JPH06120020A - Composite material and manufacture thereof - Google Patents

Composite material and manufacture thereof

Info

Publication number
JPH06120020A
JPH06120020A JP4264500A JP26450092A JPH06120020A JP H06120020 A JPH06120020 A JP H06120020A JP 4264500 A JP4264500 A JP 4264500A JP 26450092 A JP26450092 A JP 26450092A JP H06120020 A JPH06120020 A JP H06120020A
Authority
JP
Japan
Prior art keywords
substance
composite material
magnetic
composite
material according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4264500A
Other languages
Japanese (ja)
Inventor
Masayoshi Hiramoto
雅祥 平本
Yasuhiro Sugaya
康博 菅谷
Osamu Inoue
修 井上
Koichi Kugimiya
公一 釘宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4264500A priority Critical patent/JPH06120020A/en
Publication of JPH06120020A publication Critical patent/JPH06120020A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/3227Exchange coupling via one or more magnetisable ultrathin or granular films

Abstract

PURPOSE:To obtain a manufacturing method for composite material having desired characteristics independent of matrix phase material. CONSTITUTION:This composite material is a complex formed by a plurality of particles of three-phase structure consisting of a first glanular material, the surface of which is coated by the second material, and the surface of the second material is coated with the third material. A second material is the oxyphilic substance such as Al, Si, Ti, Mg, Ca and the like, or an alloy containing at least one or more kinds of elements selected from the above- mentioned oxyphilic substance, and a third material is the high electric resistance substance which is obtained by oxidation or nitrification. According to this structure, the composite material can be obtained by isolating each of the first material using a small quantity of insulator, and also as the first material is not directly oxidized or nitrified, the deterioration in characteristics due to the compositional deviation of the matrix phase material can be eliminated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、トランスをはじめ磁気
記録ヘッド、ノイズフィルタ−、等磁気回路を利用する
電子部品、電子機器に使用する磁性材料及び高熱伝導性
とともに高電気抵抗を必要とする回路用配線基板等を供
する複合材料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention requires a magnetic recording head such as a transformer, a noise filter, an electronic component using a magnetic circuit, a magnetic material used in an electronic device, a high thermal conductivity and a high electric resistance. The present invention relates to a composite material for providing a circuit wiring board or the like.

【0002】[0002]

【従来の技術】従来より電子部品・電子機器には例えば
金属を複合材料の主成分材料(以下母相材料という)と
して、ガラス、セラミックス、樹脂等を充填材とした複
合材料等が用いられてきた。例えば磁性金属を母相材料
として絶縁体で分離した複合材料では、高周波領域の渦
電流損失を低減させた磁芯やヘッド等の材料として用い
られ、又例えば金属を母相材料として絶縁体で分離した
複合材料では高熱伝導で、かつ高電気抵抗を必要とする
例えば回路用配線基板等の材料として用いられている。
2. Description of the Related Art Conventionally, for electronic parts and electronic equipment, for example, a composite material having a filler such as glass, ceramics or resin as a main component material of the composite material (hereinafter referred to as a matrix material) has been used. It was For example, in a composite material in which a magnetic metal is used as a matrix material and separated by an insulator, it is used as a material for magnetic cores and heads that reduce eddy current loss in the high frequency region. For example, a metal is used as a matrix material and separated by an insulator. The composite material is used as a material such as a circuit wiring board that requires high thermal conductivity and high electrical resistance.

【0003】[0003]

【発明が解決しようとする課題】しかしながら従来の金
属/絶縁体系複合材料は、絶縁性を充分にとるために
は、母相材料を覆う絶縁体連続相の量を多くしなければ
ならず、母相材料の間隔が大きく、絶縁体層の厚さが大
きいものであった。このような構成では、例えば前記の
磁性体複合材料を磁芯に利用する場合、磁性金属の持つ
高い磁束密度が絶縁材料により薄められてしまい、かつ
絶縁材料の磁気抵抗のために透磁率も大幅に低下する。
However, in the conventional metal / insulator composite material, in order to obtain sufficient insulation, the amount of the insulator continuous phase covering the matrix material must be increased, and thus The phase material had a large gap and the insulator layer had a large thickness. In such a configuration, for example, when the above-mentioned magnetic composite material is used for the magnetic core, the high magnetic flux density of the magnetic metal is thinned by the insulating material, and the magnetic permeability of the insulating material greatly increases. Fall to.

【0004】そこで母相材料表面を直接酸化、あるいは
窒化させることでごく薄い絶縁層を形成した後、これを
高密度に充填あるいは成形した後、高温、高圧下で焼結
することにより母相材料の間隔を小さくし母相材料の特
性が損なわれないようにすることも試みられている。し
かし、母相材料に酸化又は窒化により絶縁物を形成でき
る金属成分が含まれていない場合、又は含まれている場
合でもごく微量である場合、例えば高飽和磁束密度を有
するFeを主成分とした金属等に於いては、絶縁膜を形成
出来ないという欠点があり所望の特性を得ることが出来
ないという課題があった。
Therefore, the surface of the mother phase material is directly oxidized or nitrided to form a very thin insulating layer, which is then filled or molded at a high density and then sintered at high temperature and high pressure to form the mother phase material. Attempts have also been made to reduce the distance between the two so as not to impair the characteristics of the matrix material. However, when the matrix material does not contain a metal component capable of forming an insulator by oxidation or nitridation, or when it contains a very small amount, for example, Fe having a high saturation magnetic flux density is used as a main component. In the case of metal or the like, there is a problem that an insulating film cannot be formed, and there is a problem that desired characteristics cannot be obtained.

【0005】本発明は、母相材料に依存せず所望の特性
を有する複合材料とその製造方法を提供することを目的
とする。
An object of the present invention is to provide a composite material having desired properties independent of a matrix material and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】本発明は第2物質の一方
の面に第1物質もしくは空隙の何れかがあり、対向する
面には第3物質もしくは空隙の何れかがあり、相隣合う
第1物質同志の間には第3物質もしくは空隙の何れかを
介し、かつ、相隣合う第2物質同志の間には第3物質も
しくは空隙を介した複合材料によって従来の課題を解決
した。
According to the present invention, one surface of a second substance has either the first substance or voids, and the opposite surface has either the third substance or voids, which are adjacent to each other. The conventional problem is solved by a composite material in which either the third substance or the void is interposed between the first substances, and the third substance or the void is interposed between the adjacent second substances.

【0007】この複合材料は、第1物質表面に形成した
第2物質を酸化または窒化することで第3物質を形成し
たものを焼結もしくは成形することで製造できる。
This composite material can be manufactured by oxidizing or nitriding the second substance formed on the surface of the first substance to sinter or shape the substance forming the third substance.

【0008】[0008]

【作用】本発明の複合材料は第1物質と第2物質と第3
物質を含む。第2物質は1物質表面に形成された親酸素
性元素、あるいは親窒素性元素を含む薄膜で、第3物質
は第2物質の酸化物、又は窒化物である。従って、第1
物質は例えば高電気抵抗材料等第1物質と特性が異なる
第3物質又は空隙で他の第1物質と隔離される。従って
従来のように、第1物質構成元素中に酸化物あるいは窒
化物となる元素が含まれていない場合、又は含まれてい
てもごく微量である場合においても、第2物質中に含ま
れる親酸素性元素の選択酸化、あるいは親窒素性元素の
選択窒化により、第2物質表面に緻密で均一な保護性の
酸化皮膜、あるいは窒化皮膜が形成される。
[Function] The composite material of the present invention comprises the first substance, the second substance and the third substance.
Contains substances. The second substance is a thin film containing an oxyphilic element or a nitrophilic element formed on the surface of one substance, and the third substance is an oxide or a nitride of the second substance. Therefore, the first
The substance is separated from other first substances by a third substance or a void having different characteristics from the first substance such as a high electric resistance material. Therefore, as in the conventional case, even if the element forming the oxide or nitride is not contained in the constituent elements of the first substance, or even if it is contained in a very small amount, the parent contained in the second substance By the selective oxidation of the oxygen element or the selective nitridation of the nitrogen-philic element, a dense and uniform protective oxide film or nitride film is formed on the surface of the second material.

【0009】[0009]

【実施例】本発明の複合材料は、例えば磁気特性又は熱
伝導特性等複合体の主特性に加え例えば高電気抵抗性、
耐熱性、耐腐食性、耐摩耗性等の2次特性を持ち合わせ
る材料のため、第1物質と第3物質の特性が一部異なる
ことが望ましい。第3物質は、第1物質表面に設けた第
2物質を酸化もしくは窒化したものである。従って第2
物質は、酸化もしくは窒化によって例えば高電気抵抗性
を呈する親酸素性物質もしくは親窒素性物質を含む。
EXAMPLES The composite material of the present invention has, in addition to the main characteristics of the composite, such as magnetic characteristics or heat conduction characteristics, high electrical resistance,
Since the material has secondary characteristics such as heat resistance, corrosion resistance, and abrasion resistance, it is desirable that the characteristics of the first substance and the third substance are partially different. The third substance is obtained by oxidizing or nitriding the second substance provided on the surface of the first substance. Therefore the second
The substance includes an oxyphilic substance or a nitrophilic substance that exhibits high electrical resistance by oxidation or nitridation.

【0010】例えば、本発明の複合材料を複合体磁性材
料として用いる場合、第1物質、第2物質、第3物質の
何れが磁性材料であってもよいが、特に高飽和磁束密度
の複合体磁性材料として用いる場合、第2物質は親酸素
性元素、あるいは親窒素性元素を含み、また第3物質は
酸化物、あるいは窒化物を含み、一般に親酸素性元素ま
たは親窒素性元素の何れかを多く含有すると飽和磁束密
度(Bs)が減少するため、少なくとも第1物質が磁性
体であることが望ましい。
For example, when the composite material of the present invention is used as a composite magnetic material, any of the first substance, the second substance and the third substance may be a magnetic material, but a composite substance having a high saturation magnetic flux density is particularly preferable. When used as a magnetic material, the second substance contains an oxygen-philic element or a nitrogen-philic element, and the third substance contains an oxide or a nitride, and is generally either an oxygen-philic element or a nitrogen-containing element. Since the saturation magnetic flux density (Bs) is reduced when a large amount of is contained, it is desirable that at least the first substance is a magnetic substance.

【0011】本発明に適用される第1の物質としては、
特に限定はないが、例えばFe、Co、Fe−Al、F
e−Si、Fe−Si−Al、Fe−Si−Al−N
i、Fe−Ni、Fe−Ni−Mo、Co−Si、Co
−Si−B等の磁性合金で、特にBsが高いものが望ま
しい。またこの場合の第2の物質としては、特に限定は
ないがAl、Si、Ti、Mg、Ca等の酸化物生成自
由エネルギ−又は窒化物生成自由エネルギ−が低い値を
持つ元素が少なくとも一種以上含むものであることが望
ましい。
The first substance applied to the present invention is:
Although not particularly limited, for example, Fe, Co, Fe-Al, F
e-Si, Fe-Si-Al, Fe-Si-Al-N
i, Fe-Ni, Fe-Ni-Mo, Co-Si, Co
A magnetic alloy such as -Si-B having a particularly high Bs is desirable. The second substance in this case is not particularly limited, but at least one element having a low oxide formation free energy or a low nitride formation free energy such as Al, Si, Ti, Mg, and Ca is used. It is desirable to include it.

【0012】本発明の複合体磁性材料に用いられる第1
物質の形状が方向性を持つ場合、例えば薄膜等のように
一軸性を持つ形状に於いては、交番磁界の印加方向が膜
に平行である場合は、第1物質内に誘導される渦電流は
高電気抵抗を持つ第3物質や空隙によって抑えられる
が、交番磁界の印加方向が膜に垂直である場合には誘導
電流は第1物質の抵抗のみによって決定され、渦電流を
抑制できない。従って第1物質の形状は、あらゆる方向
の磁界の印加によっても渦電流を抑制できる粒状が望ま
しい。
First used in the composite magnetic material of the present invention
When the shape of the substance is directional, for example, in the case of a uniaxial shape such as a thin film, when the application direction of the alternating magnetic field is parallel to the film, the eddy current induced in the first substance Is suppressed by the third substance having a high electric resistance and the void, but when the application direction of the alternating magnetic field is perpendicular to the film, the induced current is determined only by the resistance of the first substance, and the eddy current cannot be suppressed. Therefore, the shape of the first substance is preferably granular so that the eddy current can be suppressed by applying a magnetic field in any direction.

【0013】本発明の複合材料を複合体高熱伝導性高電
気抵抗材料として用いる場合に適用される第1の物質と
しては、例えばCu、Ag等の高熱伝導性金属、またこ
の場合の第2の物質としてはAl、Si、Ti、Mg、
Ca等の酸化物生成自由エネルギ−又は窒化物エネルギ
−が低い値を持つ元素が少なくとも一種以上含むもので
あることが望ましい。
When the composite material of the present invention is used as a composite high thermal conductivity and high electric resistance material, the first substance applied is, for example, a high thermal conductive metal such as Cu or Ag, or the second material in this case. As the substance, Al, Si, Ti, Mg,
It is preferable that at least one element having a low oxide formation free energy such as Ca or nitride energy has at least one element.

【0014】本発明の複合材料は、第1物質に第2物質
を形成する形成工程、第2物質を酸化もしくは特化処理
し第3物質を形成する処理工程と、焼結もしくは成形す
る工程を含む製造方法による。この第2物質の形成工程
としては、メカニカルアロイング法、メッキ法もしくは
気相法がある。
The composite material of the present invention comprises a forming step of forming a second material on a first material, a processing step of oxidizing or specializing the second material to form a third material, and a sintering or molding step. According to the manufacturing method including. A mechanical alloying method, a plating method, or a vapor phase method is used as the step of forming the second substance.

【0015】第2物質の形成工程にメカニカルアロイイ
ング法を用いる場合、メカニカルアロイイング法は力学
的エネルギ−により母相材料とコ−ティングした金属界
面を一部合金化させることができ、付着力が充分得られ
ない物質間に於て特に有効である。メカニカルアロイン
グ法を用いる場合、第2の物質としては特に限定はな
く、特にコ−ティングしようとする金属の融点が、例え
ばSi等のように高く蒸着に適さない場合、またコーテ
ィングしようとする金属に、例えばTi等のようにメッ
キに必要な適当な電解液がない場合に効果的であるため
好ましい。
When the mechanical alloying method is used in the step of forming the second substance, the mechanical alloying method can partially alloy the metal interface coated with the matrix material by mechanical energy, and the adhesion force can be increased. Is especially effective for substances that do not provide sufficient. When the mechanical alloying method is used, the second substance is not particularly limited, and particularly when the melting point of the metal to be coated is high such as Si, which is not suitable for vapor deposition, or the metal to be coated. In addition, it is effective when there is no suitable electrolytic solution necessary for plating, such as Ti, which is preferable.

【0016】第2物質の形成工程に気相法を用いる場
合、メカニカルアロイング法に比べコ−テイング金属を
より緻密につけ易く、また気相法は他の形成方法に比
べ、例えば10nm以下の薄膜を安定して形成すること
ができる点で優れているため好ましい。
When the vapor phase method is used in the step of forming the second substance, the coating metal is more easily applied more densely than the mechanical alloying method, and the vapor phase method is a thin film of, for example, 10 nm or less as compared with other forming methods. Is preferable because it can be stably formed.

【0017】また、第2物質の形成工程にメッキ法を用
いる場合は、生産効率上においては他の形成方法に比べ
いちばん優れいるため好ましい。
Further, it is preferable to use the plating method in the step of forming the second substance because it is most excellent in production efficiency as compared with other forming methods.

【0018】本発明の複合体の製造方法に適用される処
理工程の条件は、少なくとも酸素もしくは窒素を含む雰
囲気中に、第2物質を形成した第1物質を300〜10
00℃程度に1分〜10時間程度加熱して第3物質を形
成するのが一般的である。なお、加熱条件は、雰囲気中
の酸素もしくは窒素の供給量、加熱温度または加熱時間
に依存し、各々適宜最適条件を選択して行う。
The condition of the treatment step applied to the method for producing a composite of the present invention is that the first substance formed with the second substance is 300 to 10 in an atmosphere containing at least oxygen or nitrogen.
Generally, the third substance is formed by heating to about 00 ° C. for about 1 minute to 10 hours. The heating conditions depend on the supply amount of oxygen or nitrogen in the atmosphere, the heating temperature or the heating time, and the optimum conditions are selected as appropriate.

【0019】処理工程を経て第3物質を形成した後、例
えば300〜1000℃程度に加熱し焼結、または、例
えば1kg/cm2〜10t/cm2程度の圧力下成形
し、本発明の複合材料を得る。なお、焼結もしくは成形
工程と処理工程とを同時に行ってもよいこと勿論であ
る。
After the third substance is formed through the treatment step, it is heated to, for example, about 300 to 1000 ° C. and sintered, or molded under a pressure of, for example, about 1 kg / cm 2 to 10 t / cm 2, to obtain the composite material of the present invention. obtain. Needless to say, the sintering or molding step and the processing step may be performed simultaneously.

【0020】このようにして得た本発明の複合材料は、
磁性材料又は高熱伝導性高電気抵抗材料として用いる場
合に特に効果があり、さらに、得られた複合材料は、高
電気抵抗性のみならず例えば耐熱性、耐腐食性、耐摩耗
性等の多くの付加的特性に優れる効果もある。
The composite material of the present invention thus obtained is
It is particularly effective when used as a magnetic material or a material having high thermal conductivity and high electric resistance, and further, the obtained composite material has many properties such as heat resistance, corrosion resistance and abrasion resistance as well as high electric resistance. It also has the effect of being excellent in additional characteristics.

【0021】(実施例1)高飽和磁束密度で高電気抵抗
の磁性材料を得ることを目的として以下の実験を行っ
た。
Example 1 The following experiment was conducted for the purpose of obtaining a magnetic material having a high saturation magnetic flux density and a high electric resistance.

【0022】第1物質として組成がFe−95wt.
%、Si−5wt.%のFe−Si合金の球状粉末(平
均粒子径約20μm)を用い、第1物質上にRFマグネ
トロンスパッタを用いて、Siタ−ゲットを、基板温度
300℃、8mTorrArガス雰囲気下でスパッタし、表
面にSiコ−ティング層(第2物資)を形成させた。尚
スパッタ中は30秒ごとに球状粉末を振動させコ−ティ
ング層を均一に形成させた。その後700℃、500p
pmのO2+残Ar雰囲気で熱処理をし酸化皮膜(第3
物質)を形成させ粉末Aを得た。
The composition of the first substance is Fe-95 wt.
%, Si-5 wt.% Fe-Si alloy spherical powder (average particle size of about 20 μm) was used, and RF target was used on the first material to form a Si target at a substrate temperature of 300 ° C. and 8 mTorrAr gas. Sputtering was performed in an atmosphere to form a Si coating layer (second material) on the surface. During the sputtering, the spherical powder was vibrated every 30 seconds to uniformly form the coating layer. Then 700 ℃, 500p
pm of O 2 + residual Ar atmosphere and then thermally treated oxide film (third
Substance) to obtain powder A.

【0023】また、比較のために、従来のように前記球
状粉末を、700℃、500ppmのO2とAr混合ガ
ス雰囲気で熱処理をし、酸化皮膜を形成させた粉末B、
及び前記球状粉末上にRFマグネトロンスパッタを用
い、Siタ−ゲットを、基板温度300℃、ArとO2
混合ガス雰囲気化でスパッタし、その表面に直接絶縁層
を形成させた粉末Cを用意した。
For comparison, the spherical powder was heat-treated in the conventional manner at 700 ° C. in an atmosphere of a mixed gas of O 2 and Ar at 500 ppm to form an oxide film.
And, using a RF magnetron sputter on the spherical powder, a Si target was placed at a substrate temperature of 300 ° C. and Ar and O 2
Powder C having an insulating layer directly formed on the surface thereof was prepared by sputtering in a mixed gas atmosphere.

【0024】Siコ−ティングの膜厚とそれぞれの酸化
膜の膜厚と組成を、オージェ分光分析/Arスパッター
によるデプスプロファイルにより評価した。その結果ス
パッタによるSiコ−ティング層は平均30nmであ
り、粉末Aの酸化層からはSiとOのみが検出され、酸
化膜厚は25nmであった。また粉末Bの酸化層から
は、微量のSiとFe及びOが検出され、酸化膜厚は2
9nm、球状粉Cの酸化層からはSi及びOと微量のF
eとが検出され、酸化膜厚は31nmであった。
The film thickness of Si coating and the film thickness and composition of each oxide film were evaluated by Auger spectroscopic analysis / depth profile by Ar sputtering. As a result, the Si coating layer by sputtering had an average thickness of 30 nm, only Si and O were detected in the oxide layer of powder A, and the oxide film thickness was 25 nm. Further, trace amounts of Si, Fe and O were detected in the oxide layer of the powder B, and the oxide film thickness was 2
9nm, Si and O and a trace amount of F from the oxide layer of spherical powder C
e was detected, and the oxide film thickness was 31 nm.

【0025】これらの粉末を焼結し、相対密度約98%
の高密度複合体を作製した。得られた磁性材料の比電気
抵抗ρ、飽和磁束密度Bs、100Hz、1Mzでの透
磁率μ、及び測定磁束密度50mT、100KHzでの
損失PLを(表1)に示す。
These powders are sintered to a relative density of about 98%
A high density composite of The specific electric resistance ρ, the saturation magnetic flux density Bs, the magnetic permeability μ at 100 Hz and 1 Mz, and the measured magnetic flux density 50 mT and the loss PL at 100 KHz of the obtained magnetic material are shown in (Table 1).

【0026】[0026]

【表1】 [Table 1]

【0027】上記のように、Feを主成分とする母相材
料を直接熱処理した粉末Bの場合、Feの酸化量がSi
の酸化量よりも多いため、電気抵抗が低く、低次のFe
酸化物が生成され絶縁層を形成できない。またスパッタ
により粉末表面に直接形成した絶縁物よりも、スパッタ
等によりコ−ティングした金属層から成長した粉末Cの
絶縁物のほうがち密に母相材料表面を覆うと考えられ
る。
As described above, in the case of the powder B obtained by directly heat-treating the matrix material containing Fe as a main component, the amount of Fe oxidation is Si.
Since the amount of oxidation is larger than that of Fe, the electric resistance is low
An oxide is generated and an insulating layer cannot be formed. It is also considered that the insulator of powder C grown from the metal layer coated by sputtering or the like covers the surface of the matrix material more densely than the insulator formed directly on the surface of the powder by sputtering.

【0028】(実施例2)第1物質の組成が、Fe−8
5wt.%、Si−9.5wt.%、Al−5.5wt.
% (Bs=1.1〔T〕)、Fe−86wt.%、S
i−10.5wt.%、Al−3.5wt.% (Bs=
1.2〔T〕)、Fe−89wt.%、Si−9wt.
%、Al−2wt.%(Bs=1.4〔T〕)、Fe−
91wt.%、Si−7wt.%、Al−2wt.%(B
s=1.6〔T〕)、Fe−94wt.%、Si−3w
t.%、Al−3wt.%(Bs=1.8〔T〕)、Fe
−97wt.%、Si−2wt.%、Al−1wt.%
(Bs=2.0〔T〕)、以上5種類のFe−Si−A
l合金の球状粉末(平均粒子径約20μm)の表面にバ
レルメッキ法によりAlコ−ティング層(第2物質)を
形成させた後、500℃空気中で熱処理をし、酸化又は
窒化皮膜(第3物質)を形成させた。
(Example 2) The composition of the first substance is Fe-8.
5 wt.%, Si-9.5 wt.%, Al-5.5 wt.
% (Bs = 1.1 [T]), Fe-86 wt.%, S
i-10.5 wt.%, Al-3.5 wt.% (Bs =
1.2 [T]), Fe-89 wt.%, Si-9 wt.
%, Al-2 wt.% (Bs = 1.4 [T]), Fe-
91 wt.%, Si-7 wt.%, Al-2 wt.% (B
s = 1.6 [T]), Fe-94 wt.%, Si-3w
%, Al-3 wt.% (Bs = 1.8 [T]), Fe
-97 wt.%, Si-2 wt.%, Al-1 wt.%
(Bs = 2.0 [T]), above 5 types of Fe-Si-A
After forming an Al coating layer (second substance) on the surface of a spherical powder of an 1-alloy (average particle diameter of about 20 μm) by a barrel plating method, heat treatment is performed in air at 500 ° C. to form an oxide or nitride film (first substance). 3 substances) were formed.

【0029】比較のため従来法に従い、前記5種類の球
状粉末を500℃〜800℃空気中で熱処理をし、酸化
又は窒化皮膜を形成させた。
For comparison, the above-mentioned five kinds of spherical powders were heat-treated in the air at 500 ° C. to 800 ° C. according to the conventional method to form an oxide or nitride film.

【0030】バレルメッキ法によるコ−ティングの膜厚
と酸化あるいは窒化の膜厚と組成を、オージェ分光分析
/Arスパッターによるデプスプロファイル及び熱処理
時の重量増加により評価した結果、コ−ティング層は何
れも平均50nmで、酸化あるいは窒化層からはAlと
Oと極微量のNのみが検出されその膜厚は32〜35n
mであった。また球状粉末を直接空気中で熱処理するこ
とにより得たそれぞれの粉末の酸化あるいは窒化皮膜の
組成は、飽和磁束密度が小さい粉末からはFe、Al、
Oと極微量のSi、Nが検出され、飽和磁束密度が大き
い組成になるに連れAlの割合が減少し、Fe、Oを主
組成とする傾向があった。それらの膜厚は33〜35n
mであった。
The coating thickness and the oxidation or nitridation thickness and composition by barrel plating were evaluated by Auger spectroscopic analysis / depth profile by Ar sputtering and weight increase during heat treatment. Also has an average thickness of 50 nm, and only Al and O and a trace amount of N are detected in the oxidized or nitrided layer, and the film thickness is 32 to 35 n.
It was m. The composition of the oxide or nitride film of each powder obtained by directly heat treating the spherical powder in air is such that Fe, Al,
O and a very small amount of Si and N were detected, and the proportion of Al decreased as the composition of the saturation magnetic flux density increased, and Fe and O tended to be the main compositions. Their film thickness is 33-35n
It was m.

【0031】それぞれの粉末を焼結し、相対密度約98
%の高密度複合体を作製した。得られた磁性材料の電気
抵抗ρ及び1MHzでの透磁率μを(表2)に示す。
Each powder was sintered to a relative density of about 98
% High density composite was made. The electric resistance ρ and the magnetic permeability μ at 1 MHz of the obtained magnetic material are shown in (Table 2).

【0032】[0032]

【表2】 [Table 2]

【0033】上記に記したように、本発明の磁性材料
は、母相材料の組成によらず安定した高抵抗値と高周波
に於ける高い透磁率を示す。一方、従来法ではBsが低
い組成に於いては高い抵抗値が得られるもののBsが高
くなるに連れ抵抗値も低くなり、高周波での当時率も低
くなる。
As described above, the magnetic material of the present invention exhibits a stable high resistance value and a high magnetic permeability at high frequencies regardless of the composition of the matrix material. On the other hand, in the conventional method, a high resistance value can be obtained in a composition having a low Bs, but as the Bs increases, the resistance value also decreases, and the rate at high frequencies also decreases.

【0034】(実施例3)第1物質としてFeの球状粉
末(平均粒子径約20μm)、及び第2物質としてAl
微粒子(平均粒子径0.1μm)をSUS球と共にAr
雰囲気下におき、これらを1800rpmの速度で回転さ
せ、球状粉末の表面にAlのコ−ティング層を形成させ
た。その後500℃空気中で熱処理をし、絶縁皮膜(第
3物質)を形成させた。コ−ティングの膜厚と絶縁膜の
膜厚と組成をオージェ分光分析/Arスパッターによる
デプスプロファイル及び熱処理時の重量増加により評価
した。その結果Alのコ−ティング層は平均100nm
であり、また母相材料とコ−ティング層との境界付近は
Fe、Alが検出された。絶縁層に於いてはAlとO及
びと微量のFeとNが検出され、その膜厚は平均60n
mであった。熱処理後成形し、相対密度約98%の高密
度複合体を作製した。得られた磁性体複合材料の電気抵
抗ρは106〜108〔Ωcm〕及び飽和磁束密度は1.9
〔T〕であった。
Example 3 Spherical powder of Fe (average particle diameter of about 20 μm) as the first substance, and Al as the second substance
Fine particles (average particle diameter 0.1 μm) together with SUS spheres in Ar
These were placed in an atmosphere and rotated at a speed of 1800 rpm to form an Al coating layer on the surface of the spherical powder. After that, heat treatment was performed in air at 500 ° C. to form an insulating film (third substance). The film thickness of the coating and the film thickness and composition of the insulating film were evaluated by Auger spectroscopy / depth profile by Ar sputtering and weight increase during heat treatment. As a result, the Al coating layer has an average thickness of 100 nm.
Further, Fe and Al were detected near the boundary between the matrix material and the coating layer. Al and O and trace amounts of Fe and N are detected in the insulating layer, and the film thickness is 60n on average.
It was m. After heat treatment, molding was performed to produce a high density composite having a relative density of about 98%. The electric resistance ρ of the obtained magnetic material composite material is 10 6 to 10 8 [Ωcm] and the saturation magnetic flux density is 1.9.
It was [T].

【0035】(実施例4)高熱伝導性をを有し高電気抵
抗の複合材料を得ることを目的として以下の実験を行っ
た。
Example 4 The following experiment was conducted for the purpose of obtaining a composite material having high thermal conductivity and high electric resistance.

【0036】第1物質としてCu球状粉末(平均粒子径
約20μm)を用い、第1物質上に6×10-7Torrの圧
力下でAlを蒸着した。蒸着源は12個に分かれており
1つの蒸着源からの蒸着が終了するごとに球状粉末を振
動させコ−ティング層を均一に形成させた。その後70
0℃、500ppmのO2+残Ar雰囲気で熱処理をし
酸化皮膜を形成させ粉末aを得た。
Cu spherical powder (average particle diameter of about 20 μm) was used as the first substance, and Al was vapor-deposited on the first substance under a pressure of 6 × 10 −7 Torr. The vapor deposition source was divided into 12 pieces, and each time the vapor deposition from one vapor deposition source was completed, the spherical powder was vibrated to uniformly form a coating layer. Then 70
Heat treatment was performed at 0 ° C. in an atmosphere of O 2 + remaining Ar of 500 ppm to form an oxide film to obtain powder a.

【0037】また、比較のために従来のように前記Cu
球状粉末を、700℃、500ppmのO2とAr混合
ガス雰囲気で熱処理をし、酸化皮膜を形成させた粉末b
を用意した。
Also, for comparison, the Cu
Powder b obtained by heat-treating spherical powder in an atmosphere of a mixed gas of O 2 and Ar at 500 ° C. and 500 ppm to form an oxide film.
Prepared.

【0038】酸化重量増より見積ったそれぞれの酸化膜
厚は何れも30nm程度であった。これらの粉末を焼結
し、相対密度約99%の高密度複合体を作製した。得ら
れた複合材料の比電気抵抗ρは、粉末aの複合材料で1
6〜108〔Ωcm〕、粉末bの複合材料で10-1〜10
2〔Ωcm〕であった。
The respective oxide film thicknesses estimated from the increase in oxidized weight were all about 30 nm. These powders were sintered to produce a high density composite having a relative density of about 99%. The specific electric resistance ρ of the obtained composite material is 1 for the composite material of powder a.
0 6 to 10 8 [Ωcm], a composite material of powder b 10 -1 to 10
It was 2 [Ωcm].

【0039】発明者らは、以上に示した実施例以外に
も、多くの組成の第2の物質、第3の物質等について検
討したが、第2の物質としては上記実施例に示したA
l、Siに加えTi、Ca、Mgを少なくとも一種類以
上含むものに於いてもそれらを熱処理後、高密度に充
填、成形、焼結することで、高電気抵抗を有する磁性材
料を得た。また、第3の物質として前記実施例に於いて
は主にAl、Siの酸化物を示したが、この他に、少な
くともAl、Si、Ca、Mgを一種類以上含む第2の
物質を窒素雰囲気で熱処理後、高密度に充填、成形ある
いは焼結することでも高電気抵抗の磁性体複合材料、又
は複合体高熱伝導性高電気抵抗材料を得ている。
The inventors examined the second substance, the third substance and the like having many compositions in addition to the examples shown above. As the second substance, A shown in the above examples was used.
A magnetic material having a high electric resistance was obtained by heat-treating, and then densely filling, molding, and sintering those containing at least one kind of Ti, Ca, and Mg in addition to 1, 1 and Si. In addition, although the oxides of Al and Si are mainly shown as the third substance in the above-mentioned embodiment, the second substance containing at least one or more of Al, Si, Ca, and Mg is used as nitrogen. A magnetic material composite material having a high electric resistance, or a composite material having a high thermal conductivity and a high electric resistance is also obtained by filling, molding or sintering at high density after heat treatment in an atmosphere.

【0040】[0040]

【発明の効果】本発明は第2物質の一方の面に第1物質
もしくは空隙の何れかがあり、対向する面には第3物質
もしくは空隙の何れかがあり、相隣合う第1物質同志の
間には第3物質もしくは空隙の何れかを介し、かつ、相
隣合う第2物質同志の間には第3物質もしくは空隙を介
した複合材料である。
According to the present invention, one surface of the second substance has either the first substance or voids, and the opposite surface has either the third substance or voids. It is a composite material in which either the third substance or the void is interposed between the two adjacent substances and the third substance or the void is interposed between the adjacent second substances.

【0041】従って第1の物質によらず第1の物質を異
なる性質の物質で隔絶した複合材料を得る効果があり、
さらに本発明の複合材料は複合材料内の主組成材料を隔
絶する物質の体積割合を非常に小さくできるため、主組
成材料の特性を維持できる。
Therefore, there is an effect of obtaining a composite material in which the first substance is isolated by substances having different properties regardless of the first substance,
Further, the composite material of the present invention can maintain the characteristics of the main composition material because the volume ratio of the substance that isolates the main composition material in the composite material can be made very small.

【0042】また本発明の複合材料の製造方法は、主組
成材料の表面に形成した親酸素性、あるいは親窒素性の
物質を酸化、あるいは窒化することで高電気抵抗層を形
成するため、主組成材料を直接酸化、あるいは窒化する
場合に比べ主組成材料の組成ずれがなく、主組成材料の
組成ずれにともなう特性の劣化をなくすことができ、し
かも本発明の複合材料を容易に製造できるという顕著な
効果もある。
Further, in the method for producing a composite material of the present invention, the high electric resistance layer is formed by oxidizing or nitriding the oxygen-philic or nitrogen-philic substance formed on the surface of the main composition material. Compared to the case of directly oxidizing or nitriding the composition material, there is no compositional deviation of the main compositional material, deterioration of characteristics due to compositional deviation of the main compositional material can be eliminated, and furthermore, the composite material of the present invention can be easily manufactured. There is also a remarkable effect.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 釘宮 公一 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koichi Kugimiya 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】第2物質の一方の面に第1物質もしくは空
隙の何れかがあり、前記面と対向する面には第3物質も
しくは空隙の何れかがあり、相隣合う前記第1物質同志
の間には前記第3物質もしくは空隙の何れかを介し、か
つ、相隣合う前記第2物質同志の間には前記第3物質も
しくは空隙を介した複合材料。
1. A first substance which is adjacent to one of the first substance or a void on one surface of a second substance, and a third substance or a void which is on the face opposite to the face. A composite material in which either the third substance or a void is interposed between the two, and the third substance or a void is interposed between the adjacent second substances.
【請求項2】第2物質が親酸素性元素あるいは親窒素性
元素の何れか、又は親酸素性元素あるいは親窒素性元素
の何れかの含有率が第1物質よりも多く、かつ、第3物
質は前記第2物質の親酸素性元素の酸化物又は親窒素性
元素の窒化物を含む請求項1記載の複合材料。
2. The second substance has a content ratio of either an oxygen-philic element or a nitrogen-philic element, or an oxygen-containing element or a nitrogen-containing element is higher than that of the first substance, and The composite material according to claim 1, wherein the substance comprises an oxide of an oxygen-philic element or a nitride of a nitrogen-containing element of the second substance.
【請求項3】少なくとも第1物質が磁性体である請求項
1〜3何れかに記載の複合材料。
3. The composite material according to claim 1, wherein at least the first substance is a magnetic substance.
【請求項4】第1物質が粒状である請求項1〜4何れか
に記載の複合材料。
4. The composite material according to claim 1, wherein the first substance is granular.
【請求項5】第1物質の表面に第2物質を形成する形成
工程、前記形成工程後、前記第2物質を窒化又は酸化す
る処理工程、前記処理工程後、高圧下で焼結又は成形す
る工程を含む複合材料の製造方法。
5. A forming step of forming a second substance on the surface of the first substance, a treatment step of nitriding or oxidizing the second substance after the forming step, and a sintering or molding under high pressure after the treatment step. A method of manufacturing a composite material including a step.
【請求項6】形成工程がメカニカルアロイング法である
ことを特徴とする請求項6記載の複合材料の製造方法。
6. The method for producing a composite material according to claim 6, wherein the forming step is a mechanical alloying method.
【請求項7】形成工程がメッキ法であることを形成する
ことを特徴とする請求項6記載の複合材料の製造方法。
7. The method for producing a composite material according to claim 6, wherein the forming step is a plating method.
【請求項8】形成工程が気相法であることを特徴とする
請求項5記載の複合材料の製造方法。
8. The method for producing a composite material according to claim 5, wherein the forming step is a vapor phase method.
JP4264500A 1992-10-02 1992-10-02 Composite material and manufacture thereof Withdrawn JPH06120020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4264500A JPH06120020A (en) 1992-10-02 1992-10-02 Composite material and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4264500A JPH06120020A (en) 1992-10-02 1992-10-02 Composite material and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH06120020A true JPH06120020A (en) 1994-04-28

Family

ID=17404103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4264500A Withdrawn JPH06120020A (en) 1992-10-02 1992-10-02 Composite material and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH06120020A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6379810B1 (en) 1999-01-18 2002-04-30 Matsushita Electric Industrial Co., Ltd. High resistance magnetic film
JP2007066754A (en) * 2005-08-31 2007-03-15 Tdk Corp Dielectric film and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6379810B1 (en) 1999-01-18 2002-04-30 Matsushita Electric Industrial Co., Ltd. High resistance magnetic film
JP2007066754A (en) * 2005-08-31 2007-03-15 Tdk Corp Dielectric film and its manufacturing method

Similar Documents

Publication Publication Date Title
US7871474B2 (en) Method for manufacturing of insulated soft magnetic metal powder formed body
JP5032711B1 (en) Magnetic material and coil component using the same
EP3567611A2 (en) Soft magnetic alloy powder, dust core, and magnetic component
JPH05109520A (en) Composite soft magnetic material
US20080003126A1 (en) Method for Producing Soft Magnetic Metal Powder Coated With Mg-Containing Oxide Film and Method for Producing Composite Soft Magnetic Material Using Said Powder
JPH0421739A (en) Composite and its manufacture
US5227235A (en) Composite soft magnetic material and coated particles therefor
JP2010062424A (en) Manufacturing method of electronic component
JP2001011563A (en) Manufacture of composite magnetic material
JP7045905B2 (en) Soft magnetic powder and its manufacturing method
WO2007023627A1 (en) Soft magnetic material, dust core, method for producing soft magnetic material, and method for producing dust core
JPH04346204A (en) Compound material and manufacture thereof
US6723179B2 (en) Soft magnetism alloy powder, treating method thereof, soft magnetism alloy formed body, and production method thereof
US3775328A (en) Composite soft magnetic materials
JP2000232014A (en) Manufacture of composite magnetic material
JPH06120020A (en) Composite material and manufacture thereof
JPH04350908A (en) Thin inductor/transformer
CN111627639A (en) Magnetic alloy powder, method for producing same, coil component, and circuit board
EP1662518A1 (en) Soft magnetic material and method for producing same
JP6556780B2 (en) Powder magnetic core, powder for magnetic core, and production method thereof
JPH03278501A (en) Soft magnetic core material and manufacture thereof
JPH04160102A (en) Composite material and its production
EP0541887B1 (en) Method of making a composite soft magnetic material and composite soft magnetic material
KR920003998B1 (en) Piled up magnets and making method thereof
JP2022168543A (en) Magnetic metal/ferrite composite and method of producing the same

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20050107