JPH06119840A - Lightning protection insulator set - Google Patents

Lightning protection insulator set

Info

Publication number
JPH06119840A
JPH06119840A JP26637292A JP26637292A JPH06119840A JP H06119840 A JPH06119840 A JP H06119840A JP 26637292 A JP26637292 A JP 26637292A JP 26637292 A JP26637292 A JP 26637292A JP H06119840 A JPH06119840 A JP H06119840A
Authority
JP
Japan
Prior art keywords
current
lightning
gap
voltage
discharge electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26637292A
Other languages
Japanese (ja)
Inventor
Masamichi Ishihara
正道 石原
Shuichiro Motoyama
修一郎 本山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP26637292A priority Critical patent/JPH06119840A/en
Publication of JPH06119840A publication Critical patent/JPH06119840A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulators (AREA)

Abstract

PURPOSE:To lessen allotted responsibility per phase at the time of a lightning stroke and also reduce size and cost, by making control voltage, generated in a current limiting element when rated current at the time of a lightning stroke is flowed, have a given value. CONSTITUTION:When thunderbolt surge current is flowed to a transmission line 7 due to a lightning stroke, the current is flushed over to an earth side discharge electrode 23 via a series gap G2 from a wire clamp 8 and a charge side discharge electrode 13. Moreover the current is flowed to a current limiting element 17 from an electrode fitting 18, and is flowed in a supporting arm 2 via an electrode fitting 19 and a fitting adapter 14 on an earth side to be discharged to the ground from a tower body. In this case, limiting voltage, the voltage drop part of the element 17 generated by thunderbolt surge current, is made higher than the 50% flush-over voltage value of the gap G2 and lower than the 50% flush-over voltage value of a horn gap G1. Consequently, the thunderbolt surge current is diverted to a near lightning protection insulator set without the flush-over of the gap G1, reducing size and cost by lessening the withstand quantity of one phase of a lightning protection insulator.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、送電線路に通常の雷サ
ージ電流が流れた場合、それを速やかに大地に放電し、
その後生じる続流を抑制遮断して地絡事故を防止するこ
とができる避雷碍子装置に係り、詳しくは、ギャップ式
避雷碍子装置に関するものである。
BACKGROUND OF THE INVENTION The present invention, when a normal lightning surge current flows through a transmission line, discharges it rapidly to the ground,
The present invention relates to a lightning arrester device capable of suppressing and blocking a subsequent flow that occurs thereafter to prevent a ground fault accident, and more particularly to a gap type lightning arrester device.

【0002】[0002]

【従来の技術】従来、雷による事故を低減するため、接
地側と課電側との間に電圧−電流特性が非直線性の限流
素子を有する避雷碍子が広汎に使用されている。この避
雷碍子の場合、主に酸化亜鉛からなる限流素子はその特
性により、雷撃時の雷サージ電流を大地に放電するとと
もに、その後生じる続流を抑制遮断して地絡事故を防止
する。
2. Description of the Related Art Conventionally, in order to reduce accidents due to lightning, a lightning arrester having a current limiting element having a non-linear voltage-current characteristic between a ground side and a voltage applying side has been widely used. In the case of this lightning protection insulator, the current limiting element mainly made of zinc oxide discharges the lightning surge current at the time of a lightning stroke to the ground due to its characteristics, and also suppresses and interrupts the subsequent current to prevent a ground fault accident.

【0003】この避雷碍子にはギャップ式避雷碍子とギ
ャップ無し避雷碍子があり、ギャップ無し避雷碍子の場
合、ギャップが無く瞬時に動作するため一度の雷撃に対
して複数の避雷碍子が動作する。従って、分流効果が大
きく、一相あたりの分担責務は小さくなり、避雷碍子自
体のサイズを小さくすることができる。しかしながら、
一旦故障した場合には永久地絡となり再送電することが
できない。このため、近年はギャップ式避雷碍子が使用
されるケースが多くなっている。このギャップ式避雷碍
子が故障した場合でも、そのギャップにより絶縁が保た
れ、再投入すれば送電が可能である。
There are a gap type lightning arrestor and a gapless lightning arrester in this lightning arrestor. In the case of a gapless lightning insulator, since there are no gaps and they operate instantly, a plurality of lightning arrestors operate for one stroke. Therefore, the diversion effect is large, the burden of responsibility per phase is small, and the size of the lightning protection insulator itself can be made small. However,
If it breaks down once, a permanent ground fault will occur and it will not be possible to retransmit power. For this reason, in recent years, the gap type lightning arrestor is often used. Even if this gap type lightning arrestor fails, the gap keeps the insulation, and if it is turned on again, power can be transmitted.

【0004】[0004]

【発明が解決しようとする課題】ところが、前記ギャッ
プ式避雷碍子においては、直列ギャップを有するため、
放電遅れが生じるとともに、フラッシオーバーを開始す
る電圧が高い。図3に示す電圧−電流特性において、従
来の避雷碍子の制限電圧は(b)に表されるように、直
列ギャップの50%閃絡電圧より低く、一旦、特定の避
雷碍子に雷サージ電流が流れると他の避雷碍子に分流す
ることは少ない。すなわち、雷撃時の避雷碍子の動作個
数は少ない。従って、避雷碍子一相あたりのエネルギー
分担責務が厳しく、継続時間の長い雷撃や、多重雷に対
しては容量の大きい大径の限流素子を用いなければなら
ず、コストを上昇させるという問題があった。
However, since the above-mentioned gap type lightning arrestor has a series gap,
Discharge delay occurs and the voltage at which flashover starts is high. In the voltage-current characteristics shown in FIG. 3, the limiting voltage of the conventional lightning arrester is lower than the 50% flashover voltage of the series gap, as shown in (b), and the lightning surge current is temporarily applied to the specific lightning insulator. When it flows, it is rarely distributed to other lightning protection insulators. That is, the number of movements of the lightning protection insulator during a lightning stroke is small. Therefore, it is necessary to use a large-diameter current limiting element with a large capacity for lightning strikes with a long duration and multiple lightning strikes, as the duty of energy sharing for each phase of the lightning arrestor is strict. there were.

【0005】この発明は、このような従来の技術に存在
する問題点に着目してなされたものであって、その目的
とするところは、雷撃時の一相あたりの分担責務が小さ
く、サイズ及びコストを低減できる避雷碍子装置を提供
することにある。
The present invention has been made by paying attention to the problems existing in such a conventional technique. The purpose of the present invention is to reduce the burden of responsibility for each phase at the time of lightning stroke, to reduce the size and An object is to provide a lightning protection insulator device that can reduce costs.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明では、接地側及び課電側のアークホーンによ
りホーンギャップを形成し、鉄塔の支持アームに吊下げ
られた支持碍子と、電圧−電流特性が非直線性の限流素
子を内蔵し、前記支持アームに吊下げられた避雷碍子と
を有し、前記支持碍子の課電側に放電電極を止着し、前
記避雷碍子の課電側に接地側放電電極を電気的に接続
し、その接地側放電電極と、前記課電側放電電極との間
に直列ギャップを形成した避雷碍子装置において、雷撃
時の定格電流が流れたときに前記限流素子に発生する制
限電圧は、直列ギャップの50%閃絡電圧値より大き
く、かつ、ホーンギャップの50%閃絡電圧値より小さ
いことをその要旨としている。
In order to achieve the above object, in the present invention, a horn gap is formed by arc horns on the grounding side and the charging side, and a supporting insulator is hung from a supporting arm of a steel tower. The voltage-current characteristic has a built-in non-linear current limiting element, and has a lightning arrester suspended on the support arm, and the discharge electrode is fixed to the charging side of the support insulator, In a lightning arrester device in which a ground side discharge electrode is electrically connected to the voltage applying side and a series gap is formed between the ground side discharge electrode and the voltage applying side discharge electrode, the rated current at the time of lightning strike The gist is that the limiting voltage that sometimes occurs in the current limiting element is greater than the 50% flashover voltage value of the series gap and smaller than the 50% flashover voltage value of the horn gap.

【0007】[0007]

【作用】上記構成により、雷撃時に発生した雷サージ電
流は支持碍子の課電側の放電電極から接地側の放電電極
にフラッシオーバし、避雷碍子の限流素子、支持アーム
を経て鉄塔から大地に放電される。この時、雷サージ電
流によって発生する限流素子の電圧降下分である制限電
圧は、直列ギャップの50%閃絡電圧値より大きく、か
つ、ホーンギャップの50%閃絡電圧値より小さい。従
って、雷サージ電流はホーンギャップをフラッシオーバ
することなく、近接する避雷碍子装置へ分流される。
With the above structure, the lightning surge current generated at the time of a lightning strike flashes over from the discharge electrode on the charging insulator side of the supporting insulator to the discharge electrode on the grounding side, and from the steel tower to the ground via the current limiting element of the lightning insulator and the supporting arm. Is discharged. At this time, the limiting voltage, which is the voltage drop of the current limiting element caused by the lightning surge current, is larger than the 50% flashover voltage value of the series gap and smaller than the 50% flashover voltage value of the horn gap. Therefore, the lightning surge current is shunted to the adjacent lightning arrester device without flashing over the horn gap.

【0008】[0008]

【実施例】以下に本発明を懸垂型支持碍子に装着された
避雷碍子装置に具体化した一実施例について図面に従っ
て説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is embodied in a lightning protection insulator device mounted on a suspension type support insulator will be described below with reference to the drawings.

【0009】連結金具1は鉄塔の支持アーム2の先端部
に固着され、懸垂碍子連3はUクレビスリンク4及び上
部ホーン取付金具5を介して線路方向及び同直交方向へ
揺動可能に支持されている。懸垂碍子連3は懸垂碍子6
を直列に複数個連結して、支持碍子を構成している。送
電線7を把持する電線クランプ8は前記懸垂碍子連3下
端部の下部ホーン取付金具9に連結リンク10を介して
支持される。その下部及び上部ホーン取付金具9,5に
は懸垂碍子連3の沿面閃絡の損傷を抑制するためのアー
クホーン11,12が装着され、それらの間にホーンギ
ャップG1が形成されている。又、課電側の放電電極1
3がアークホーン11とは別にホーン取付金具9に止着
されている。
The connecting metal fitting 1 is fixed to the tip of the support arm 2 of the steel tower, and the suspension insulator string 3 is supported by the U-clevis link 4 and the upper horn mounting metal 5 so as to be swingable in the line direction and the orthogonal direction. ing. Suspension insulator series 3 is a suspension insulator 6
Are connected in series to form a support insulator. An electric wire clamp 8 for gripping the power transmission line 7 is supported by a lower horn mounting bracket 9 at the lower end of the suspension insulator string 3 via a connecting link 10. Arc horns 11 and 12 are attached to the lower and upper horn mounting brackets 9 and 5 for suppressing damage to the surface flashover of the suspension insulator series 3, and a horn gap G1 is formed between them. Also, the discharge electrode 1 on the charging side
3 is fixed to the horn mounting bracket 9 separately from the arc horn 11.

【0010】取付アダプタ14は前記支持アーム2の先
端部にボルト15により固定され、同アダプタ14の先
端下面には避雷碍子16が後述の接地側の電極金具19
をもって吊下固定されている。
The mounting adapter 14 is fixed to the tip of the support arm 2 by a bolt 15, and a lightning arrester 16 is provided on the lower surface of the tip of the adapter 14 and a ground side electrode fitting 19 described later.
It is fixed by hanging.

【0011】避雷碍子16はFRP等の耐張材料により
円筒状に形成された絶縁筒(図示しない)を備え、その
内部に限流素子17が直列に収容されている。キャップ
状をなす課電側及び接地側の電極金具18,19が前記
絶縁筒の両端部に嵌合され、さらに絶縁筒の外周にはゴ
ムモールド20が一体に形成されている。なお、接地側
及び課電側の電極金具18,19にはゴムモールド20
の沿面閃絡時の損傷を軽減するためのアークリング2
1,22がそれぞれ装着されている。避雷碍子16の下
端部に位置する課電側の電極金具18には接地側の放電
電極23が止着され、前記課電側の放電電極13と対向
してそれらの間に直列ギャップG2を形成している。
The lightning protection insulator 16 is provided with an insulating cylinder (not shown) formed in a cylindrical shape from a tension-resistant material such as FRP, and the current limiting element 17 is housed in series inside the insulating cylinder. Cap-shaped electrode fittings 18 and 19 on the charging side and the grounding side are fitted to both ends of the insulating cylinder, and a rubber mold 20 is integrally formed on the outer periphery of the insulating cylinder. A rubber mold 20 is attached to the electrode fittings 18 and 19 on the grounding side and the charging side.
Arc ring 2 to reduce damage when the surface flashes
1 and 22 are mounted respectively. A discharge electrode 23 on the grounding side is fixed to an electrode metal fitting 18 on the charging side located at the lower end of the lightning protection insulator 16, and a series gap G2 is formed between the discharge electrode 23 on the charging side and the discharge electrode 13 on the charging side. is doing.

【0012】前記限流素子17は電圧−電流特性が非直
線性である酸化亜鉛を主材としている。この限流素子1
7の電圧−電流特性を、図3に示す。ここで、(a)は
本実施例の限流素子17の電圧−電流特性、(b)は従
来例の限流素子の特性である。さらに、(c)はアーク
ホーン間隔約4000mmの支持碍子における電圧−時
間特性であり、(d)は避雷碍子16の直列ギャップG
2の電圧−時間特性である。この特性図からわかるよう
に、この限流素子17の制限電圧VIrは従来の電圧にお
ける約1.5倍である。この特性は限流素子17の抵抗
値を変えることによって、すなわち、組成を変更した
り、限流素子の直列接続数を多くしたりして実現され
る。一方、定格電流Ir が流れた時に発生する制限電圧
Irは直列ギャップG2の50%閃絡電圧値より大き
く、しかも、ホーンギャップG1の50%閃絡電圧値よ
り小さい。
The current limiting element 17 is mainly made of zinc oxide whose voltage-current characteristic is non-linear. This current limiting element 1
The voltage-current characteristics of No. 7 are shown in FIG. Here, (a) is the voltage-current characteristic of the current limiting element 17 of the present embodiment, and (b) is the characteristic of the current limiting element of the conventional example. Further, (c) is a voltage-time characteristic in a support insulator having an arc horn interval of about 4000 mm, and (d) is a series gap G of the lightning protection insulator 16.
2 is a voltage-time characteristic. As can be seen from this characteristic diagram, the limiting voltage V Ir of the current limiting element 17 is about 1.5 times that of the conventional voltage. This characteristic is realized by changing the resistance value of the current limiting element 17, that is, by changing the composition or increasing the number of series connection of the current limiting elements. On the other hand, the limiting voltage V Ir generated when the rated current Ir flows is larger than the 50% flashover voltage value of the series gap G2 and smaller than the 50% flashover voltage value of the horn gap G1.

【0013】次に、以上のように構成された実施例につ
いて、作用を説明する。今、図2に示すように、雷撃に
より雷サージ電流が送電線7に流れると、この電流は電
線クランプ8、課電側放電電極13から直列ギャップG
2を経て接地側放電電極23にフラッシオーバーされ
る。さらに電極金具18から限流素子17に流れ、接地
側の電極金具19及び取付アダプタ14を経て支持アー
ム2に流れ、塔体24から大地へ放電される。この雷サ
ージ電流が流れる過渡状態において、所定の時間経過
後、第2の塔体24aの送電線7の電位は図3の電圧−
電流特性に示された制限電圧VIrに上昇される。そし
て、若干の遅れの後、この制限電圧VIrは送電線7を伝
達して近接する第1の塔体24b及び第3の塔体24c
の直列ギャップG2に印加されるようになる。ところ
が、この制限電圧VIrは直列ギャップG2の50%閃絡
電圧値より大きいため、直列ギャップG2がフラッシオ
ーバーして雷サージ電流は分流し、第1及び第3の塔体
24b,24cから大地に放電される。一方、この制限
電圧VIrはホーンギャップG1の閃絡電圧値より小さい
ため、支持碍子のアークホーン11,12間をフラッシ
オーバーすることはない。
Next, the operation of the embodiment configured as described above will be described. Now, as shown in FIG. 2, when a lightning surge current flows through the power transmission line 7 due to a lightning stroke, this current flows from the wire clamp 8 and the discharge side discharge electrode 13 to the series gap G.
The discharge electrode 23 is flashed over to the ground side discharge electrode 23 via the line 2. Further, it flows from the electrode metal fitting 18 to the current limiting element 17, then flows to the support arm 2 via the electrode metal fitting 19 on the ground side and the mounting adapter 14, and is discharged from the tower body 24 to the ground. In the transient state in which the lightning surge current flows, after the elapse of a predetermined time, the electric potential of the power transmission line 7 of the second tower body 24a is the voltage −
The voltage is raised to the limit voltage V Ir shown in the current characteristic. Then, after a slight delay, the limit voltage V Ir is transmitted through the power transmission line 7 and is adjacent to the first tower body 24b and the third tower body 24c.
Will be applied to the series gap G2. However, since the limit voltage V Ir is larger than the 50% flashover voltage value of the series gap G2, the series gap G2 is flashed over and the lightning surge current is shunted. To be discharged. On the other hand, since the limit voltage V Ir is smaller than the flashover voltage value of the horn gap G1, there is no flashover between the arc horns 11 and 12 of the supporting insulator.

【0014】図4に、雷撃時に動作する避雷碍子の個数
(e)及びその時の処理エネルギー(f)、さらに最大
放電電流(g)を示す。この特性図によれば、本実施例
の避雷碍子16の雷撃時には、3個の避雷碍子16が動
作し、その時の処理エネルギーは従来に較べ2/3に減
少されている。そして、最大放電電流も2/3に減少さ
れている。
FIG. 4 shows the number (e) of lightning protection insulators that operate during a lightning stroke, the processing energy (f) at that time, and the maximum discharge current (g). According to this characteristic diagram, at the time of the lightning strike of the lightning protection insulator 16 of this embodiment, the three lightning protection insulators 16 operate, and the processing energy at that time is reduced to 2/3 as compared with the conventional case. The maximum discharge current is also reduced to 2/3.

【0015】以上のように、この実施例の避雷碍子装置
においては、雷撃時に複数の避雷碍子16を動作させる
ことができ、最大放電電流を低減できるため、避雷碍子
16一相の耐量を小さくすることができ、サイズ及びコ
ストを低減することができる。
As described above, in the lightning protection insulator device of this embodiment, a plurality of lightning protection insulators 16 can be operated at the time of a lightning stroke, and the maximum discharge current can be reduced. Therefore, the withstand voltage of one phase of the lightning protection insulator 16 is reduced. The size and cost can be reduced.

【0016】なお、この発明は前記実施例の構成に限定
されるものではなく、例えば、実施例以外の電圧階級適
用したり、懸垂型避雷碍子に適応したりする等、この発
明の趣旨から逸脱しない範囲で、任意に変更して具体化
することも可能である。
The present invention is not limited to the configuration of the above-mentioned embodiment, and for example, it is applied to a voltage class other than that of the embodiment, is applied to a suspension type lightning arrester, and the like, and deviates from the spirit of the present invention. It is also possible to embody it by arbitrarily changing it within the range that does not.

【0017】[0017]

【発明の効果】本発明によれば、雷撃時の定格電流が流
れたときに発生する制限電圧は、直列ギャップの50%
閃絡電圧値より大きく、かつ、ホーンギャップの50%
閃絡電圧値より小さいため、ギャップ式であるにもかか
わらず、分流効果が大きくできる。従って、避雷碍子一
相の耐量を小さくでき、サイズ及びコストの低減を図る
ことができるという効果を奏する。
According to the present invention, the limiting voltage generated when the rated current at the time of lightning strikes is 50% of the series gap.
Greater than the flashover voltage value and 50% of the horn gap
Since it is smaller than the flashover voltage value, the shunt effect can be increased despite the gap type. Therefore, it is possible to reduce the withstand voltage of one phase of the lightning protection insulator and to reduce the size and cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を具体化した避雷碍子装置の一実施例を
示す正面図である。
FIG. 1 is a front view showing an embodiment of a lightning protection insulator device embodying the present invention.

【図2】複数の避雷碍子装置の動作状態を示す説明図で
ある。
FIG. 2 is an explanatory diagram showing an operating state of a plurality of lightning protection insulator devices.

【図3】限流素子の電圧−電流特性を示す特性図であ
る。
FIG. 3 is a characteristic diagram showing voltage-current characteristics of a current limiting element.

【図4】雷撃時の避雷碍子の動作個数、処理エネルギ
ー、最大放電電流を示す特性図である。
FIG. 4 is a characteristic diagram showing the number of operating lightning insulators, processing energy, and maximum discharge current during a lightning strike.

【符号の説明】[Explanation of symbols]

2 支持アーム、3 支持碍子である懸垂碍子連、7
送電線、11 課電側アークホーン、12 接地側アー
クホーン、13 課電側放電電極、17 限流素子、2
3 接地側放電電極、24 塔体、G1 ホーンギャッ
プ、G2 直列ギャップ。
2 support arms, 3 suspension insulators which are support insulators, 7
Power transmission line, 11 charging side arc horn, 12 grounding side arc horn, 13 charging side discharge electrode, 17 current limiting element, 2
3 ground side discharge electrode, 24 tower body, G1 horn gap, G2 series gap.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 接地側及び課電側のアークホーンにより
ホーンギャップを形成し、鉄塔の支持アームに吊下げら
れた支持碍子と、 電圧−電流特性が非直線性の限流素子を内蔵し、前記支
持アームに吊下げられた避雷碍子とを有し、 前記支持碍子の課電側に放電電極を止着し、 前記避雷碍子の課電側に接地側放電電極を電気的に接続
し、その接地側放電電極と、前記課電側放電電極との間
に直列ギャップを形成した避雷碍子装置において、 雷撃時の定格電流が流れたときに前記限流素子に発生す
る制限電圧は、直列ギャップの50%閃絡電圧値より大
きく、かつ、ホーンギャップの50%閃絡電圧値より小
さいことを特徴とする避雷碍子装置。
1. A grounding-side and power-charging side arc horn forms a horn gap, and a built-in support insulator suspended from a support arm of a tower and a current limiting element having a non-linear voltage-current characteristic are provided. It has a lightning arrester suspended on the support arm, the discharge electrode is fixed to the charging side of the support insulator, the ground side discharge electrode is electrically connected to the charging side of the lightning insulator, the In a lightning arrester device in which a series gap is formed between the ground side discharge electrode and the charging side discharge electrode, the limiting voltage generated in the current limiting element when the rated current at the time of lightning strikes is A lightning arrester device characterized by being larger than a 50% flashover voltage value and smaller than a 50% flashover voltage value of a horn gap.
JP26637292A 1992-10-05 1992-10-05 Lightning protection insulator set Pending JPH06119840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26637292A JPH06119840A (en) 1992-10-05 1992-10-05 Lightning protection insulator set

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26637292A JPH06119840A (en) 1992-10-05 1992-10-05 Lightning protection insulator set

Publications (1)

Publication Number Publication Date
JPH06119840A true JPH06119840A (en) 1994-04-28

Family

ID=17430030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26637292A Pending JPH06119840A (en) 1992-10-05 1992-10-05 Lightning protection insulator set

Country Status (1)

Country Link
JP (1) JPH06119840A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002357402A (en) * 2001-05-31 2002-12-13 Asahi Tec Corp Gage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002357402A (en) * 2001-05-31 2002-12-13 Asahi Tec Corp Gage

Similar Documents

Publication Publication Date Title
JPH0432114A (en) Lightning arresting insulator device
JPH06119840A (en) Lightning protection insulator set
JP2698445B2 (en) Suspended lightning insulator for power transmission lines
JP3210386B2 (en) Applicable structure of lightning arrester device in transmission line
JPH1092549A (en) Current limiting arc horn
JPH06162849A (en) Application structure for lighting protection insulator device in transmission line
JPH06162851A (en) Lightning protection insulator device
JP2619601B2 (en) Lightning insulator
JP2509742B2 (en) Lightning arrester device for power lines
JPH07272825A (en) Arrester insulator device
JP2506099B2 (en) Lightning arrester device for power lines
JP3210387B2 (en) Direct lightning type lightning arrester
JPH07272574A (en) Arrester insulator apparatus
JP2552041B2 (en) Lightning arrester device
JPH06209514A (en) Lightning-arrester type interphase spacer
JP2951046B2 (en) Lightning arrester with air discharge gap
JPH06150754A (en) Lighting arrester insulator device
JPH04296412A (en) Lightning insulator device
JPH08273906A (en) Arrester for power distribution
JPH0473823A (en) Lighting protective insulator device for transmission line
JP2941974B2 (en) Lightning arrester for two-circuit transmission line
JPH0554952A (en) Lightning arresting insulator device
JP2952004B2 (en) Discharge electrode of lightning arrester
JPH0727741B2 (en) Lightning protection horn insulator device
JPH04303520A (en) Lightning insulator device