JPH06120241A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH06120241A
JPH06120241A JP29225992A JP29225992A JPH06120241A JP H06120241 A JPH06120241 A JP H06120241A JP 29225992 A JP29225992 A JP 29225992A JP 29225992 A JP29225992 A JP 29225992A JP H06120241 A JPH06120241 A JP H06120241A
Authority
JP
Japan
Prior art keywords
layer
single crystal
impurity
crystal semiconductor
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP29225992A
Other languages
Japanese (ja)
Inventor
Shigeki Amano
茂樹 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP29225992A priority Critical patent/JPH06120241A/en
Publication of JPH06120241A publication Critical patent/JPH06120241A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a manufacturing method of a semiconductor device wherein a single crystal semiconductor layer on a relatively shallow impurity layer is formed by low temperature growth, in order to prevent the autodoping generated when a plurality of impurity layers are buried in different depths at different positions on the substrate plane of single crystal semiconductor, and to uniform the impurity concentration of the single crystal semiconductor layer on a relatively deep impurity layer. CONSTITUTION:An impurity layer 14 is formed on an Si substrate 11, and an impurity layer 18 is formed in a single crystal Si layer 15 formed on the Si substrate 11. By irradiating the single crystal Si layer 15 with a molecular beam obtained by evaporating compound which contains Si as the element, a single crystal Si layer is formed. The single crystal Si layer obtained by the molecular beam crystal growth can be formed at a low temperature, as compared with a single crystal Si layer formed by heat treatment, so that the autodoping due to the outward diffusion from the impurity layer 18 is not generated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、単結晶半導体基体の平
面的に異なる位置の異なる深さに複数の不純物層が埋め
込まれている半導体装置の製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device in which a plurality of impurity layers are buried in different depths at different positions in a plane of a single crystal semiconductor substrate.

【0002】[0002]

【従来の技術】高耐圧バイポーラトランジスタにおいて
は、真正コレクタの幅を広くして、逆バイアスされるベ
ースとコレクタとの間のPN接合における空乏層を十分
に伸ばすために、埋込コレクタを深い位置に形成してい
る。一方、高速バイポーラトランジスタでは、真正コレ
クタの幅を狭くして、コレクタ直列抵抗を低減させるた
めに、埋込コレクタを浅い位置に形成している。
2. Description of the Related Art In a high voltage bipolar transistor, the buried collector is deeply located in order to widen the width of the true collector and sufficiently extend the depletion layer in the PN junction between the base and the collector which is reverse biased. Is formed. On the other hand, in the high-speed bipolar transistor, the buried collector is formed at a shallow position in order to reduce the width of the true collector and reduce the collector series resistance.

【0003】従って、高耐圧バイポーラトランジスタと
高速バイポーラトランジスタとを有する半導体装置を同
一の単結晶半導体基体に製造するためには、単結晶半導
体基体の平面的に異なる位置の異なる深さに複数の埋込
コレクタを形成する必要がある。この様な半導体装置
は、従来、ダブルエピタキシャル成長法と称される方法
で製造されている。
Therefore, in order to manufacture a semiconductor device having a high breakdown voltage bipolar transistor and a high speed bipolar transistor on the same single crystal semiconductor substrate, a plurality of buried layers are formed at different positions at different planes of the single crystal semiconductor substrate. It is necessary to form a built-in collector. Such a semiconductor device is conventionally manufactured by a method called a double epitaxial growth method.

【0004】図3、図4は、ダブルエピタキシャル成長
法による一従来例の製造方法を示す縦断面図である。こ
の従来例では、図3(a)に示す様に、単結晶のP型の
Si基板11の表面全体にSiO2 膜12を形成した
後、フォトリソグラフィ法とエッチング法とでSiO2
膜12に開口13を選択的に形成する。
3 and 4 are longitudinal sectional views showing a conventional manufacturing method by the double epitaxial growth method. In this conventional example, as shown in FIG. 3 (a), after forming the SiO 2 film 12 on the entire surface of the Si substrate 11 of P-type single crystal, SiO 2 in a photolithographic method and an etching method
Openings 13 are selectively formed in the film 12.

【0005】次に、図3(b)に示す様に、SiO2
12をマスクにして、高濃度のN型の不純物層14をS
i基板11に形成する。そして図3(c)に示す様に、
SiO2 膜12を除去した後、エピタキシャル成長でS
i基板11上に単結晶Si層15を形成する。その後、
単結晶Si層15の表面全体に再びSiO2 膜16を形
成し、フォトリソグラフィ法とエッチング法とでSiO
2 膜16に開口17を選択的に形成する。
Next, as shown in FIG. 3B, the SiO 2 film 12 is used as a mask to remove the high-concentration N-type impurity layer 14 from S.
It is formed on the i-substrate 11. Then, as shown in FIG.
After removing the SiO 2 film 12, S is formed by epitaxial growth.
A single crystal Si layer 15 is formed on the i substrate 11. afterwards,
The SiO 2 film 16 is formed again on the entire surface of the single crystal Si layer 15, and the SiO 2 film 16 is formed by photolithography and etching.
2 The openings 17 are selectively formed in the film 16.

【0006】次に、図4(a)に示す様に、SiO2
16をマスクにして、高濃度のN型の不純物層18を単
結晶Si層15に形成する。そして図4(b)に示す様
に、SiO2 膜16を除去した後、再びエピタキシャル
成長で単結晶Si層15上に単結晶Si層19を形成し
て、Si基板11と単結晶Si層15,19とから成る
単結晶のSi基体20を形成する。
Next, as shown in FIG. 4A, a high concentration N-type impurity layer 18 is formed in the single crystal Si layer 15 by using the SiO 2 film 16 as a mask. Then, as shown in FIG. 4B, after removing the SiO 2 film 16, a single crystal Si layer 19 is formed again on the single crystal Si layer 15 by epitaxial growth, and the Si substrate 11 and the single crystal Si layer 15 are formed. A single crystal Si substrate 20 composed of 19 and 19 is formed.

【0007】その後の工程については図示していない
が、従来公知の方法によって、Si基体20のうちで不
純物層14上には高耐圧バイポーラトランジスタを形成
し、不純物層18上には高速バイポーラトランジスタを
形成する。
Although not shown in the subsequent steps, a high breakdown voltage bipolar transistor is formed on the impurity layer 14 of the Si substrate 20 and a high speed bipolar transistor is formed on the impurity layer 18 by a conventionally known method. Form.

【0008】[0008]

【発明が解決しようとする課題】しかしながら上記従来
例では、エピタキシャル成長に高い成長温度が必要とな
る。通常の成長温度はSiの場合で800〜1200℃
である。さらに、単結晶Si層15上に単結晶Si層1
9を形成する際、高濃度の不純物層18が単結晶Si層
15の表面に露出している状態にあり、その状態のまま
単結晶Si層15上に単結晶Si層19を高温形成する
ので、この不純物層18からの外方拡散によるオートド
ーピングが発生する。このため、不純物層14上の単結
晶Si層15と単結晶Si層19との界面にも高濃度の
N型の不純物層(図示せず)が形成され、不純物層14
上の単結晶Si層15,19の不純物濃度が不均一にな
る。
However, in the above conventional example, a high growth temperature is required for epitaxial growth. The normal growth temperature is 800 to 1200 ° C. for Si.
Is. Furthermore, the single crystal Si layer 1 is formed on the single crystal Si layer 15.
9 is formed, the high-concentration impurity layer 18 is exposed on the surface of the single-crystal Si layer 15, and the single-crystal Si layer 19 is formed at high temperature on the single-crystal Si layer 15 in that state. The auto-doping due to the outward diffusion from the impurity layer 18 occurs. Therefore, a high-concentration N-type impurity layer (not shown) is also formed at the interface between the single crystal Si layer 15 and the single crystal Si layer 19 on the impurity layer 14, and the impurity layer 14 is formed.
The impurity concentration of the upper single crystal Si layers 15 and 19 becomes nonuniform.

【0009】このため、高耐圧のバイポーラトランジス
タにおけるベースと真正コレクタとの間のPN接合から
の空乏層の伸びが、オートドーピングで形成された高濃
度の不純物層で抑制される。この結果、特に耐圧がリー
チスルーによって決まっている場合には、単結晶Si層
15と単結晶Si層19との界面で空乏層の伸びが抑制
されるため、所望の耐圧を得ることが困難であった。
Therefore, the extension of the depletion layer from the PN junction between the base and the true collector in the high breakdown voltage bipolar transistor is suppressed by the high-concentration impurity layer formed by autodoping. As a result, especially when the breakdown voltage is determined by the reach through, the depletion layer is prevented from extending at the interface between the single crystal Si layer 15 and the single crystal Si layer 19, so that it is difficult to obtain a desired breakdown voltage. there were.

【0010】従って本発明は、単結晶半導体基体の平面
的に異なる位置の異なる深さに複数の不純物層を埋め込
む際に発生するオートドーピングを防ぎ、相対的に深い
不純物層上の単結晶半導体層の不純物濃度を均一にする
ため、相対的に浅い不純物層上の単結晶半導体層を低温
成長により形成する半導体装置の製造方法を提供するこ
とを目的としている。
Therefore, the present invention prevents autodoping which occurs when a plurality of impurity layers are buried in different depths at different positions in a plane of a single crystal semiconductor substrate and prevents the single crystal semiconductor layer on a relatively deep impurity layer. An object of the present invention is to provide a method for manufacturing a semiconductor device in which a single crystal semiconductor layer on a relatively shallow impurity layer is formed by low-temperature growth so as to make the impurity concentration of the semiconductor device uniform.

【0011】[0011]

【課題を解決するための手段】本発明による半導体装置
の製造方法は、単結晶半導体基板の表面に選択的に第1
の不純物層を形成する第1の工程と、単結晶半導体基板
上に第1の単結晶半導体層を形成する第2の工程と、第
1の単結晶半導体層の表面のうちで前記第1の不純物層
とは平面的に異なる位置に選択的に第2の不純物層を形
成する第3の工程と、第1の単結晶半導体層上で分子線
照射による低温成長を行い第2の単結晶半導体層を形成
する第4の工程とを含んでいる。
According to the method of manufacturing a semiconductor device of the present invention, the first surface is selectively formed on the surface of the single crystal semiconductor substrate.
The first step of forming the impurity layer, the second step of forming the first single crystal semiconductor layer on the single crystal semiconductor substrate, and the first step among the surface of the first single crystal semiconductor layer. The third step of selectively forming the second impurity layer at a position different from the impurity layer in a plane, and the second single crystal semiconductor by performing low temperature growth by molecular beam irradiation on the first single crystal semiconductor layer. And a fourth step of forming a layer.

【0012】[0012]

【作用】本発明による半導体装置の製造方法では、相対
的に浅い第2の不純物層を形成した第1の単結晶半導体
層上に、単結晶半導体基板および第1の半導体層と同一
元素からなる化合物を蒸発させて得た分子線を照射する
ことにより第2の単結晶半導体層を形成しており、熱処
理により単結晶半導体層を形成する場合に比べて低い温
度で形成することができる。このため、相対的に深い第
1の不純物層を覆っている第1の単結晶半導体層のうち
で第2の不純物層以外の領域に対して、この第2の不純
物層からの外方拡散によるオートドーピングが生じな
い。
In the method of manufacturing the semiconductor device according to the present invention, the single crystal semiconductor substrate and the first semiconductor layer are made of the same element on the first single crystal semiconductor layer on which the relatively shallow second impurity layer is formed. The second single crystal semiconductor layer is formed by irradiating the molecular beam obtained by evaporating the compound, and the second single crystal semiconductor layer can be formed at a lower temperature than in the case where the single crystal semiconductor layer is formed by heat treatment. Therefore, a region other than the second impurity layer in the first single crystal semiconductor layer that covers the relatively deep first impurity layer is diffused outward from the second impurity layer. Autodoping does not occur.

【0013】[0013]

【実施例】以下、高耐圧バイポーラトランジスタと高速
バイポーラトランジスタとを有する半導体装置の製造に
適用した本発明の実施例について説明する。図1、図2
は、本発明の半導体装置の製造方法の一実施例を示す縦
断面図である。なお、図3、図4に示した一従来例と対
応する構成部分には同一の符号を付してある。
Embodiments of the present invention applied to the manufacture of a semiconductor device having a high breakdown voltage bipolar transistor and a high speed bipolar transistor will be described below. 1 and 2
FIG. 3 is a vertical cross-sectional view showing one embodiment of the method for manufacturing a semiconductor device of the present invention. The components corresponding to those of the conventional example shown in FIGS. 3 and 4 are designated by the same reference numerals.

【0014】本実施例では、まず図1(a)に示す様
に、単結晶のP型のSi基板11の表面全体にSiO2
膜12を成長させ、フォトリソグラフィ法とエッチング
法とで、高耐圧バイポーラトランジスタの埋込コレクタ
のパターンに対応する開口13をSiO2 膜12に選択
的に形成する。
In this embodiment, first, as shown in FIG. 1A, SiO 2 is formed on the entire surface of a single crystal P-type Si substrate 11.
The film 12 is grown, and the opening 13 corresponding to the pattern of the buried collector of the high breakdown voltage bipolar transistor is selectively formed in the SiO 2 film 12 by the photolithography method and the etching method.

【0015】次に、図1(b)に示す様に、SiO2
12をマスクにして開口13からSi基板11にN型の
不純物を高濃度にイオン注入して、高濃度のN型の不純
物層14をSi基板11に形成する。そして、酸素雰囲
気中で熱処理を行って、不純物層14の埋込を行う。そ
の後、図1(c)に示す様に、SiO2 膜12を除去し
てから、エピタキシャル成長でSi基板11上に単結晶
Si層15を形成する。
Next, as shown in FIG. 1B, a high-concentration N-type impurity is ion-implanted into the Si substrate 11 through the opening 13 with a high concentration using the SiO 2 film 12 as a mask. The impurity layer 14 is formed on the Si substrate 11. Then, heat treatment is performed in an oxygen atmosphere to embed the impurity layer 14. Thereafter, as shown in FIG. 1C, the SiO 2 film 12 is removed, and then a single crystal Si layer 15 is formed on the Si substrate 11 by epitaxial growth.

【0016】次に、図1(d)に示す様に、単結晶Si
層15の表面全体に再びSiO2 膜16を成長させ、フ
ォトリソグラフィ法とエッチング法とで、高速バイポー
ラトランジスタの埋込コレクタのパターンに対応する開
口17をSiO2 膜16に選択的に形成する。
Next, as shown in FIG. 1D, single crystal Si
Grown SiO 2 film 16 again on the entire surface of the layer 15, in a photolithography method and an etching method to selectively form an opening 17 corresponding to the pattern of the buried collector of high-speed bipolar transistor in the SiO 2 film 16.

【0017】次に、図2(a)に示す様に、SiO2
16をマスクにして開口17から単結晶Si層15にN
型の不純物を高濃度にイオン注入して、高濃度のN型の
不純物層18を単結晶Si層15に形成する。そして、
酸素雰囲気中で熱処理を行って、不純物層18の埋込を
行う。
Next, as shown in FIG. 2 (a), the SiO 2 film 16 is used as a mask to form an N in the single crystal Si layer 15 from the opening 17.
A high-concentration N-type impurity layer 18 is formed in the single-crystal Si layer 15 by ion-implanting a high-concentration impurity. And
The impurity layer 18 is embedded by heat treatment in an oxygen atmosphere.

【0018】次に、図2(b)に示す様に、SiO2
16を除去した後、例えばMBE法により、基板温度を
450℃程度に加熱し、超高真空内で電子線により蒸発
させたSiを分子線として単結晶Si層15上に照射
し、成長速度5Å/sec程度の成長条件のエピタキシ
を行わせて単結晶Si層21を形成し、Si基板11と
単結晶Si層15,21とから成る単結晶のSi基体2
2を形成する。
Next, as shown in FIG. 2B, after the SiO 2 film 16 is removed, the substrate temperature is heated to about 450 ° C. by, for example, the MBE method, and evaporated by an electron beam in an ultrahigh vacuum. Is irradiated onto the single crystal Si layer 15 as a molecular beam, and the single crystal Si layer 21 is formed by performing epitaxy under the growth condition of a growth rate of about 5Å / sec. 21 and a single crystal Si substrate 2
Form 2.

【0019】また、例えばMBE法の応用としては、ま
ず基板温度を100℃程度に加熱し、成長速度20Å/
sec程度の成長条件により単結晶Si層15上に非晶
質Si膜を形成し、その後500℃程度の低温アニーリ
ングやレーザ照射等の熱処理による固相エピタキシを行
わせて上述の非晶質Si層を再結晶化させる。この結
果、非晶質Si層が単結晶Si層21になる。
As an application of the MBE method, for example, the substrate temperature is first heated to about 100 ° C. and the growth rate is 20Å /
An amorphous Si film is formed on the single crystal Si layer 15 under a growth condition of about sec, and then solid phase epitaxy is performed by heat treatment such as low temperature annealing at about 500 ° C. or laser irradiation to perform the above-mentioned amorphous Si layer. Recrystallize. As a result, the amorphous Si layer becomes the single crystal Si layer 21.

【0020】その後の工程については図示していない
が、従来公知の方法によって、Si基体22のうちで不
純物層14上には高耐圧バイポーラトランジスタを形成
し、不純物層18上には高速バイポーラトランジスタを
形成する。
Although not shown in the subsequent steps, a high breakdown voltage bipolar transistor is formed on the impurity layer 14 of the Si substrate 22 and a high speed bipolar transistor is formed on the impurity layer 18 by a conventionally known method. Form.

【0021】以上本実施例では、単結晶Si層15上に
MBE法により単結晶Si層21を形成しているので、
単結晶21は既述の従来例における単結晶Si層19に
比べて低い温度で形成することができる。このため、単
結晶Si層21を形成する時に、高濃度の不純物18が
エピタキシャル層に拡散するのを防ぐことができる。従
って、不純物層14上の単結晶Si層15と単結晶Si
層21との界面に高濃度のN型の不純物層が形成され
ず、この不純物層による空乏層の伸びの抑制によって高
耐圧バイポーラトランジスタの耐圧が低下することがな
い。
As described above, in this embodiment, since the single crystal Si layer 21 is formed on the single crystal Si layer 15 by the MBE method,
The single crystal 21 can be formed at a lower temperature than the single crystal Si layer 19 in the above-mentioned conventional example. Therefore, when forming the single crystal Si layer 21, the high concentration impurity 18 can be prevented from diffusing into the epitaxial layer. Therefore, the single crystal Si layer 15 on the impurity layer 14 and the single crystal Si layer
A high-concentration N-type impurity layer is not formed at the interface with the layer 21, and the breakdown voltage of the high breakdown voltage bipolar transistor is not lowered by suppressing the expansion of the depletion layer due to this impurity layer.

【0022】なお、以上の実施例は高耐圧バイポーラト
ランジスタと高速バイポーラトランジスタとを有する半
導体装置の製造に本発明を適用したものであるが、例え
ばI2 Lトランジスタと通常のバイポーラトランジスタ
とを有する半導体装置の製造にも本発明を適用すること
ができる。
Although the present invention is applied to the manufacture of the semiconductor device having the high breakdown voltage bipolar transistor and the high speed bipolar transistor in the above embodiment, for example, the semiconductor having the I 2 L transistor and the normal bipolar transistor is used. The present invention can also be applied to the manufacture of devices.

【0023】[0023]

【発明の効果】本発明による半導体装置の製造方法で
は、単結晶半導体基体の平面的に異なる位置の異なる深
さに第1および第2の不純物層を埋め込む方法におい
て、相対的に浅い第2の不純物層上の第2の単結晶半導
体層の形成を、従来の方法より低温で行うことができる
ので、相対的に深い第1の不純物層を覆っている第1の
単結晶半導体層のうちで相対的に浅い第2の不純物層以
外の領域に対して、この第2の不純物層からの外方拡散
によるオートドーピングの発生を防ぐことができる。従
って、第1の不純物層上の第1および第2の単結晶半導
体層の不純物濃度を均一に保つことができる。
According to the method of manufacturing a semiconductor device of the present invention, in the method of burying the first and second impurity layers in different depths at different positions in the plane of the single crystal semiconductor substrate, the relatively shallow second method is used. Since the formation of the second single crystal semiconductor layer over the impurity layer can be performed at a temperature lower than that of a conventional method, the second single crystal semiconductor layer of the first single crystal semiconductor layer which covers the relatively deep first impurity layer can be formed. In regions other than the relatively shallow second impurity layer, it is possible to prevent occurrence of autodoping due to outward diffusion from the second impurity layer. Therefore, the impurity concentration of the first and second single crystal semiconductor layers over the first impurity layer can be kept uniform.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の半導体装置の製造方法の一実施例を示
す縦断面図である。
FIG. 1 is a vertical sectional view showing an embodiment of a method for manufacturing a semiconductor device of the present invention.

【図2】本発明の半導体装置の製造方法の一実施例を示
す縦断面図である。
FIG. 2 is a vertical cross-sectional view showing an embodiment of a method for manufacturing a semiconductor device of the present invention.

【図3】従来の半導体装置の製造方法の一例を示す縦断
面図である。
FIG. 3 is a vertical sectional view showing an example of a conventional method for manufacturing a semiconductor device.

【図4】従来の半導体装置の製造方法の一例を示す縦断
面図である。
FIG. 4 is a vertical sectional view showing an example of a conventional method for manufacturing a semiconductor device.

【符号の説明】[Explanation of symbols]

11 Si基板 14 不純物層 15 単結晶Si層 18 不純物層 21 単結晶Si層 22 Si基体 11 Si Substrate 14 Impurity Layer 15 Single Crystal Si Layer 18 Impurity Layer 21 Single Crystal Si Layer 22 Si Substrate

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 単結晶半導体基板の表面に選択的に第1
の不純物層を形成する第1の工程と、 前記単結晶半導体基板上に第1の単結晶半導体層を形成
する第2の工程と、 前記第1の単結晶半導体層の表面のうちで前記第1の不
純物層とは平面的に異なる位置に選択的に第2の不純物
層を形成する第3の工程と、 前記第1の単結晶半導体層上で分子線照射による低温成
長を行い第2の単結晶半導体層を形成する第4の工程と
を含むことを特徴とする半導体装置の製造方法。
1. A first selective surface on a single crystal semiconductor substrate.
A first step of forming an impurity layer, a second step of forming a first single crystal semiconductor layer on the single crystal semiconductor substrate, and a second step of forming a first single crystal semiconductor layer on the surface of the first single crystal semiconductor layer. A third step of selectively forming a second impurity layer at a position different from the first impurity layer in a plane, and a low temperature growth by molecular beam irradiation on the first single crystal semiconductor layer to perform a second step. And a fourth step of forming a single crystal semiconductor layer.
【請求項2】 前記照射される分子線が前記単結晶半導
体基板および前記第1の単結晶半導体層を構成する元素
と同一の元素からなる化合物を蒸発させることにより得
られることを特徴とする請求項1記載の半導体装置の製
造方法。
2. The irradiated molecular beam is obtained by evaporating a compound composed of the same element as the element forming the single crystal semiconductor substrate and the first single crystal semiconductor layer. Item 2. A method of manufacturing a semiconductor device according to item 1.
【請求項3】 前記第2の単結晶半導体層を形成する第
4の工程が、分子線を照射することにより非晶質半導体
層を形成する第5の工程と、前記非晶質半導体層を熱処
理で結晶化させて第2の単結晶半導体層を形成する第6
の工程とからなることを特徴とする請求項1または2に
記載の半導体装置の製造方法。
3. The fourth step of forming the second single crystal semiconductor layer, the fifth step of forming an amorphous semiconductor layer by irradiating a molecular beam, and the amorphous semiconductor layer Sixth step of crystallizing by heat treatment to form a second single crystal semiconductor layer
3. The method for manufacturing a semiconductor device according to claim 1, further comprising:
JP29225992A 1992-10-06 1992-10-06 Manufacture of semiconductor device Withdrawn JPH06120241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29225992A JPH06120241A (en) 1992-10-06 1992-10-06 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29225992A JPH06120241A (en) 1992-10-06 1992-10-06 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH06120241A true JPH06120241A (en) 1994-04-28

Family

ID=17779481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29225992A Withdrawn JPH06120241A (en) 1992-10-06 1992-10-06 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH06120241A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5908310A (en) * 1995-12-27 1999-06-01 International Business Machines Corporation Method to form a buried implanted plate for DRAM trench storage capacitors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5908310A (en) * 1995-12-27 1999-06-01 International Business Machines Corporation Method to form a buried implanted plate for DRAM trench storage capacitors

Similar Documents

Publication Publication Date Title
EP0032211A2 (en) Method to make a silicon layer being partly polycrystalline and partly monocrystalline
JPH0473619B2 (en)
US4116719A (en) Method of making semiconductor device with PN junction in stacking-fault free zone
JPS58154267A (en) Method of producing bipolar transistor
JP2000031156A (en) Vertical bipolar transistor having extrinsic base of suppressed roughness and fabrication thereof
JPS5821419B2 (en) Lattice defect removal method
US6459104B1 (en) Method for fabricating lateral PNP heterojunction bipolar transistor and related structure
US5407838A (en) Method for fabricating a semiconductor device using implantation and subsequent annealing to eliminate defects
JPH0817841A (en) Manufacture of semiconductor substrate and semiconductor device
JPH0582441A (en) Silicon carbide bipolar semiconductor device and its manufacture
US6642096B2 (en) Bipolar transistor manufacturing
JPH06120241A (en) Manufacture of semiconductor device
JP2006294772A (en) Method of manufacturing semiconductor device
JP2652995B2 (en) Semiconductor device and manufacturing method thereof
JPS5931849B2 (en) Manufacturing method of semiconductor device
JP3062065B2 (en) Method for manufacturing semiconductor device
JP3145694B2 (en) Semiconductor device
JP3051088B2 (en) Method for manufacturing extrinsic base of NPN transistor using high frequency bipolar technology
JPH079929B2 (en) Method of manufacturing integrated circuit
JPH11340245A (en) Base and emitter regions for submicron bipolar transistor
JPH0669329A (en) Manufacture of semiconductor device
JP2846329B2 (en) Method for manufacturing semiconductor device
JP3229026B2 (en) Manufacturing method of bipolar transistor
JP2555885B2 (en) Germanium / gallium arsenide junction manufacturing method
JP3206514B2 (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000104