezoelectric body and an elastic body, so that the vibrating body is placed in pressure contact with the vibrating body. An ultrasonic motor for rotating a moving body, wherein an elastic member is interposed between the moving body and an output transmitting shaft for transmitting the rotation of the moving body to an external load, and the output transmitting shaft is provided on the vibrating body side or the moving body side. The ultrasonic motor is characterized in that a bearing for restricting the rotational position of the output transmission shaft is installed and an external output is taken out from the vibrating body side or the moving body side of the output transmission shaft.
JP4266936A 1992-10-06 1992-10-06 Ultrasonic motor Pending JPH06121554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4266936A JPH06121554A (en) 1992-10-06 1992-10-06 Ultrasonic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4266936A JPH06121554A (en) 1992-10-06 1992-10-06 Ultrasonic motor

Publications (1)

Publication Number Publication Date
JPH06121554A true JPH06121554A (en) 1994-04-28

Family

ID=17437747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4266936A Pending JPH06121554A (en) 1992-10-06 1992-10-06 Ultrasonic motor

Country Status (1)

Country Link
JP (1) JPH06121554A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100398760B1 (en) * 2000-08-29 2003-09-19 미쓰비시덴키 가부시키가이샤 Commutator motor
JP2006333658A (en) * 2005-05-27 2006-12-07 Nikon Corp Vibration actuator
JP2006333629A (en) * 2005-05-26 2006-12-07 Nikon Corp Vibration wave motor
JP2006333679A (en) * 2005-05-30 2006-12-07 Nikon Corp Vibration wave motor
JP2011167067A (en) * 2011-05-30 2011-08-25 Nikon Corp Vibration actuator
JP2020157405A (en) * 2019-03-26 2020-10-01 セイコーエプソン株式会社 Driving device, hand and driving device control method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100398760B1 (en) * 2000-08-29 2003-09-19 미쓰비시덴키 가부시키가이샤 Commutator motor
JP2006333629A (en) * 2005-05-26 2006-12-07 Nikon Corp Vibration wave motor
JP2006333658A (en) * 2005-05-27 2006-12-07 Nikon Corp Vibration actuator
JP2006333679A (en) * 2005-05-30 2006-12-07 Nikon Corp Vibration wave motor
JP2011167067A (en) * 2011-05-30 2011-08-25 Nikon Corp Vibration actuator
JP2020157405A (en) * 2019-03-26 2020-10-01 セイコーエプソン株式会社 Driving device, hand and driving device control method

Similar Documents

Publication Publication Date Title
US4453103A (en) Piezoelectric motor
US4587452A (en) Vibration wave motor having a vibrator of non-uniform elastic modulus
US6242850B1 (en) Piezoelectric motor and a disk drive using same
US4723085A (en) Vibration wave motor
US4399386A (en) Rotative motor using plural arrays of piezoelectric elements
JPH06121554A (en) Ultrasonic motor
US6781283B2 (en) Vibration element and vibration wave driving apparatus
US5440192A (en) Ultrasonic motor
US5821669A (en) Vibration wave motor having piezoelectric pressure member
US4399385A (en) Rotative motor using a triangular piezoelectric element
TW571505B (en) Piezoelectric motor
US6628045B2 (en) Ring-type piezoelectric ultrasonic motor
JP2001518280A (en) Ultrasonic motor
JPS61221584A (en) Drive circuit of vibration wave motor
JPS62213585A (en) Vibration wave motor
JP2507083B2 (en) Ultrasonic motor
JP2769151B2 (en) Ultrasonic motor
JPH0833366A (en) Method for driving ultrasonic motor and its drive circuit
EP0539969B1 (en) Ultrasonic motor
JPH07131986A (en) Method for driving ultrasonic motor
JP2636280B2 (en) Driving method of ultrasonic motor
JPH0681523B2 (en) Vibration wave motor
JPH07123750A (en) Drive circuit of ultrasonic motor
JPH07131987A (en) Drive control circuit for ultrasonic motor
JPH01177878A (en) Oscillatory wave motor