JPH06121449A - Grounding overcurrent relay device - Google Patents

Grounding overcurrent relay device

Info

Publication number
JPH06121449A
JPH06121449A JP26470192A JP26470192A JPH06121449A JP H06121449 A JPH06121449 A JP H06121449A JP 26470192 A JP26470192 A JP 26470192A JP 26470192 A JP26470192 A JP 26470192A JP H06121449 A JPH06121449 A JP H06121449A
Authority
JP
Japan
Prior art keywords
current
ground fault
overcurrent relay
relay device
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26470192A
Other languages
Japanese (ja)
Inventor
Yuichi Yasui
裕一 安居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP26470192A priority Critical patent/JPH06121449A/en
Publication of JPH06121449A publication Critical patent/JPH06121449A/en
Pending legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Protection Of Transformers (AREA)

Abstract

PURPOSE:To detect ground faults of a power receiving and distributing system at a high speed by producing an operation output, when both positive-side and negative-side currents are above the level of a set value. CONSTITUTION:A positive-current-value detecting means 14 and a negative- current-value detecting means 15 take in the secondary current of a potential current transformer connected to a power system, and find them by separating positive and negative waveform components respectively. An operation output judging means 19 produces an operation output for a grounding overcurrent relay 20, on condition that both operation outputs of the positive-current-value detecting means 14 and the negative-current-value detecting means 15 are being produced. As the result, it becomes possible to prevent the malfunctioning of the grounding overcurrent relay 20 and the misinterruption of the system circuit- breakers of a power receiving and distributing system caused by this malfunctioning, at the time of a transformer being connected, and it is possible to detect ground faults of the power receiving and distributing system surely and at a high speed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、送電設備あるいは発電
設備から成る並列運転可能な複数の電源供給設備を有す
る受配電設備の地絡事故発生時に、電力系統に流れる地
絡電流を検出して動作する地絡過電流継電装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention detects a ground fault current flowing in a power system when a ground fault occurs in a power receiving and distributing facility having a plurality of power supply facilities which can be operated in parallel and which are composed of a power transmitting facility or a power generating facility. The present invention relates to an operating ground fault overcurrent relay device.

【0002】[0002]

【従来の技術】従来、受配電設備では、電力系統の連携
分岐点に地絡過電流継電器及びしゃ断器を設け、地絡事
故発生時に前記分岐点しゃ断器を開放して地絡事故系統
を切り離すことにより健全系統の運転を継続できるよう
に構成されている。
2. Description of the Related Art Conventionally, in power receiving and distributing equipment, a ground fault overcurrent relay and a circuit breaker are provided at a cooperative branch point of a power system, and when a ground fault occurs, the branch point breaker is opened to disconnect the ground fault system. Is configured so that the operation of the sound system can be continued.

【0003】図3は、発電設備から電源の供給を受ける
受配電設備に、地絡過電流継電装置を備えた従来の系統
構成図である。同図において、1は電源設備、2は受配
電設備、3,5は連携分岐用しゃ断器で、電源設備1と
の接続又は切離しを行なう。この連携分岐用しゃ断器
3,5を通して電源設備1からの電力は、負荷Aおよび
変圧器6を通して負荷Bへ供給される。8は受配電設備
の系統連携分離点に設けられた地絡過電流継電装置で、
変流器4の2次三相三線回路の中性相(残留回路)によ
って取り出される零相電流Io が入力されている。した
がって、系統分離用しゃ断器3から変圧器6の電力経路
に地絡事故が発生した場合には、電源設備1の中性点接
地抵抗7を介して地絡点に流れる地絡電流Io を地絡過
電流継電装置8によって検出して、その動作出力により
連携分岐用しゃ断器3をしゃ断する。
FIG. 3 is a conventional system configuration diagram in which a ground fault overcurrent relay device is provided in a power receiving and distributing facility which is supplied with power from a power generating facility. In the figure, 1 is a power supply facility, 2 is a power receiving / distributing facility, and 3 and 5 are circuit breakers for cooperative branching, which are connected to or disconnected from the power supply facility 1. Electric power from the power supply facility 1 is supplied to the load B through the load A and the transformer 6 through the cooperative branching breakers 3 and 5. 8 is a ground fault overcurrent relay device installed at the grid connection separation point of the power distribution equipment,
The zero-phase current I o taken out by the neutral phase (residual circuit) of the secondary three-phase three-wire circuit of the current transformer 4 is input. Therefore, when a ground fault occurs in the power path of the transformer 6 from the system isolation breaker 3, the ground fault current I o flowing to the ground fault via the neutral point ground resistance 7 of the power supply equipment 1 is changed. It is detected by the ground fault overcurrent relay device 8 and the operation output thereof cuts off the cooperative branch breaker 3.

【0004】図4は従来の地絡過電流継電装置のブロッ
ク構成図である。同図に示すように、変圧器6の1次側
で地絡が発生した場合、地絡点に流れる地絡電流I
o は、連携分岐点に設けた変流器4を介して入力され
る。地絡過電流継電装置8に入力された地絡電流I
o は、アナログ/ディジタル変換要素9を介してディジ
タル変換され、一定周期毎にサンプリングされて電流値
検出要素10へ送出される。電流値検出要素10では、
サンプリングデータを演算して地絡電流(零相電流)I
o の実行値を求める。この電流値検出要素10で求めら
れた検出値データは、動作判定要素11へ送出され、こ
の動作判定要素11では予め設定された動作設定値記憶
装置12からの動作電流値Iset との比較判定が実行さ
れ、Io ≧Iset のとき当該地絡過電流継電装置を動作
させる動作信号を出力する。
FIG. 4 is a block diagram of a conventional ground fault overcurrent relay device. As shown in the figure, when a ground fault occurs on the primary side of the transformer 6, the ground fault current I flowing to the ground fault point I
o is input via the current transformer 4 provided at the cooperation branch point. Ground fault current I input to the overcurrent relay device 8
The o is digitally converted via the analog / digital conversion element 9, sampled at regular intervals, and sent to the current value detection element 10. In the current value detection element 10,
Ground fault current (zero phase current) I calculated by sampling data
Find the actual value of o . The detection value data obtained by the current value detection element 10 is sent to the operation determination element 11, and the operation determination element 11 makes a comparison determination with the operation current value I set from the preset operation setting value storage device 12. Is executed, and when I o ≧ I set , an operation signal for operating the ground fault overcurrent relay device is output.

【0005】[0005]

【発明が解決しようとする課題】ところで、従来の地絡
過電流継電装置8では、図3の連携分岐用しゃ断器5を
投入し、電源設備1の電源を変圧器6に印加した時、変
圧器6にその鉄芯飽和による励磁突入電流が流れる。こ
の励磁突入電流は、どの相が飽和するか、さらに、励磁
突入電流値の大きさや直流分の含有率など、しゃ断器3
の投入タイミングによって異なり、一定ではないが、直
流分を多く含み、ある1つの相に大半の電流が流れ三相
の電流値バランスは大きく偏ることが現実の現象として
多くの実測データで明らかである。
By the way, in the conventional ground fault overcurrent relay device 8, when the cooperative branch breaker 5 of FIG. 3 is turned on and the power of the power supply equipment 1 is applied to the transformer 6, An exciting inrush current due to the saturation of the iron core flows through the container 6. The phase of the exciting inrush current is saturated, the magnitude of the exciting inrush current value, the content rate of the direct current component, and the like.
It is clear from many actual measurement data as a real phenomenon that the current value balance of the three phases is largely biased, since most of the current flows in one phase, though it is not constant and contains a large amount of direct current, although it is not constant. .

【0006】上述したように、直流分を多く含み、三相
の電流値バランスが三相のうちある一相に大きく偏って
連携分岐点の変流器4の各相に流れると、各相の変流器
4の励磁特性は直流分の影響を受けて変化するので、変
流器4の各相を合成した残留回路に変流器各相の特性誤
差による合成電流(1次側には流れない見かけ上の零相
電流Io )が発生し、この合成電流値により地絡過電流
継電装置8が動作し、連携分岐用しゃ断器3をトリップ
させ、負荷Aへの電源供給を停止させることが起こる恐
れがある。
As described above, when a large amount of direct current is contained and the current value balance of the three phases is largely biased to one of the three phases and flows to each phase of the current transformer 4 at the cooperation branch point, the three phases are separated. Since the excitation characteristics of the current transformer 4 change under the influence of the direct current component, the residual current obtained by synthesizing each phase of the current transformer 4 causes a combined current due to the characteristic error of each phase of the current transformer 4 ( An apparent zero-phase current I o ) is generated, and the ground current overcurrent relay 8 operates by this combined current value, trips the cooperative branch circuit breaker 3, and stops the power supply to the load A. May occur.

【0007】次に、変圧器投入時の励磁突入電流による
地絡過電流継電装置8の動作を図5を用いて説明する。
三相の各相に流れる変圧器6の励磁突入電流I1
2 ,I3 は、図5(a)〜(c)に示すような波形で
大きな直流分を含んでおり、この直流分の影響によりそ
れぞれの変流器4の励磁特性に変化が生じるため、地絡
過電流継電装置8に入力される変流器4の2次側の合成
電流は、図5(d)に示すように、直流分含有率の高い
電流Io となって流れる。この合成電流Io の正(Io
+ )または負(Io - )のいずれか一方の値が、地絡過
電流継電装置8の動作設定値ISET を超過すると動作信
号が出力される。変圧器6の励磁突入電流の大きさは、
一般的に定常変圧器定格電流の8倍程に達する場合があ
る。抵抗接地の電力系統における地絡過電流の検出値
は、定常変圧器定格電流に比べてはるかに小さい値に設
定される為、地絡過電流継電装置8が変圧器励磁突入電
流により誤動作する確率は極めて高い。
Next, the operation of the ground fault overcurrent relay device 8 due to the magnetizing inrush current when the transformer is turned on will be described with reference to FIG.
Excitation inrush current I 1 of the transformer 6 flowing in each of the three phases,
I 2 and I 3 have waveforms as shown in FIGS. 5A to 5C and include a large DC component, and the influence of this DC component causes a change in the excitation characteristics of each current transformer 4. As shown in FIG. 5D, the combined current on the secondary side of the current transformer 4 that is input to the ground fault overcurrent relay 8 flows as a current I o having a high DC content rate. This combined current I o is positive (I o
When either the value of + ) or the value of negative (I o ) exceeds the operation set value I SET of the ground fault overcurrent relay device 8, an operation signal is output. The magnitude of the exciting inrush current of the transformer 6 is
Generally, it may reach about 8 times the rated current of the steady transformer. Since the detected value of the ground fault overcurrent in the resistance grounded power system is set to a value much smaller than the rated current of the steady transformer, the probability that the ground fault overcurrent relay 8 malfunctions due to the transformer inrush current is low. Extremely high.

【0008】本発明は上記事情に鑑みてなされたもの
で、その目的は、変圧器投入時の励磁突入電流による誤
動作を生じることなく高速度に検出できる地絡過電流継
電装置を提供することにある。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a ground fault overcurrent relay device capable of detecting at a high speed without causing a malfunction due to an exciting inrush current when a transformer is turned on. is there.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、電源供給設備または受配電設備の電力系
統に流れる地絡電流を検出する地絡過電流継電装置にお
いて、電力系統に接続された計器用変流器の2次電流を
入力電流として取り込み、この入力電流の正波形成分と
負波形成分をそれぞれ分離して求める正電流値検出手段
及び負電流値検出手段と、前記正電流値検出手段と負電
流値検出手段の動作出力が共に成立していることを条件
に当該地絡過電流継電装置の動作出力を送出する動作出
力判定手段とから構成されたことを特徴とする。
In order to achieve the above object, the present invention provides a ground fault overcurrent relay device for detecting a ground fault current flowing in a power system of a power supply facility or a power receiving and distributing facility. Positive current value detecting means and negative current value detecting means for obtaining a secondary current of the connected current transformer as an input current and separating the positive waveform component and the negative waveform component of the input current respectively, and the positive current value detecting means. It is characterized by comprising an operation output judging means for sending out an operation output of the ground fault overcurrent relay device on condition that the operation outputs of the current value detecting means and the negative current value detecting means are both established. .

【0010】[0010]

【作用】本発明は、変圧器の励磁突入電流に直流成分が
多く含まれるため、その波形が正側又は負側に偏位する
ことに着目し、正側と負側の電流が、双方共設定値レベ
ル以上である時に動作出力を行なうので、変圧器の励磁
突入電流による誤動作を防止し、しかも本来検出すべき
地絡事故は高速度に検出できる。
According to the present invention, since the exciting inrush current of the transformer contains a large amount of DC component, the waveform is deviated to the positive side or the negative side, and both the positive side current and the negative side current are detected. Since the operation output is performed when the level is above the set value level, it is possible to prevent malfunction due to the magnetizing inrush current of the transformer, and it is possible to detect the ground fault that should be detected at high speed.

【0011】[0011]

【実施例】以下、本発明の実施例を図を参照して説明す
る。図1は本発明の一実施例の地絡過電流継電装置20
のブロック構成図であり、図3に示す電力系統における
地絡過電流継電装置8の代りに適用されるものである。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is a ground fault overcurrent relay device 20 according to an embodiment of the present invention.
4 is a block diagram of the configuration of FIG. 3, which is applied instead of the ground fault overcurrent relay device 8 in the power system shown in FIG. 3.

【0012】本実施例の地絡過電流継電装置20は、図
3の受配電設備2の電力系統連携分岐点に設けた変流器
4の三相合成残留回路に接続されており、変流器4から
の入力電流Io は、図1に示すように地絡過電流継電装
置20のアナログ/ディジタル変換要素13を介してデ
ィジタル変換され、正波形成分電流検出要素14,負波
形成分電流検出要素15へ一定周期毎にサンプリングさ
れて送出される。
The ground fault overcurrent relay device 20 of this embodiment is connected to the three-phase combined residual circuit of the current transformer 4 provided at the power system cooperation branch point of the power receiving and distributing equipment 2 of FIG. The input current I o from the device 4 is digitally converted through the analog / digital conversion element 13 of the ground fault overcurrent relay device 20 as shown in FIG. 1, and the positive waveform component current detection element 14 and the negative waveform component current detection are performed. The data is sampled and sent to the element 15 at regular intervals.

【0013】正波形成分電流検出要素14,負波形成分
電流検出要素15ではサンプリングデータを演算して各
々の電流実効値Io + ,Io - を求めている。この正波
形電流実効値Io + ,負波形電流実効値Io - は、各々
正波形成分電流動作判定要素16、負波形成分電流動作
判定要素17へそれぞれ送出され、正波形成分、負波形
成分の双方の電流動作判定要素16,17では共に、予
じめ設定された動作設定値記憶装置18からの動作電流
SET との比較判定が行なわれる。正波形成分電流動作
判定要素16では、Io + ≧ISET のとき動作信号を出
力判定要素19に送出する。同様に、負波形成分電流動
作判定要素17では|Io - |≧ISETのとき、動作信
号を出力判定要素18へ送出する。
In the positive waveform component current detection element 14 and the negative waveform component current detection element 15, sampling data are calculated to obtain respective effective current values I o + and I o . The positive waveform current effective value I o + and the negative waveform current effective value I o are sent to the positive waveform component current operation determination element 16 and the negative waveform component current operation determination element 17, respectively, so that the positive waveform component and the negative waveform component are obtained. Both of the current operation determination elements 16 and 17 perform a comparison determination with the operation current I SET from the operation setting value storage device 18 which is set in advance. The positive waveform component current operation determination element 16 sends an operation signal to the output determination element 19 when I o + ≧ I SET . Similarly, the negative waveform component current operation determination element 17 sends an operation signal to the output determination element 18 when | I o | ≧ I SET .

【0014】出力判定要素18では、正波形成分電流動
作判定要素16及び負波形成分電流動作判定要素17の
双方の動作出力が共に成立している時に当該地絡過電流
継電装置20としての動作信号を出力する。
In the output judging element 18, when both the operation outputs of the positive waveform component current operation judging element 16 and the negative waveform component current operation judging element 17 are both established, the operation signal as the ground fault overcurrent relay device 20 concerned. Is output.

【0015】このように構成すれば、変圧器投入時に発
生する励磁突入電流成分は、正側(I+ )又は負側(I
- )の一方に大きく偏るので、変圧器投入時の励磁突入
電流に対する変流器の直流偏磁による励磁特性変化が生
じることと、変圧器二次の各相電流が合成されることに
よって見かけ上残留回路に発生する零相電流Io の正波
形成分Io + ,負波形成分Io - および残留回路に発生
する見かけ上の零相電流Io の正波形成分Io + ,負波
形成分Io - は、図2に示すように大きく偏る。図2は
図3の変圧器6に電圧を印加した時に発生する励磁突入
電流を変流器4の各相の2次を合成した残留回路に生じ
る合成電流Io (見かけ上の零相電流)の正波形成分の
電流Io + と負波形成分の電流Io - を示した一例であ
る。
According to this structure, the exciting inrush current component generated when the transformer is turned on is positive side (I + ) or negative side (I + ).
- ) Is greatly biased to one side, so the change in the excitation characteristics due to the DC bias of the current transformer with respect to the inrush current when the transformer is turned on, and the fact that the secondary phase currents of the transformer are combined apparently positive waveform component I o of the zero-phase current I o which is generated residual circuit +, a negative waveform components I o - and the positive waveform component of zero-phase current I o apparent that occur residual circuit I o +, the negative waveform components I o is greatly biased as shown in FIG. FIG. 2 shows a combined current I o (apparent zero-phase current) generated in the residual circuit in which the secondary of each phase of the current transformer 4 is combined with the exciting inrush current generated when a voltage is applied to the transformer 6 of FIG. 2 is an example showing a current I o + of a positive waveform component and a current I o of a negative waveform component of the above.

【0016】したがって、本実施例によると、正波形成
分Io + ,負波形成分Io - のいずれかの検出電流が設
定値以下となるので、変圧器励磁突入電流による地絡過
電流継電装置の動作出力を阻止することが可能となり、
受配電系統の系統しゃ断器の誤しゃ断を防止できる。
[0016] Thus, according to this embodiment, the positive waveform component I o +, the negative waveform components I o - since any detectable current becomes less than the set value, the transformer inrush current due to earth fault overcurrent relay device It is possible to block the operation output of
It is possible to prevent accidental interruption of the system breaker of the power distribution system.

【0017】[0017]

【発明の効果】以上説明したように、本発明によれば複
数の電源設備を有する受配電系統において、変圧器投入
時の地絡過電流継電器の誤動作及びこの誤動作による受
配電系統の系統しゃ断器の誤しゃ断を防止できるととも
に、受配電系統の地絡事故を確実で高速度に検出するこ
とが可能となり、受配電設備の電源供給の安定度を向上
させることができる。
As described above, according to the present invention, in a power distribution system having a plurality of power supply facilities, a malfunction of a ground fault overcurrent relay at the time of turning on a transformer and a system breaker of the power distribution system due to this malfunction. Accidental interruption can be prevented, and a ground fault in the power distribution system can be detected reliably and at high speed, and the stability of the power supply of the power distribution facility can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の地絡過電流継電装置の一実施例のブロ
ック構成図。
FIG. 1 is a block configuration diagram of an embodiment of a ground fault overcurrent relay device of the present invention.

【図2】本発明の地絡過電流継電装置における変圧器励
磁突入電流によって変圧器二次残留回路に発生する見か
け上の零相電流Io の正、負の両波形成分を示す波形
図。
FIG. 2 is a waveform diagram showing both positive and negative waveform components of an apparent zero-phase current I o generated in a transformer secondary residual circuit due to a transformer exciting inrush current in a ground fault overcurrent relay device of the present invention.

【図3】本発明の地絡過電流継電装置が適用される受配
電設備の系統構成図。
FIG. 3 is a system configuration diagram of power distribution equipment to which the ground fault overcurrent relay device of the present invention is applied.

【図4】従来の地絡過電流継電装置のブロック構成図。FIG. 4 is a block configuration diagram of a conventional ground fault overcurrent relay device.

【図5】図4の従来の地絡過電流継電装置の動作を説明
するための波形図。
5 is a waveform diagram for explaining the operation of the conventional ground fault overcurrent relay device of FIG.

【符号の説明】[Explanation of symbols]

1…電源設備、2…受配電設備、3,5…連携分岐用し
ゃ断器、4…変流器、6…変圧器、7…中性点接地抵
抗、8…地絡過電流継電装置、9…アナログ/ディジタ
ル変換要素、10…電流値検出要素、11…動作判定要
素、12…動作設定値記憶装置、13…アナログ/ディ
ジタル変換要素、14…正波形成分電流検出要素、15
…負波形成分電流検出要素、16…正波形成分電流動作
判定要素、17…負波形成分電流動作判定要素、18…
動作設定値記憶装置、19…出力判定要素、20…地絡
過電流継電装置。
1 ... Power supply equipment, 2 ... Power receiving / distributing equipment, 3, 5 ... Coupling branch breaker, 4 ... Current transformer, 6 ... Transformer, 7 ... Neutral ground resistance, 8 ... Ground fault overcurrent relay device, 9 ... analog / digital conversion element, 10 ... current value detection element, 11 ... operation determination element, 12 ... operation set value storage device, 13 ... analog / digital conversion element, 14 ... positive waveform component current detection element, 15
... Negative waveform component current detection element, 16 ... Positive waveform component current operation determination element, 17 ... Negative waveform component current operation determination element, 18 ...
Operation set value storage device, 19 ... Output determination element, 20 ... Ground fault overcurrent relay device.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電源供給設備または受配電設備の電力系
統に流れる地絡電流を検出する地絡過電流継電装置にお
いて、電力系統に接続された計器用変流器の2次電流を
入力電流として取り込み、この入力電流の正波形成分と
負波形成分をそれぞれ分離して求める正電流値検出手段
及び負電流値検出手段と、前記正電流値検出手段と負電
流値検出手段の動作出力が共に成立していることを条件
に当該地絡過電流継電装置の動作出力を送出する動作出
力判定手段とから構成されたことを特徴とする地絡過電
流継電装置。
1. A ground fault overcurrent relay device for detecting a ground fault current flowing in a power system of a power supply facility or a power receiving and distributing facility, wherein a secondary current of an instrument current transformer connected to the power system is used as an input current. The positive current value detecting means and the negative current value detecting means, which take in and separately obtain the positive waveform component and the negative waveform component of the input current, and the operation outputs of the positive current value detecting means and the negative current value detecting means are both established. A ground fault overcurrent relay device, comprising: an operation output determination means for transmitting the operation output of the ground fault overcurrent relay device on condition that the ground fault overcurrent relay device operates.
JP26470192A 1992-10-02 1992-10-02 Grounding overcurrent relay device Pending JPH06121449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26470192A JPH06121449A (en) 1992-10-02 1992-10-02 Grounding overcurrent relay device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26470192A JPH06121449A (en) 1992-10-02 1992-10-02 Grounding overcurrent relay device

Publications (1)

Publication Number Publication Date
JPH06121449A true JPH06121449A (en) 1994-04-28

Family

ID=17406987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26470192A Pending JPH06121449A (en) 1992-10-02 1992-10-02 Grounding overcurrent relay device

Country Status (1)

Country Link
JP (1) JPH06121449A (en)

Similar Documents

Publication Publication Date Title
US4899246A (en) Solid-state trip device comprising a zero sequence current detection circuit
US5164876A (en) Static trip device comprising an earth protection desensitization system
CA1187555A (en) Protective relaying methods and apparatus
JPH0152974B2 (en)
US4607309A (en) Apparatus for detecting arcing faults on low-voltage spot networks
Dunki-Jacobs The reality of high-resistance grounding
EP0026620A1 (en) Method and apparatus for identifying faults in electric power transmission systems
CA2038213C (en) Transformer differential relay
US4951170A (en) Method for protecting an electric object to be protected
JPH023370B2 (en)
EP0319151A3 (en) Circuit to prevent uncontrolled tripping of a protective relay
JPH02197216A (en) Method and circuit for relectively cutting off faulty channel of power system
JPH06121449A (en) Grounding overcurrent relay device
JPH06121448A (en) Grounding overcurrent relay device
JP2003199245A (en) Ground relay system in multiple direct earth system
JPH11355955A (en) Earth fault detector for multi-branched line
Cosse et al. The practice of ground differential relaying
JPH05137239A (en) Method and circuit for testing ground directional relay
JP2002354655A (en) Ground fault detecting method and apparatus therefor
Redfern et al. Detecting loss of earth for embedded generation
JPH031887B2 (en)
Mekić et al. Adaptive Features of Numerical Differential Relays
Ross et al. Recent developments in the protection of three-phase transmission lines and feeders
JPH06315225A (en) Reverse power relay
JPH0919047A (en) Ground-fault-line selection relay system by comparison of zero-phase current in distribution line