JPH0611866B2 - Thermoplastic resin composition - Google Patents

Thermoplastic resin composition

Info

Publication number
JPH0611866B2
JPH0611866B2 JP63240866A JP24086688A JPH0611866B2 JP H0611866 B2 JPH0611866 B2 JP H0611866B2 JP 63240866 A JP63240866 A JP 63240866A JP 24086688 A JP24086688 A JP 24086688A JP H0611866 B2 JPH0611866 B2 JP H0611866B2
Authority
JP
Japan
Prior art keywords
thermoplastic resin
specific gravity
hollow body
examples
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63240866A
Other languages
Japanese (ja)
Other versions
JPH0291134A (en
Inventor
倫生 吉崎
守 西田
均 深尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP63240866A priority Critical patent/JPH0611866B2/en
Publication of JPH0291134A publication Critical patent/JPH0291134A/en
Publication of JPH0611866B2 publication Critical patent/JPH0611866B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は熱可塑性樹脂組成物に関する。さらに詳しくは
熱可塑性樹脂の外観を損うことなく、低比重化を計ると
共に、断熱性を向上させ、さらに安全性を確保しつつ防
菌、防カビ性を付与した熱可塑性樹脂組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention relates to a thermoplastic resin composition. More specifically, the present invention relates to a thermoplastic resin composition in which the specific gravity is reduced without impairing the appearance of the thermoplastic resin, the heat insulating property is improved, and the antibacterial and antifungal properties are imparted while ensuring safety.

〔従来の技術〕[Conventional technology]

一般に熱可塑性樹脂は優れた加工特性および軽量で錆び
にくい等の特性により、射出成形品、中空成形品、フィ
ルム、シート、繊維などに加工され、各種の用途に用い
られている。
Generally, a thermoplastic resin is processed into an injection molded product, a hollow molded product, a film, a sheet, a fiber, etc., due to its excellent processing characteristics and characteristics such as light weight and resistance to rust, and is used for various purposes.

一方、従来カビには犯されないと考えられてきた熱可塑
性樹脂も、実際にはカビに犯されることが近年明らかに
されてきており、その用途によっては衛生上問題になっ
てきている。
On the other hand, it has been revealed in recent years that a thermoplastic resin, which has hitherto been considered not to be mold-damaged, is actually mold-molded, and it has become a sanitary problem depending on its application.

このような状況下で、空調機部品、冷暖房機部品のよう
な断熱性を要求される部品は、断熱のためにポリウレタ
ン、ポリスチロール、ポリエチレン等の発泡体を熱可塑
性樹脂製の部品に張り合わせて使用されている。これら
の発泡体に前記の防カビ効果を付与させるとき、ある特
定の防菌剤を除き、発泡時の加熱により添加した防菌剤
が昇華し、発泡後の時点では防カビ効果を全く保持して
いないという問題点があった。
Under such circumstances, parts that require heat insulation, such as air conditioner parts and air conditioner parts, must be made by bonding foam made of polyurethane, polystyrene, polyethylene, etc. to thermoplastic resin parts for heat insulation. It is used. When imparting the antifungal effect to these foams, a certain antibacterial agent is removed, and the antibacterial agent added by heating during foaming sublimes, and the antifungal effect is completely retained at the time after foaming. There was a problem that not.

前記の特定の防菌剤とはヒ素化合物であるバイナジン
(商品名)を指すが、同化合物のそれ自体では安全であ
るが、燃焼などの事故により、同化合物が分解した場合
の安全性が懸念され、用途が限定される。
The specific antibacterial agent refers to the arsenic compound Vinadine (trade name), but the compound itself is safe, but there is concern about the safety if the compound decomposes due to an accident such as burning. And its use is limited.

これに対し、チアベンタゾールに代表される安全性の高
い防菌剤は、そのほとんどが昇華性ないしは分解性を有
しており、前記の発泡時の加熱による防カビ効果の喪失
という問題点がある。
On the other hand, most of the highly safe antibacterial agents typified by thiaventazole have sublimation or decomposability, and there is a problem that the antifungal effect is lost due to heating during foaming. is there.

一方、本体となる熱可塑性樹脂材料そのものを発泡させ
ることにより、前記ポリウレタン、ポリスチロール、ポ
リエチレン等の発泡体貼り合わせを廃止することが考え
られるが、このような方法でも添加する防菌剤の昇華は
逃れられず、マタ防カビ効果を発揮するための防菌剤の
熱可塑性樹脂表面への析出が発泡気泡内側へも起きるた
め、その効果を著しく損う結果となる。
On the other hand, by foaming the thermoplastic resin material itself that becomes the main body, it is possible to abolish the bonding of the foamed material such as polyurethane, polystyrene, polyethylene, etc., but even in such a method the sublimation of the antibacterial agent added However, the antibacterial agent for exhibiting the antifungal effect cannot be escaped, and the precipitation of the antibacterial agent on the surface of the thermoplastic resin also occurs inside the foamed cells, resulting in a significant loss of the effect.

また熱可塑性樹脂の発泡成形においては、表面の肌荒れ
により外観性の低下は避けることができず、製品品質を
著しく損う結果となる。
Further, in foam molding of a thermoplastic resin, deterioration of appearance cannot be avoided due to surface roughening, resulting in a marked deterioration of product quality.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

このように、熱可塑性樹脂組成物の低比重化と共に断熱
性を向上させようとすると、防カビ効果を得ることが困
難であり、また製品外観の低下を避けることができず、
安全性の高い防カビ効果を得ようとすると、低比重化お
よび断熱性の付与が困難である。
Thus, when trying to improve the heat insulating property together with the low specific gravity of the thermoplastic resin composition, it is difficult to obtain an antifungal effect, and it is impossible to avoid deterioration of the product appearance,
In order to obtain a highly safe antifungal effect, it is difficult to reduce the specific gravity and impart heat insulation.

本発明の目的は、熱可塑性樹脂組成物の断熱性向上と防
カビ性の付与という相反する問題を解決し、低比重で断
熱性である性質と安全性の高い防カビ性をあわせ持ち、
しかも製品外観の優れた成形品が得られる熱可塑性樹脂
組成物を提供することにある。
The object of the present invention is to solve the contradictory problems of improving the heat insulating property of a thermoplastic resin composition and imparting antifungal properties, and having the properties of low specific gravity and high heat insulating properties and high safety antifungal properties,
Moreover, it is intended to provide a thermoplastic resin composition capable of obtaining a molded product having an excellent product appearance.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明者らは、前記の課題を解決するため鋭意研究を行
った。その結果、熱可塑性樹脂の製品を得るための各種
工程によっても破壊しない高い耐圧強度を有する微小球
状中空体と防菌剤を配合することにより、低比重で断熱
性と防カビ効果の両方を有する。熱可塑性樹脂組成物を
得ることができることを見いだし、本発明を完成した。
The present inventors have conducted intensive research to solve the above problems. As a result, by combining a microspherical hollow body having a high pressure resistance that does not break even in various processes for obtaining a thermoplastic resin product and a fungicide, it has both a heat insulating property and an antifungal effect with a low specific gravity. . It was found that a thermoplastic resin composition can be obtained, and the present invention has been completed.

すなわち本発明は、熱可塑性樹脂に高耐圧微小球状中空
体および防カビ性に優れた防菌剤を配合してなる熱可塑
性樹脂組成物である。
That is, the present invention is a thermoplastic resin composition obtained by blending a thermoplastic resin with a high pressure resistant fine spherical hollow body and a fungicide having excellent antifungal properties.

更に250℃以下で造粒可能な熱可塑性樹脂100重量
部に対して、耐圧強度300Kg/cm2以上の微小球状中空
体10〜100重量部および防カビ性に優れ安全性の高
い防菌剤0.05〜0.40重量部を配合してなる熱可
塑性樹脂組成物である。
Further, with respect to 100 parts by weight of a thermoplastic resin which can be granulated at 250 ° C. or less, 10 to 100 parts by weight of micro-spherical hollow bodies having a compressive strength of 300 kg / cm 2 or more, and a fungicide with excellent mold resistance and high safety 0 It is a thermoplastic resin composition which mix | blends 0.05 to 0.40 weight part.

本発明で用いる熱可塑性樹脂は、安全性の高い防菌剤が
昇華または分解を完了しない温度である250℃以下で
造粒可能な樹脂であれば良い。すなわち四大汎用樹脂と
よばれるポリプロピレン、ポリエチレン、ポリ塩化ビニ
ル、ポリスチロールを始めとしてアイオノマー樹脂、E
EA樹脂、AS樹脂、AAS樹脂、ABS樹脂、ACS
樹脂、EVA樹脂、GL樹脂、CPE樹脂、ポリアセタ
ール樹脂、ポリブタジェン樹脂等の一種または二種以上
の混合物である。
The thermoplastic resin used in the present invention may be any resin that can be granulated at 250 ° C or lower, which is a temperature at which the highly safe antibacterial agent does not complete sublimation or decomposition. That is, polypropylene, polyethylene, polyvinyl chloride, and polystyrene, which are called four major general-purpose resins, including ionomer resins, E
EA resin, AS resin, AAS resin, ABS resin, ACS
Resins, EVA resins, GL resins, CPE resins, polyacetal resins, polybutadiene resins and the like are one kind or a mixture of two or more kinds.

一方、ポリアミド樹脂、ポリカーボネート、PET樹
脂、PBT樹脂等はその耐熱性から250℃以下での造
粒は困難であり、本発明の構成には適さない。
On the other hand, polyamide resins, polycarbonates, PET resins, PBT resins, etc. are difficult to granulate at 250 ° C. or lower due to their heat resistance, and are not suitable for the constitution of the present invention.

本発明で用いる中空体は、硝子系の微小球状中空体であ
り、押出機、成形機で加工できる大きさであり、平均粒
径100μm以下のものが好ましく、その耐圧強度が3
00Kg/cm2以上、好ましくは500Kg/cm2以上のもので
ある。
The hollow body used in the present invention is a glass-based fine spherical hollow body, has a size that can be processed by an extruder or a molding machine, and preferably has an average particle diameter of 100 μm or less, and has a pressure resistance of 3 or less.
00Kg / cm 2 or more, preferably 500 Kg / cm 2 or more.

耐圧強度300Kg/cm2とは、静水圧による破壊強度でA
STMD3102に準拠し、10%破壊以下のものをい
う。
Withstand pressure strength of 300 kg / cm 2 is the breaking strength due to hydrostatic pressure.
According to STMD3102, refers to those that are 10% or less destroyed.

耐圧強度が300Kg/cm2未満では、製品を得るための造
粒および成形の工程における圧力および剪断応力によ
り、該中空体の破壊が起こり易く、その結果、該中空体
が中空形状を維持できなくなるため、低比重化および低
熱伝導率化が達成できない。
When the compressive strength is less than 300 kg / cm 2 , the hollow body is likely to be broken due to pressure and shear stress in the granulation and molding steps for obtaining a product, and as a result, the hollow body cannot maintain the hollow shape. Therefore, reduction in specific gravity and reduction in thermal conductivity cannot be achieved.

また中空体の真比重が0.40〜0.70の範囲のもの
が好ましい。
Further, it is preferable that the true specific gravity of the hollow body is in the range of 0.40 to 0.70.

真比重が0.40未満の該中空体では、中空体の壁部肉
厚が薄くなるため、耐圧強度300Kg/cm2以上を実現で
きず、真比重が0.70を超えると熱可塑性樹脂の内、
最も低比重であるポリプロピレンの比重が0.90であ
るため、中空体とプロピレン重合体の比重差が少なくな
り、中空体配合による低比重化の効果が小さく好ましく
ない。
In the hollow body having a true specific gravity of less than 0.40, since the wall thickness of the hollow body becomes thin, a pressure resistance of 300 kg / cm 2 or more cannot be realized, and when the true specific gravity exceeds 0.70, the thermoplastic resin has a Of which
Since the specific gravity of polypropylene, which has the lowest specific gravity, is 0.90, the difference in specific gravity between the hollow body and the propylene polymer is small, and the effect of lowering the specific gravity by blending the hollow bodies is not preferable, which is not preferable.

本発明で用いる中空体の配合量は、熱可塑性樹脂100
重量部に対して、10〜100重量部が好ましく、11
〜70重量部である。
The blending amount of the hollow body used in the present invention is 100% thermoplastic resin.
10 to 100 parts by weight is preferable relative to parts by weight, and 11
˜70 parts by weight.

該中空体の配合量が10重量部未満では、低比重および
低熱伝導率化の効果が少なく、配合量が100重量部を
超えると配合された該中空体の間隔が小さくなることに
より、該中空体の表面間で熱伝導が行われるため低熱伝
導率の効果が小さくなる。
When the content of the hollow body is less than 10 parts by weight, the effect of lowering the specific gravity and low thermal conductivity is small, and when the content of the hollow body is more than 100 parts by weight, the interval of the blended hollow bodies becomes small, thereby The effect of low thermal conductivity is diminished because heat is conducted between the surfaces of the body.

本発明で用いる防菌剤は防カビ効果のあるものであり、
さらには安全性が高く、しかも燃焼等の事故により分解
しても人体に悪影響をおよぼす恐れのないものが好まし
い。言い替えるとAspergillus nigerの最小抑制濃度お
よび急性経口毒性が低く、燃焼等による分解後も、ヒ素
等の劇毒物や毒性ガスの発生の恐れがないものでなけれ
ばならない。
The antibacterial agent used in the present invention has an antifungal effect,
Furthermore, it is preferable that the material has high safety and does not have a bad influence on the human body even if it is decomposed due to an accident such as combustion. In other words, the minimum inhibitory concentration and acute oral toxicity of Aspergillus niger should be low, and there should be no risk of the generation of toxic gases such as arsenic and toxic gases even after decomposition by combustion.

すなわち、ベンズイミダゾール系のチアベンタゾール
(商品名)を始めとして、同じくベンズイミダゾール系
のプリベントールOC3015、フェノール系のプリベ
ントールCMK、ヨード系のアミカルAM−48、ハロ
アルキル系のCaptan、プリベントールA3およびプリベ
ントールA4S、アルコール系のDekabiace、異種環式
窒素化合物であるソジュムオマジン、Dencil S100
等の一種または二種以上の混合物を例示できる。
That is, starting from benzimidazole thiabentazole (trade name), similarly benzimidazole-preventol OC3015, phenol-based preventol CMK, iodo-based amical AM-48, haloalkyl-based Captan, preventol A3 and Priventol A4S, alcoholic Dekabiace, heterocyclic nitrogen compound Sojumu omazine, Dencil S100
And the like, or a mixture of two or more thereof.

一方、バイナジンは有機ヒ素化合物であり、燃焼等の事
故時に劇毒物であるヒ素単独体となる恐れがあり好まし
くない。
On the other hand, binadine is an organic arsenic compound and is not preferable because it may become an arsenic single substance which is a poisonous substance in the event of an accident such as burning.

同じく燃焼等の事故時に猛毒のシアンガス発生の恐れが
あるシアネート系およびチオシアネート系の防菌剤も好
ましくない。
Similarly, cyanate-based and thiocyanate-based antibacterial agents, which are liable to generate a highly toxic cyan gas in the event of an accident such as combustion, are not preferable.

異種環式窒素化合物の中でもジンクオマジンは急性経口
毒性がラットLD50で200mg/Kgと毒性が高く好ま
しくない。
Among the heterocyclic nitrogen compounds, zinc ommazine is not preferable because acute oral toxicity is as high as 200 mg / Kg in rat LD50.

本発明の組成物にあっては、通常熱可塑性樹脂に添加さ
れる各種の添加剤たとえば、フェノール系、チオエーテ
ル系、リン系などの酸化防止剤、光安定剤、造核剤、滑
剤、帯電防止剤、防曇剤、アンチブロッキング剤、無滴
剤、顔料、重金属不活性化剤(銅害防止剤)、過酸化物
の如きラジカル発生剤、金属石鹸などの分散剤、もしく
は中和剤、無機充填剤(たとえばタルク、マイカ、クレ
ー、ウォラストナイト、炭酸カルシウム、水酸化アルミ
ニウム、二酸化珪素、二酸化チタン、酸化亜鉛、酸化マ
グネシウム、硫化亜鉛、硫酸バリウム、ケイ酸カルシウ
ム、ケイ酸アルミニウム、ガラス繊維、チタン酸カリウ
ム、炭素繊維、カーボンブラック、グラファイト、金属
繊維など)、もしくはカップリング剤(たとえばシラン
系、チタネート系、ボロン系、アルミネート系、ジルコ
アルミネート系など)の如き表面処理剤で表面処理され
た前記無機充填剤等を本発明の目的を損なわない範囲で
併用することができる。
In the composition of the present invention, various additives that are usually added to thermoplastic resins, for example, phenol-based, thioether-based, phosphorus-based antioxidants, light stabilizers, nucleating agents, lubricants, antistatic agents Agents, anti-fog agents, anti-blocking agents, non-dripping agents, pigments, heavy metal deactivators (copper damage inhibitors), radical generators such as peroxides, dispersants such as metal soaps, or neutralizing agents, inorganics Fillers (for example, talc, mica, clay, wollastonite, calcium carbonate, aluminum hydroxide, silicon dioxide, titanium dioxide, zinc oxide, magnesium oxide, zinc sulfide, barium sulfate, calcium silicate, aluminum silicate, glass fiber, Potassium titanate, carbon fiber, carbon black, graphite, metal fiber, etc.) or coupling agent (eg, silane type, titanate type) Boron-based, aluminate-based, can be used in combination within limits not detrimental to the object of the present invention the inorganic filler or the like which has been surface-treated with such surface treating agent of the zircoaluminate, etc.).

本発明の組成物は、前記の本発明にかかわる熱可塑性樹
脂に対して、本発明にかかわる高耐圧の微小球状中空体
および同防菌剤ならびに通常熱可塑性樹脂に添加される
前記の各種添加剤の所定量を低剪断型混合装置例えばタ
ンブラーミキサー(商品名)、リボンブレンダー、ホバ
ードミキサーなどを用いて混合し、通常の単軸押出機、
2軸押出機、ブラベンダー、またはロールなどで、溶融
混練温度170℃〜270℃、好ましくは190℃〜2
30℃で溶融混練してペレタイズすることにより得るこ
とができる。
The composition of the present invention is a thermoplastic resin according to the present invention, the high pressure-resistant micro spherical hollow body and the antibacterial agent according to the present invention, and the above-mentioned various additives usually added to the thermoplastic resin. A low shear type mixing device such as a tumbler mixer (trade name), a ribbon blender, a hovered mixer or the like, and a conventional single-screw extruder,
With a twin-screw extruder, a Brabender, or a roll, the melt-kneading temperature is 170 ° C to 270 ° C, preferably 190 ° C to 2
It can be obtained by melt-kneading at 30 ° C. and pelletizing.

得られた組成物は射出成形法、押出成形法、ブロー成形
法などの各種成形法により目的とする成形品の製造に供
される。
The obtained composition is used for producing a desired molded article by various molding methods such as an injection molding method, an extrusion molding method and a blow molding method.

〔実施例〕〔Example〕

以下、実施例および比較例によって、本発明を具体的に
説明するが、本発明はこの実施例によって限定されるも
のではない。
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

なお、実施例および比較例で用いた評価方法は次の方法
によった。
The evaluation methods used in Examples and Comparative Examples were as follows.

(1)比重:得られたペレットを用いて、長さ63.5m
m、巾12.7mm、厚み3.2mmの試験片を射出成形法
により作成し、該試験片を用いて比重を測定(JISK
7207に準拠)することにより比重を評価した。
(1) Specific gravity: Using the pellets obtained, length 63.5 m
A test piece of m, width 12.7 mm, and thickness 3.2 mm was prepared by injection molding, and the specific gravity was measured using the test piece (JISK
7207) to evaluate the specific gravity.

(2)熱伝導率:得られたペレットを用いて長さ150m
m、巾150mm、厚み3mmの試験片を射出成形法により
作成し、該試験片を用いて熱伝導率を測定(ASTMD
2320に準拠;プローブ法による)することにより評
価した。断熱性の良い材料とは熱伝導率の低いものを云
う。
(2) Thermal conductivity: length of 150m using the obtained pellets
A test piece with m, a width of 150 mm and a thickness of 3 mm was prepared by an injection molding method, and the thermal conductivity was measured using the test piece (ASTMD
2320; according to the probe method). A material having a good heat insulation property has a low thermal conductivity.

(3)防カビ性:得られたペレットを用いて長さ50mm、
巾50mm、厚さ2mm(発泡剤を用いた場合のサンプルの
厚さ4mm)の試験片を射出成形法により作成し、該試験
片をシャーレ内の無機寒天培地上に置き、予め培養され
たAspergillus niger等の真菌類(カビ)を含む栄養液
を噴霧後28日後の菌糸発育状態を観察する。
(3) Mold resistance: length of 50 mm using the obtained pellets,
A test piece with a width of 50 mm and a thickness of 2 mm (the thickness of the sample when a foaming agent was used was 4 mm) was prepared by injection molding, and the test piece was placed on an inorganic agar medium in a petri dish and pre-cultured Aspergillus. The mycelial growth state is observed 28 days after spraying the nutrient solution containing fungi (mold) such as niger.

(4)防菌剤の残存量:得られたペレットを用いて長さ5
0mm、巾50mm、厚さ2mmの試験片を射出成形法により
作成し、該試験片を螢光X線分析および赤外線分析によ
り配合された防菌剤の残存量を定量分析する。
(4) Remaining amount of antibacterial agent: length of 5 using the obtained pellet
A test piece having a width of 0 mm, a width of 50 mm and a thickness of 2 mm is prepared by an injection molding method, and the test piece is quantitatively analyzed by fluorescent X-ray analysis and infrared analysis for the residual amount of the antibacterial agent.

(5)外観性:得られたペレットを用いて長さ50mm、巾
50mm、厚さ2mmの試験片を射出成形法により作成し、
該試験片を目視により判別し、外観性の優劣を順位付け
る。
(5) Appearance: Using the obtained pellets, a test piece having a length of 50 mm, a width of 50 mm and a thickness of 2 mm is prepared by an injection molding method,
The test pieces are visually identified to rank the appearance and inferiority.

前記の各試験に用いる試験片は、得られたペレットを樹
脂温度250℃、金型温度50℃で射出成形により調製
した。
The test pieces used in each of the above tests were prepared by injection molding the obtained pellets at a resin temperature of 250 ° C and a mold temperature of 50 ° C.

得られた試験片を用いて、前記の試験方法により、比
重、熱伝導率、防カビ性、防菌剤の残存量および外観性
の評価を行った。これらの結果を以下に示した。
Using the obtained test pieces, the specific gravity, the thermal conductivity, the antifungal property, the residual amount of the antibacterial agent and the appearance were evaluated by the above-mentioned test methods. The results are shown below.

(実施例1〜6,比較例7〜10) 実施例1〜6として、本発明にかかる熱可塑性樹脂の一
種であるポリプロピレン樹脂に耐圧強度700Kg/cm2
平均粒径25〜30μmの珪酸硝子系微小球状中空体お
よびチアベンタゾール所定量を後記の第1表に記載した
配合割合でタンブラーミキサー(商品名)に入れ、5分
間攪拌混合したのち、口径30mmの2軸押出機で230
℃にて溶融混練処理してペレット化した。
(Examples 1 to 6 and Comparative Examples 7 to 10) As Examples 1 to 6, a polypropylene resin, which is a kind of the thermoplastic resin according to the present invention, has a pressure resistance of 700 kg / cm 2 ,
A silicate glass microspheres having an average particle diameter of 25 to 30 μm and a predetermined amount of thiaventazole were placed in a tumbler mixer (trade name) in a mixing ratio shown in Table 1 below, and the mixture was stirred and mixed for 5 minutes, and then a diameter of 30 mm. 230 with a twin-screw extruder
The mixture was melt-kneaded at 0 ° C. and pelletized.

また比較例7として、ポリプロピレン樹脂に中空体、防
菌剤の何れも配合しないもの、比較例8,9としてポリ
プロピレン樹脂に本発明の範囲外である通常の硝子系微
小球状中空体(耐圧強度270Kg/cm2、平均粒径80μ
m)およびチアベンタゾール所定量を後記の第1表に記
載した配合割合で実施例1〜6と同様にしてペレット化
した。
Further, as Comparative Example 7, polypropylene resin containing neither hollow body nor antibacterial agent was used. As Comparative Examples 8 and 9, polypropylene resin containing ordinary glass microspheres outside the scope of the present invention (pressure resistance of 270 kg / cm 2 , average particle size 80μ
m) and the prescribed amount of thiaventazole were pelletized in the same proportions as shown in Table 1 below in the same manner as in Examples 1 to 6.

同じく比較例10として、ポリプロピレン樹脂に中空体
を配合せず、発泡剤およびチアベンタゾール所定量を後
記の第1表に記載した配合割合で、実施例1〜6と同様
にしてペレット化した。
Similarly, as Comparative Example 10, the hollow body was not mixed with the polypropylene resin, and the foaming agent and thiaventazole were blended in the same proportions as shown in Table 1 below, and pelletized in the same manner as in Examples 1 to 6.

得られた試験片を用いて、前記の試験方法により、比
重、熱伝導率、防カビ性、防菌剤の残存量および外観性
の評価を行った。これらの結果を第1表に示した。
Using the obtained test pieces, the specific gravity, the thermal conductivity, the antifungal property, the residual amount of the antibacterial agent and the appearance were evaluated by the above-mentioned test methods. The results are shown in Table 1.

比重、熱伝導率、防カビ性、防菌剤の残存量および外観
性の評価に用いる試験片は、得られたペレットを樹脂温
度250℃、金型温度50℃で射出成形により調製し
た。
Test pieces used for evaluation of specific gravity, thermal conductivity, antifungal property, residual amount of antibacterial agent and appearance were prepared by injection molding the obtained pellets at a resin temperature of 250 ° C and a mold temperature of 50 ° C.

(実施例11〜15,比較例16〜19) 実施例11〜15として、本発明にかかる熱可塑性樹脂
の一種である高密度ポリエチレン樹脂に耐圧強度700
Kg/cm2、平均粒径25〜30μmの珪酸硝子系微小球状
中空体およびチアベンタゾール所定量を後記の第2表に
記載した配合割合でタンブラーミキサー(商品名)に入
れ、5分間攪拌混合したのち、口径30mmの2軸押出機
で200℃にて溶融混練処理してペレット化した。
(Examples 11 to 15 and Comparative Examples 16 to 19) As Examples 11 to 15, a high-density polyethylene resin, which is a kind of the thermoplastic resin according to the present invention, has a compressive strength of 700.
Kg / cm 2 , average particle diameter 25 to 30 μm, silicate glass microspheres and thiaventazole were mixed in a tumbler mixer (trade name) at a mixing ratio shown in Table 2 below for 5 minutes. Then, the mixture was melt-kneaded at 200 ° C. with a twin-screw extruder having a diameter of 30 mm to form pellets.

また比較例16として、高密度ポリエチレン樹脂に中空
体、防菌剤の何れも配合しないもの、比較例17,18
として高密度ポリエチレン樹脂に本発明の範囲外である
通常の硝子系微小球状中空体(耐圧強度270Kg/cm2
平均粒径80μm)およびチアベンタゾール所定量を後
記の第2表に記載した配合割合で、実施例11〜15と
同様にしてペレット化した。
Further, as Comparative Example 16, a high-density polyethylene resin containing neither a hollow body nor an antibacterial agent, Comparative Examples 17 and 18
As a high density polyethylene resin, an ordinary glass-based micro spherical hollow body (withstand pressure strength of 270 kg / cm 2 , which is outside the scope of the present invention,
Pelletization was carried out in the same manner as in Examples 11 to 15 with an average particle size of 80 μm) and a predetermined amount of thiaventazole at the compounding ratios shown in Table 2 below.

同じく比較例19として高密度ポリエチレン樹脂に中空
体を配合せず、発泡剤およびチアベンタゾール所定量を
後記の第2表に記載した配合割合で実施例11〜15と
同様にしてペレット化した。
Similarly, as Comparative Example 19, the hollow body was not blended in the high-density polyethylene resin, and the blowing agent and the predetermined amount of thiabentazole were pelletized in the same proportions as in Examples 11 to 15 at the blending ratios shown in Table 2 below.

得られた試験片を用いて前記の試験方法により、比重、
熱伝導率、防カビ性、および外観性の評価を行った。
By the above test method using the obtained test piece, specific gravity,
The thermal conductivity, mold resistance, and appearance were evaluated.

これらの結果を第2表に示した。The results are shown in Table 2.

比重、熱伝導率、防カビ性、防菌剤の残存量および外観
性の評価に用いる試験片は、得られたペレットを樹脂温
度250℃、金型温度50℃で射出成形により調製し
た。
Test pieces used for evaluation of specific gravity, thermal conductivity, antifungal property, residual amount of antibacterial agent and appearance were prepared by injection molding the obtained pellets at a resin temperature of 250 ° C and a mold temperature of 50 ° C.

第1表からわかるように、実施例1〜6は熱可塑性樹脂
にポリプロピレンを用いて本発明の構成範囲にある高耐
圧硝子系微小球状中空体および防菌剤としてチアベンタ
ゾールを配合した例であり、比較例7は中空体、防菌剤
の何れも配合しなかった例であり、通常のポリプロピレ
ン処方剤である比較例7に対して実施例1〜6は比重、
熱伝導率の低下、および防カビの効果が明らかに優れて
いるのが判る。
As can be seen from Table 1, Examples 1 to 6 are examples in which polypropylene is used as the thermoplastic resin and high pressure resistant glass microspheres within the constitution range of the present invention and thiaventazole as a bacteriostatic agent are blended. Yes, Comparative Example 7 is an example in which neither the hollow body nor the antibacterial agent was blended, and Examples 1 to 6 have specific gravities with respect to Comparative Example 7 which is a normal polypropylene prescription agent.
It can be seen that the decrease in thermal conductivity and the antifungal effect are clearly superior.

比較例8および9は本発明の範囲外である耐圧強度27
0Kg/cm2の中空体を用いた例であり、その他の処方は実
施例3および5と同一である。
Comparative Examples 8 and 9 have a pressure resistance of 27, which is outside the scope of the present invention.
This is an example using a hollow body of 0 kg / cm 2 , and other formulations are the same as those in Examples 3 and 5.

これによると、比較例8および9は実施例3および5に
対して中空体を用いたにもかかわらず比重および熱伝導
率の増加をもたらしていることが明らかであり、外観も
実施例3および5に比較して悪くなっている。これは比
較例に用いた耐圧強度270Kg/cm2の中空体が造粒およ
び射出成形の段階で破壊されていることを示し、通常の
耐圧強度の中空体では好ましくないことを示している。
According to this, it is clear that Comparative Examples 8 and 9 bring about an increase in specific gravity and thermal conductivity in spite of using the hollow body as compared with Examples 3 and 5, and the appearance is also in Examples 3 and 5. It's worse than No. 5. This indicates that the hollow body having a pressure-resistant strength of 270 kg / cm 2 used in the comparative example was destroyed at the stage of granulation and injection molding, and it is not preferable for the hollow body having a normal pressure-resistant strength.

比較例10は中空体のかわりに発泡剤の添加により、比
重および熱伝導率を低下させることを試みた例である。
Comparative Example 10 is an example of trying to reduce the specific gravity and the thermal conductivity by adding a foaming agent instead of the hollow body.

防菌剤として、実施例1,3,5,6と同一量のチアベ
ンタゾールを配合して実施例と比較した。これによると
比重および熱伝導率については実施例と同等の効果が得
られているが、防カビ性については、ほとんど効果がな
く、また外観性が著しく劣る。
As the antibacterial agent, the same amount of thiaventazole as in Examples 1, 3, 5 and 6 was blended and compared with the examples. According to this, although the effects similar to those of the examples are obtained in terms of specific gravity and thermal conductivity, there is almost no effect on mildew resistance, and the appearance is remarkably inferior.

防カビ性については、発泡時に防菌剤が昇華もしくは分
解したことと、発泡により生成したポリプロピレン樹脂
内の気泡内へ防菌剤が析出したため、相対的に樹脂表面
への析出量が低下して、防カビ性を低下させたものと考
えられる。
Regarding mold resistance, since the antibacterial agent was sublimated or decomposed during foaming, and the antibacterial agent was precipitated in the bubbles in the polypropylene resin generated by foaming, the amount of precipitation on the resin surface was relatively reduced. , It is considered that the antifungal property has been reduced.

いずれにしても、発泡剤を用いる方法では、本発明の目
的である外観を損うことなく低比重化および断熱性の向
上と防カビ性を付与した熱可塑性樹脂を得ることができ
ないことは明らかである。
In any case, it is clear that the method using the foaming agent cannot obtain the thermoplastic resin having the low specific gravity and the improved heat insulating property and antifungal property without impairing the appearance which is the object of the present invention. Is.

第2表では熱可塑性樹脂としてポリプロピレンの代わり
にポリエチレンを用いて、他の処方は第1表と同じとし
た。
In Table 2, polyethylene was used instead of polypropylene as the thermoplastic resin, and the other formulations were the same as those in Table 1.

第2表の実施例11,12,13,14,15は第1表
の1,2,3,4,6に対応し、比較例16,17,1
8,19は7,8,9,10に対応する。
Examples 11, 12, 13, 14, 15 in Table 2 correspond to 1, 2, 3, 4, 6 in Table 1, and Comparative Examples 16, 17, 1
8,19 correspond to 7,8,9,10.

その結果は第1表と同様である。The results are the same as in Table 1.

すなわち従来から知られた熱可塑性樹脂組成物では低比
重化および断熱性を確保しようとすれば、高外観性およ
び防カビ性の確保が困難であり、防カビ性を確保しよう
とすれば低比重化および断熱性の確保が困難になる。
That is, in the conventionally known thermoplastic resin composition, it is difficult to secure high external appearance and mildewproofness in order to secure low specific gravity and heat insulation properties, and it is difficult to secure mildewproofness in low specific gravity. It will be difficult to obtain heat resistance and heat insulation.

このことから、本発明の組成物が従来から知られた熱可
塑性樹脂組成物にない外観性と低比重、断熱性および防
菌、防カビ性という、実現させる上で相反する特徴を、
高水準で併わせ持つている点で著しく優れていることが
わかり、本発明組成物の顕著な効果が確認された。
From this, the composition of the present invention has appearances and low specific gravity which are not known in conventional thermoplastic resin compositions, heat insulating properties and antibacterial properties, and antifungal properties, which are contradictory features to be realized,
It was found that the composition of the present invention was remarkably excellent in that it was used together at a high level, and the remarkable effect of the composition of the present invention was confirmed.

〔発明の効果〕 本発明の組成物は、通常の熱可塑性樹脂に発泡剤を配合
してなる熱可塑性樹脂組成物、および防菌剤を配合して
なる熱可塑性樹脂組成物等の従来公知の熱可塑性樹脂組
成物に比較して、優れた断熱性と外観性を保持しなが
ら、成形品の軽量化または同一重量でより肉厚の成形品
を得ることにより実用強度の向上を計ることができる、
しかも安全でかつ確実な防カビ効果を得ることができる
という相互に相反する要求を同時に実現し得たものであ
る。
[Effect of the Invention] The composition of the present invention is a conventionally known thermoplastic resin composition obtained by blending a foaming agent with a conventional thermoplastic resin, and a thermoplastic resin composition obtained by incorporating a bacteriostatic agent. Compared with a thermoplastic resin composition, it is possible to improve practical strength by reducing the weight of a molded product or obtaining a molded product having a larger wall thickness with the same weight while maintaining excellent heat insulation and appearance. ,
Moreover, the mutually conflicting requirements that a safe and reliable antifungal effect can be obtained can be realized at the same time.

これによって熱可塑性樹脂の新たなる用途開発に道を開
いたものであり、その効果は大きい。
This paved the way for the development of new applications for thermoplastic resins, and the effect is great.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】250℃以下で造粒可能な熱可塑性樹脂1
00重量部に対して、耐圧強度300Kg/cm2以上の微小
球状中空体10〜100重量部および防カビ性に優れ安
全性の高い防菌剤0.05〜0.40重量部を配合して
なる熱可塑性樹脂組成物。
1. A thermoplastic resin 1 which can be granulated at 250 ° C. or lower.
To 100 parts by weight, 10 to 100 parts by weight of micro-spherical hollow bodies having a pressure resistance of 300 kg / cm 2 or more and 0.05 to 0.40 part by weight of a highly safe antibacterial agent are mixed. Thermoplastic resin composition.
JP63240866A 1988-09-28 1988-09-28 Thermoplastic resin composition Expired - Lifetime JPH0611866B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63240866A JPH0611866B2 (en) 1988-09-28 1988-09-28 Thermoplastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63240866A JPH0611866B2 (en) 1988-09-28 1988-09-28 Thermoplastic resin composition

Publications (2)

Publication Number Publication Date
JPH0291134A JPH0291134A (en) 1990-03-30
JPH0611866B2 true JPH0611866B2 (en) 1994-02-16

Family

ID=17065869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63240866A Expired - Lifetime JPH0611866B2 (en) 1988-09-28 1988-09-28 Thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JPH0611866B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03128688U (en) * 1990-04-04 1991-12-25
JPH0423848A (en) * 1990-05-18 1992-01-28 Daicel Chem Ind Ltd Styrene-based resin composition
PE20001522A1 (en) * 1999-02-11 2000-12-29 American Cyanamid Co LIGHTWEIGHT EXTRUDED COMPOSITIONS CONTAINING A LIGHTWEIGHT CERAMIC EXTRUIBLE CARRIER, METHODS OF USE OF THE SAME AND PROCESSES FOR THEIR PREPARATION
JP6025414B2 (en) 2011-09-30 2016-11-16 富士通コンポーネント株式会社 Electromagnetic relay
CN117105539A (en) * 2023-08-15 2023-11-24 湖南旗滨光能科技有限公司 Glass mildew-proof powder and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59161449A (en) * 1983-03-04 1984-09-12 Mitsubishi Heavy Ind Ltd Heat-insulation material
JPS6375045A (en) * 1986-09-17 1988-04-05 Nok Corp Mildew-proofing resin composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59161449A (en) * 1983-03-04 1984-09-12 Mitsubishi Heavy Ind Ltd Heat-insulation material
JPS6375045A (en) * 1986-09-17 1988-04-05 Nok Corp Mildew-proofing resin composition

Also Published As

Publication number Publication date
JPH0291134A (en) 1990-03-30

Similar Documents

Publication Publication Date Title
JP2825500B2 (en) Flame-retardant polyolefin resin composition
KR101731864B1 (en) An eco-friendly master batch for expanded cross-linked polyolefin having the flame retardancy
US4394460A (en) Ethylene-chlorotrifluoroethylene copolymer foam
EP0054183B1 (en) Ethylene-chlorotrifluoroethylene copolymer foam
JP2006517597A (en) Masterbatch based on pre-exfoliated nanoclay and its use
US4247651A (en) Process for preparing foamed synthetic resin products
NO772751L (en) PROCEDURES FOR THE MANUFACTURE OF A CROSS-BASED, CLOSED CELL FOAM OF CHLORINATED H.D. POLYETHYLENE
JPH0611866B2 (en) Thermoplastic resin composition
JPH0341164A (en) Thermoplastic resin composition
KR101083277B1 (en) Metalatearate containig the foam compositions and foam products
JP2003165860A (en) Flame-retardant resin foam
JP2800282B2 (en) Method for producing thermoplastic resin composition
JP2010090197A (en) Method for producing molded item of propylene polymer composition
US5486543A (en) Formed thermoplastic resin article and production process thereof
JP3422455B2 (en) Woody thermoplastic resin composition and filler for the composition
KR101607058B1 (en) An eco-friendly plastic foam composition having a high flame retardancy and a process for the preparation thereof
KR0172147B1 (en) Method of manufacturing antimicrobial polyolefinic resin crosslinking foam agent
NL8101923A (en) METHOD FOR MANUFACTURING FOAM BODIES
JPH02185549A (en) Preparation of silane-crosslinked polyolefin
JPH0649253A (en) Porous antimicrobial film and its production
JPH06287364A (en) Polypropylene resin composition
KR102530439B1 (en) A polyester foam sheet containing different anti agglometants
JPH01131260A (en) Plastic magnet composition
RU2223983C2 (en) Composition for manufacturing chemically filled polyolefin foams
JPS60243155A (en) Flame-retardant thermoplastic resin composition