JPH06121448A - Grounding overcurrent relay device - Google Patents

Grounding overcurrent relay device

Info

Publication number
JPH06121448A
JPH06121448A JP26343292A JP26343292A JPH06121448A JP H06121448 A JPH06121448 A JP H06121448A JP 26343292 A JP26343292 A JP 26343292A JP 26343292 A JP26343292 A JP 26343292A JP H06121448 A JPH06121448 A JP H06121448A
Authority
JP
Japan
Prior art keywords
current
positive
current value
negative
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26343292A
Other languages
Japanese (ja)
Inventor
Osamu Kamimura
修 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP26343292A priority Critical patent/JPH06121448A/en
Publication of JPH06121448A publication Critical patent/JPH06121448A/en
Pending legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Protection Of Transformers (AREA)

Abstract

PURPOSE:To detect at a high speed a grounding accident in a power receiving/ distributing system by constituting a device of a positive current value detecting means, negative current value detecting means, current ratio deciding means and an operating output deciding means. CONSTITUTION:In positive and negative current value detecting means 14, 15, a secondary current of an instrument current transformer, connected to a power system, is fetched as an input data, to obtain positive and negative waveform components of this input current respectively separated. In a current ratio deciding mans 18, ratio of a difference between positive and negative current values is obtained from the respective data of the positive and negative current value detecting means 14, 15. In an operating output deciding means 20, operation is output on condition that both the positive and negative current value detecting means 14, 15 are a preset value or more and further ratio of the positive current value to the negative current value is a preset value or less in the current ratio deciding means 18. In this way, wrong operation is prevented due to an exciting rush current in a transformer, and an earth accident in a power receiving/distributing system can be detected at a high speed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、並列運転可能な複数の
電源供給設備を有する受配電設備の地絡事故発生時に、
電力系統に流れる地絡電流を検出して動作する地絡過電
流継電装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention, when a ground fault occurs in a power receiving and distribution facility having a plurality of power supply facilities that can be operated in parallel,
The present invention relates to a ground fault overcurrent relay that operates by detecting a ground fault current flowing in a power system.

【0002】[0002]

【従来の技術】従来、受配電設備では、電力系統の連携
分岐点に地絡過電流継電器及びしゃ断器を設け、地絡事
故発生時に前記分岐点しゃ断器を開放して地絡事故系統
を切り離すことにより健全系統の運転を継続できるよう
に構成されている。
2. Description of the Related Art Conventionally, in power receiving and distributing equipment, a ground fault overcurrent relay and a circuit breaker are provided at a cooperative branch point of a power system, and when a ground fault occurs, the branch point breaker is opened to disconnect the ground fault system. Is configured so that the operation of the sound system can be continued.

【0003】図3は、発電設備から電源の供給を受ける
受配電設備に地絡過電流継電装置を備えた従来の系統構
成図である。同図において、1は電源設備、2は受配電
設備、3,5は連携分岐用しゃ断器で、電源設備1との
接続又は切り離しを行う。この連携分岐用しゃ断器3,
5を通して電源設備1からの電力は、負荷A及び変圧器
6を通して負荷Bへ供給される。8は受配電設備の系統
連携分岐点に設けられた地絡過電流継電装置で、変流器
4の二次三相三線回路の中性相(残留回路)から取り出
される零相電流I0 が入力されており、連携分岐用しゃ
断器3から変圧器6の電力経路に地絡事故が発生した場
合に、電源設備1の中性点接地抵抗7を介して地絡点に
流れる地絡電流I0 を検出してその動作出力により連携
分岐用しゃ断器3をしゃ断する。
FIG. 3 is a conventional system configuration diagram in which a ground fault overcurrent relay device is provided in a power receiving and distributing facility which is supplied with power from a power generating facility. In the figure, 1 is a power supply facility, 2 is a power receiving and distributing facility, and 3 and 5 are breakers for cooperative branching, which are connected to or disconnected from the power supply facility 1. The breaker for this cooperative branch 3,
Electric power from the power supply equipment 1 is supplied to the load B through the load A and the transformer 6 through the transformer 6. Reference numeral 8 denotes a ground fault overcurrent relay device provided at a system cooperation branch point of the power receiving and distributing equipment, and a zero-phase current I 0 extracted from a neutral phase (residual circuit) of the secondary three-phase three-wire circuit of the current transformer 4 If a ground fault occurs in the power path of the transformer 6 from the breaker 3 for cooperative branching, the ground fault current I flowing to the ground fault via the neutral point ground resistance 7 of the power supply facility 1 is input. When 0 is detected and the operation output is output, the breaker 3 for cooperative branching is cut off.

【0004】今、図3において、変圧器6の一次側で地
絡事故が発生した場合、地絡点に流れる地絡電流I
0 は、連携分岐点に設けた変流器4を介して地絡過電流
継電装置8に入力される。地絡過電流継電装置8に入力
された地絡電流I0 は、図4に示すように、アナログ/
ディジタル変換要素9によりディジタル変換され、一定
周期毎にサンプリングされて電流値検出要素10へ送出
される。電流値検出要素10では、サンプリングデータ
を演算して零相電流I0 の実効値を求めている。
Now, in FIG. 3, when a ground fault occurs on the primary side of the transformer 6, the ground fault current I flowing to the ground fault point I
0 is input to the ground fault overcurrent relay device 8 via the current transformer 4 provided at the cooperation branch point. The ground fault current I 0 input to the ground fault overcurrent relay 8 is, as shown in FIG.
It is digitally converted by the digital conversion element 9, sampled at regular intervals, and sent to the current value detection element 10. The current value detecting element 10 calculates the effective value of the zero-phase current I 0 by calculating sampling data.

【0005】前記電流値検出要素10で求められた検出
値データは、動作判定要素11へ送出され、この動作判
定要素11で予め設定された動作設定値記憶装置12か
らの動作電流値Iset との比較判定が実行され、I0
set のとき当該地絡過電流継電装置8としての動作信
号を出力する。
The detection value data obtained by the current value detecting element 10 is sent to the operation judging element 11, and the operation current value I set from the operation set value storage device 12 preset by the operation judging element 11 is set . Is compared and I 0
When I set , an operation signal as the ground fault overcurrent relay device 8 is output.

【0006】[0006]

【発明が解決しようとする課題】ところで、従来の地絡
過電流継電装置8では、図3の連携分岐用しゃ断器5を
投入し、電源設備1の電源を変圧器6に印加した時、変
圧器6にその鉄芯飽和による励磁突入電流が流れる。こ
の励磁突入電流は、どの相が飽和するか、さらに、励磁
突入電流値の大きさや直流分の含有率など、連携分岐用
しゃ断器3の突入タイミングによって異なり、一定では
ないが直流分を多く含み、ある1つの相に大半の電流が
流れ三相の電流値バランスは大きく偏ることが現実の現
象として多くの実測データで明らかとなっている。
By the way, in the conventional ground fault overcurrent relay device 8, when the cooperative branch breaker 5 of FIG. 3 is turned on and the power of the power supply equipment 1 is applied to the transformer 6, An exciting inrush current due to the saturation of the iron core flows through the container 6. This exciting inrush current varies depending on which phase is saturated, the magnitude of the exciting inrush current value, the content ratio of the direct current component, and the like, and includes a large amount of direct current component although it is not constant. A large amount of actual measurement data has revealed that a large amount of current flows in one phase and the current value balance of the three phases is largely biased.

【0007】このように、直流分を多く含み、三相の電
流値バランスが三相のうちある一相に大きく偏って連携
分岐点の変流器4の各相に流れると、直流分の影響を受
けるため、各相の変流器4の励磁特性に変化が生じ、変
流器4の各相を合成した残留回路に変流器各相の特性誤
差による合成電流(一次側には流れない見かけ上の零相
電流I0 )が発生し、この合成電流値により地絡過電流
継電装置8が動作して、連携分岐用しゃ断器3をトリッ
プさせ、負荷Aへの電源供給を停止させる恐れがある。
As described above, when a large amount of direct current is included and the current value balance of the three phases is largely biased to one of the three phases and flows into each phase of the current transformer 4 at the cooperative branch point, the influence of the direct current is exerted. Therefore, the excitation characteristics of the current transformer 4 of each phase change, and a combined current (not flowing to the primary side) due to a characteristic error of each phase of the current transformer in the residual circuit in which each phase of the current transformer 4 is combined. An apparent zero-phase current I 0 ) is generated, and the ground current overcurrent relay 8 operates due to this combined current value, causing the cooperative branch breaker 3 to trip and stopping the power supply to the load A. There is.

【0008】次に、変圧器投入時の励磁突入電流による
地絡過電流継電装置8の動作を図5を用いて説明する。
前述したように、変圧器6の投入時に三相の各相に流れ
る変圧器の励磁突入電流I1 ,I2 ,I3 は、図6
(a)に示すような波形で大きな直流分を含んでおり、
この直流分の影響により各々の変流器4の励磁特性に変
化が生じるため、地絡過電流継電装置8に入力される変
流器4の二次側の合成電流は、図6(b)に示すよう
に、直流分含有率の高い電流I0 となって流れる。この
電流I0 の正電流(I0 + )又は負電流(I0 - )のい
ずれか一方の値が、地絡過電流継電装置8の動作設定値
set を超過すると動作信号が出力される。変圧器6の
励磁突入電流の大きさは、一般的に定常変圧器定格電流
の8倍程度に達する場合がある。抵抗接地の電力系統に
おける地絡過電流の検出値は、定常変圧器定格電流に比
べてはるかに小さい値に設定されるため、地絡過電流継
電装置8が変圧器励磁突入電流により誤動作する確率は
極めて高い。
Next, the operation of the ground fault overcurrent relay device 8 due to the exciting inrush current when the transformer is turned on will be described with reference to FIG.
As described above, the exciting inrush currents I 1 , I 2 , and I 3 of the transformers flowing in each of the three phases when the transformer 6 is turned on are as shown in FIG.
The waveform shown in (a) contains a large DC component,
Since the excitation characteristics of each current transformer 4 change due to the influence of this DC component, the combined current on the secondary side of the current transformer 4 input to the ground fault overcurrent relay 8 is as shown in FIG. As shown in, a current I 0 having a high DC content rate flows. Positive current (I 0 +) or a negative current of the current I 0 (I 0 -) either one of the values of the operation signal is output to exceed the operation set value I The set of earth fault overcurrent relay device 8 . The magnitude of the exciting inrush current of the transformer 6 may reach about eight times the rated current of the steady transformer in general. Since the detected value of the ground fault overcurrent in the resistance grounded power system is set to a value much smaller than the rated transformer rated current, the probability that the ground fault overcurrent relay 8 malfunctions due to the transformer inrush current is low. Extremely high.

【0009】本発明は上記事情に鑑みてなされたもの
で、その目的は、変圧器投入時の励磁突入電流による誤
動作を生じることなく高速度に検出できる地絡過電流継
電装置を提供することにある。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a ground fault overcurrent relay device capable of detecting at a high speed without causing a malfunction due to an exciting inrush current when a transformer is turned on. is there.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明は電源供給設備または受配電設備の電力系統
に設けられる地絡過電流継電装置において、電力系統に
接続された計器用変流器の二次電流を入力データとして
取り込み,この入力電流の正波形成分及び負波形成分を
それぞれ分離して求める正電流値検出手段及び負電流値
検出手段と、前記正電流値検出手段及び負電流値検出手
段の夫々のデータから正電流値と負電流値の差の比率を
求める電流比率判定手段と、前記正電流値検出手段と負
電流値検出手段の両者が設定値以上で,かつ前記電流比
率判定手段で正電流値と負電流値の比率が設定値以下で
あることを条件に動作出力を行う動作出力判定手段とか
ら構成されたことを特徴とする。
In order to achieve the above-mentioned object, the present invention is a ground fault overcurrent relay device provided in a power system of a power supply facility or a power receiving and distributing facility, and a transformer for an instrument connected to the power system. Positive current value detecting means and negative current value detecting means, which obtains the secondary current of the current transformer as input data and separately obtains the positive waveform component and the negative waveform component of the input current, the positive current value detecting means and the negative current value detecting means. The current ratio determination means for obtaining the ratio of the difference between the positive current value and the negative current value from the respective data of the current value detection means, and both of the positive current value detection means and the negative current value detection means are set values or more, and It is characterized in that the current ratio determining means comprises an operation output determining means for performing an operation output on condition that the ratio of the positive current value and the negative current value is equal to or less than a set value.

【0011】[0011]

【作用】本発明は、変圧器の励磁突入電流に直流成分が
多く含まれるため、その波形が正側又は負側に大きく偏
位することに着目し、正側と負側の電流が双方共設定値
レベル以上であり、正側と負側の電流値の差の比率が設
定値以下である時に動作出力を行うが、入力電流の波形
が正側又は負側の一方に大きく偏った場合は動作出力が
阻止されるように作用する。したがって、変圧器の励磁
突入電流による誤動作を防止し、しかも本来検出すべき
地絡事故を高速度に検出できる。
In the present invention, since the exciting inrush current of the transformer contains a large amount of direct current component, the waveform is largely deviated to the positive side or the negative side, and both the positive side current and the negative side current are detected. The operation output is performed when the ratio of the difference between the positive side current value and the negative side current value is equal to or less than the set value level, but the input current waveform is greatly biased to either the positive side or the negative side. It acts so that the operation output is blocked. Therefore, it is possible to prevent a malfunction due to the inrush current of the transformer, and it is possible to detect the ground fault that should be detected at high speed.

【0012】[0012]

【実施例】以下、本発明の実施例を図を参照して説明す
る。図1は本発明の一実施例の地絡過電流継電装置21
のブロック構成図であり、この地絡過電流継電装置21
は例えば図3と同様な電力系統に設置される。図2は本
発明における変圧器6に電圧を印加した時に発生する励
磁突入電流を変流器4の各相の二次側を合成した残留回
路に生じる合成電流I0 (見かけ上の零相電流)の正波
形成分の電流I0 + と負波形成分の電流I0 - を示した
例である。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is a ground fault overcurrent relay device 21 according to an embodiment of the present invention.
It is a block diagram of this ground fault overcurrent relay device 21
Is installed in, for example, a power system similar to that in FIG. FIG. 2 shows a combined current I 0 (apparent zero-phase current) generated in a residual circuit in which the secondary side of each phase of the current transformer 4 is combined with the exciting inrush current generated when a voltage is applied to the transformer 6 in the present invention. ) Is an example showing the current I 0 + of the positive waveform component and the current I 0 of the negative waveform component.

【0013】図1に示すように、図3の受配電設備2の
電力系統連携分岐点に設けた変流器4の三相合成残留回
路を介して入力された入力電流I0 は、アナログ/ディ
ジタル変換要素13を介してディジタル変換され、正波
形成分電流検出要素14、負波形成分電流検出要素15
へ一定周期毎にサンプリングされて送出される。
As shown in FIG. 1, the input current I 0 input through the three-phase combined residual circuit of the current transformer 4 provided at the power system cooperation branch point of the power receiving and distributing equipment 2 of FIG. Digitally converted through the digital conversion element 13, a positive waveform component current detection element 14 and a negative waveform component current detection element 15
Is sampled at regular intervals and transmitted.

【0014】正波形成分電流検出要素14、負波形成分
電流検出要素15ではサンプリングデータを演算して各
々の電流実効値I0 + ,I0 - を求める。上記正波形成
分電流実効値I0 + ,負波形成分電流実効値I0 - は、
各々正波形成分電流動作判定要素16、負波形成分電流
動作判定要素17及び正波形成分電流実効値I0 + と負
波形成分電流実効値I0 - の電流比率判定要素18へそ
れぞれ送出される。正波形成分及び負波形成分の双方の
電流動作判定要素16及び17では共に予め設定された
動作設定値記憶要素19からの動作電流Iset との比較
判定が行われる。正波形成分電流動作判定要素16で
は、I0 + ≧Iset のとき動作信号を出力判定要素20
に送出する。同様に、負波形成分電流動作判定要素17
では|I0 - |≧Iset のとき、動作信号を出力判定要
素20へ送出する。
[0014] Positive waveform component current detection element 14, a negative waveform component current sensing element 15 in each of the current effective value by calculating the sampled data I 0 +, I 0 - a finding. The positive waveform component current effective value I 0 + and the negative waveform component current effective value I 0 are
It is sent to the positive waveform component current operation determination element 16, the negative waveform component current operation determination element 17, and the current ratio determination element 18 of the positive waveform component current effective value I 0 + and the negative waveform component current effective value I 0 , respectively. The current operation determination elements 16 and 17 for both the positive waveform component and the negative waveform component both perform comparison determination with the operation current I set from the preset operation setting value storage element 19. The positive waveform component current operation determination element 16 outputs an operation signal when I 0 + ≧ I set.
Send to. Similarly, the negative waveform component current operation determination element 17
Then, when | I 0 | ≧ I set , the operation signal is sent to the output determination element 20.

【0015】一方、電流比率判定要素18では正波形電
流実効値I0 + と負波形電流実効値I0 - との差の比率
(|1−(I0 + /I0 - )|)を求め、この検出比率
と動作設定値記憶要素19に予め設定されている設定値
Kとの比較判定が行われ、設定値K以下(|1−(I0
+ /I0 - )|≦K)のとき動作信号を出力判定要素2
0へ送出する。
Meanwhile, the current ratio judging element in 18 positive waveform current effective value I 0 + and the negative waveform current effective value I 0 - ratio of the difference between (| 1- (I 0 + / I 0 -) |) of the calculated , The detection ratio and the set value K preset in the operation set value storage element 19 are compared and determined to be less than or equal to the set value K (| 1- (I 0
+ / I 0 -) | outputs an operation signal when ≦ K) determination factor 2
Send to 0.

【0016】出力判定要素20では正波形成分電流動作
判定要素16及び負波形成分電流動作判定要素17の双
方の動作出力が共に成立していて、かつ電流比率判定要
素18の動作出力も成立している時に当該地絡過電流継
電装置21としての動作信号を出力する。
In the output determination element 20, both the positive waveform component current operation determination element 16 and the negative waveform component current operation determination element 17 are satisfied, and the current ratio determination element 18 is also satisfied. When it is present, the operation signal as the ground fault overcurrent relay device 21 is output.

【0017】このように構成すれば、変圧器投入時に発
生する励磁突入電流成分は、正側(I+ )または負側
(I- )の一方に大きく偏るので変圧器投入時の励磁突
入電流に対する変流器の直流偏磁による励磁特性変化が
生じることと、変圧器二次の各相電流が合成されること
によって見かけ上残留回路に発生する零相電流I0 の正
波形成分I0 + と負波形成分I0 - 及び残留回路に発生
する見かけ上の零相電流I0 の正波形成分I0 + と負波
形成分I0 - も、図2の波形図に示すように大きく偏
る。したがって、正波形成分I0 + ,負波形成分I0 -
のいずれかの検出電流が設定値以下となり、変圧器励磁
突入電流による地絡過電流継電装置の動作出力を阻止す
ることが可能となる。
[0017] With this construction, the magnetizing inrush current component, positive (I +) or negative side that occurs when the transformer is turned - relative to one largely inrush current when the transformer is turned so biased in (I) A change in the excitation characteristic due to the DC bias of the current transformer occurs, and a positive waveform component I 0 + of the zero-phase current I 0 apparently generated in the residual circuit due to the synthesis of the secondary-phase currents of the transformer The negative waveform component I 0 and the positive waveform component I 0 + and the negative waveform component I 0 − of the apparent zero-phase current I 0 generated in the residual circuit also largely deviate as shown in the waveform diagram of FIG. Thus, the positive waveform components I 0 +, the negative waveform components I 0 -
One of the detected currents becomes less than the set value, and it becomes possible to prevent the operation output of the ground fault overcurrent relay device due to the transformer inrush current.

【0018】[0018]

【発明の効果】以上説明したように、本発明によれば複
数の電源設備を有する受配電系統において、変圧器投入
時の地絡過電流継電器の誤動作及びこの誤動作による受
配電系統の系統しゃ断器の誤しゃ断を防止できるととも
に、受配電系統の地絡事故を確実で高速度に検出するこ
とが可能となり、受配電設備の電源供給の安定度を向上
させることができる。
As described above, according to the present invention, in a power distribution system having a plurality of power supply facilities, a malfunction of a ground fault overcurrent relay at the time of turning on a transformer and a system breaker of the power distribution system due to this malfunction. Accidental interruption can be prevented, and a ground fault in the power distribution system can be detected reliably and at high speed, and the stability of the power supply of the power distribution facility can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の地絡過電流継電装置の一実施例のブロ
ック構成図。
FIG. 1 is a block configuration diagram of an embodiment of a ground fault overcurrent relay device of the present invention.

【図2】本発明における変圧器励磁突入電流によって変
圧器二次残留回路に発生する見かけ上の零相電流I0
正,負の両波形成分を示す波形図。
FIG. 2 is a waveform diagram showing both positive and negative waveform components of an apparent zero-phase current I 0 generated in a transformer secondary residual circuit due to a transformer exciting inrush current according to the present invention.

【図3】本発明の地絡過電流継電器が適用される受配電
設備の系統構成図。
FIG. 3 is a system configuration diagram of power reception and distribution equipment to which the ground fault overcurrent relay of the present invention is applied.

【図4】従来の地絡過電流継電装置のブロック構成図。FIG. 4 is a block configuration diagram of a conventional ground fault overcurrent relay device.

【図5】図4の従来の地絡過電流継電装置の動作を説明
する波形図。
5 is a waveform diagram illustrating the operation of the conventional ground fault overcurrent relay device of FIG.

【符号の説明】[Explanation of symbols]

1…電源設備、2…受配電設備、3…連携分岐用しゃ断
器、4…変流器、5…連携分岐用しゃ断器、6…変圧
器、13…アナログ/ディジタル変換要素、14…正波
形成分電流検出要素、15…負波形成分電流検出要素、
16…正波形成分電流動作判定要素、17…負波形成分
電流動作判定要素、18…電流比率判定要素、19…動
作設定値記憶要素、20…出力判定要素、21…地絡過
電流継電装置。
1 ... Power supply equipment, 2 ... Power receiving / distributing equipment, 3 ... Coupling branch breaker, 4 ... Current transformer, 5 ... Coupling branch breaker, 6 ... Transformer, 13 ... Analog / digital conversion element, 14 ... Positive waveform Component current detection element, 15 ... Negative waveform component current detection element,
16 ... Positive waveform component current operation determination element, 17 ... Negative waveform component current operation determination element, 18 ... Current ratio determination element, 19 ... Operation set value storage element, 20 ... Output determination element, 21 ... Ground fault overcurrent relay device.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電源供給設備または受配電設備の電力系
統に設けられる地絡過電流継電装置において、電力系統
に接続された計器用変流器の二次電流を入力データとし
て取り込み,この入力電流の正波形成分及び負波形成分
をそれぞれ分離して求める正電流値検出手段及び負電流
値検出手段と、前記正電流値検出手段及び負電流値検出
手段の夫々のデータから正電流値と負電流値の差の比率
を求める電流比率判定手段と、前記正電流値検出手段と
負電流値検出手段の両者が設定値以上で,かつ前記電流
比率判定手段で正電流値と負電流値の比率が設定値以下
であることを条件に動作出力を行う動作出力判定手段と
から構成されたことを特徴とする地絡過電流継電装置。
1. In a ground fault overcurrent relay device provided in a power system of a power supply facility or a power receiving and distributing facility, a secondary current of a current transformer for an instrument connected to the power system is taken as input data, and this input current Positive current value detecting means and negative current value detecting means, which are obtained by separately separating the positive waveform component and the negative waveform component, respectively, and the positive current value and the negative current from the respective data of the positive current value detecting means and the negative current value detecting means. The current ratio determination means for obtaining the ratio of the difference between the values and the positive current value detection means and the negative current value detection means both have a set value or more, and the current ratio determination means determines the ratio of the positive current value and the negative current value. A ground fault overcurrent relay device, comprising: an operation output determination means that outputs an operation on condition that the value is less than or equal to a set value.
JP26343292A 1992-10-01 1992-10-01 Grounding overcurrent relay device Pending JPH06121448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26343292A JPH06121448A (en) 1992-10-01 1992-10-01 Grounding overcurrent relay device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26343292A JPH06121448A (en) 1992-10-01 1992-10-01 Grounding overcurrent relay device

Publications (1)

Publication Number Publication Date
JPH06121448A true JPH06121448A (en) 1994-04-28

Family

ID=17389426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26343292A Pending JPH06121448A (en) 1992-10-01 1992-10-01 Grounding overcurrent relay device

Country Status (1)

Country Link
JP (1) JPH06121448A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5403357A (en) * 1991-04-17 1995-04-04 Yamahatsu Sangyo Kaisha, Ltd. Hair coloring composition containing stearate derivatives as drying inhibitors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5403357A (en) * 1991-04-17 1995-04-04 Yamahatsu Sangyo Kaisha, Ltd. Hair coloring composition containing stearate derivatives as drying inhibitors

Similar Documents

Publication Publication Date Title
US4899246A (en) Solid-state trip device comprising a zero sequence current detection circuit
US5164876A (en) Static trip device comprising an earth protection desensitization system
US20070182401A1 (en) Three- or four-pole low-voltage power switch with rogowski coils operating as current sensors
US5014153A (en) Transformer differential relay
US7764473B2 (en) Method of detecting a ground fault and electrical switching apparatus employing the same
US4091433A (en) Protective relay circuit for interphase faults
US4636909A (en) Digital impedance relay
US6046895A (en) Distance protection method
EP0026620A1 (en) Method and apparatus for identifying faults in electric power transmission systems
CA2038213C (en) Transformer differential relay
US4951170A (en) Method for protecting an electric object to be protected
JPH06121448A (en) Grounding overcurrent relay device
JPH01190215A (en) Phase selector
JPH06121449A (en) Grounding overcurrent relay device
JP2003199245A (en) Ground relay system in multiple direct earth system
US6560132B1 (en) System for obtaining phase-ground voltages from a broken delta VT voltage connection system
US7208852B2 (en) Electronic tripping device for low-voltage circuit breakers
KR0179744B1 (en) Electric relay
JP3078064B2 (en) Ground fault protection method
JPH0850150A (en) Wide range current sensor and current detecting device for three-phase circuit
JPH0365016A (en) Ground fault detector for distribution line
JPH06315225A (en) Reverse power relay
KR830000034B1 (en) Protective relay
JPH0622443A (en) Reverse power relay
JPH05199649A (en) Power relay unit