JPH06118338A - Optical device - Google Patents

Optical device

Info

Publication number
JPH06118338A
JPH06118338A JP4296517A JP29651792A JPH06118338A JP H06118338 A JPH06118338 A JP H06118338A JP 4296517 A JP4296517 A JP 4296517A JP 29651792 A JP29651792 A JP 29651792A JP H06118338 A JPH06118338 A JP H06118338A
Authority
JP
Japan
Prior art keywords
optical
light
optical path
path bending
bending member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4296517A
Other languages
Japanese (ja)
Inventor
Hitoshi Fukuda
仁 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP4296517A priority Critical patent/JPH06118338A/en
Publication of JPH06118338A publication Critical patent/JPH06118338A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To simply provide an optical device of high accuracy at low cost by providing plural reflecting areas having each different spectral reflection factor characteristic on the same surface as for the reflecting surface of an optical path bending member. CONSTITUTION:When an excimer light illuminates an observation object surface 10 through a reducing projection lens, etc., light having optical information of an alignment mark and a focus detection mark arranged on the object surface 10 is photodetected by a CCD camera 9 through an objective lens barrel 6, an optical path bending member 7-1, a relay lens barrel 8, and optical path bending members 7-2, 7-3. Subsequently, by a signal from the CCD camera 9, position information and focus information of the object surface 10 is calculated by an arithmetic controller, and positioning of the object surface 10 and other control are executed. Also, a monitor system monitors a fluctuation of an optical axis usually or in accordance with necessity, and in the case abnormality is generated, a warning signal is generated by the controller, and the signal from the CCD camera 9 is corrected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、赤外光、紫外光等の不
可視光を用いて観察、光電検出、加工等を行うのに適し
た光学装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical device suitable for observation, photoelectric detection, processing and the like using invisible light such as infrared light and ultraviolet light.

【0002】[0002]

【従来の技術】従来の光学装置の一例として、近年、半
導体露光装置の主流となりつつある露光波長が436n
mのg線、365nmのi線、さらには248nmのエ
キシマを用いた高精度縮小投影露光装置(以下、ステッ
パと称す)において、投影するパターン(以下、レチク
ルパターンと称す)と投影像を転写する基板(以下、ウ
エハと称す)の両方または片方を投影レンズを介して観
察または光電的に検出して各種の位置決めもしくは信号
検出を行う光学装置がある。
2. Description of the Related Art In recent years, as an example of a conventional optical device, an exposure wavelength, which has become the mainstream of a semiconductor exposure apparatus, is 436n.
A pattern to be projected (hereinafter referred to as a reticle pattern) and a projected image are transferred in a high-precision reduction projection exposure apparatus (hereinafter referred to as a stepper) using an m g line, a 365 nm i line, and a 248 nm excimer. There is an optical device for performing various positioning or signal detection by observing or photoelectrically detecting both or one of a substrate (hereinafter referred to as a wafer) through a projection lens.

【0003】また、ウエハやレチクルパターン等を高精
度で局所的に露光(加工)するための光学装置がある。
Further, there is an optical device for locally exposing (processing) a wafer, a reticle pattern or the like with high accuracy.

【0004】図6はこのような従来の光学装置の一例を
示す断面図である。ただし、投影レンズや照明系は省略
してある。このような装置においては、投影レンズの使
用波長もしくは感光剤(以下、レジストと称す)等の加
工物の露光感度が紫外域であるため、光学装置の使用波
長も紫外域とならざるを得ない。そして、前述のような
高精度を要求されるため、光学装置も高精度を達成する
ための必要条件として高精度に組み立てられ、調整され
なければならないし、かつそれが維持されなければなら
ない。それはとりもなおさず光学装置の光学パーツ等の
光軸を高精度で配置し維持することにほかならない。そ
のため、従来装置においては、使用波長である紫外域の
光線を用いて光軸の調整を行うか、紫外域と可視域の両
方の波長に対して所望の反射、透過もしくは屈折特性を
持たせた光学部材を使用して調整していた。
FIG. 6 is a sectional view showing an example of such a conventional optical device. However, the projection lens and the illumination system are omitted. In such an apparatus, the wavelength used by the projection lens or the exposure sensitivity of a processed material such as a photosensitizer (hereinafter referred to as a resist) is in the ultraviolet region, so the wavelength used by the optical device must be in the ultraviolet region. . Further, since the high precision as described above is required, the optical device must be assembled and adjusted with high precision as a necessary condition for achieving the high precision, and it must be maintained. It is nothing but the placement and maintenance of the optical axes of the optical parts of the optical device with high precision. Therefore, in the conventional device, the optical axis is adjusted by using the light beam in the ultraviolet range, which is the wavelength used, or the desired reflection, transmission, or refraction characteristics are given to both wavelengths in the ultraviolet range and the visible range. It was adjusted using an optical member.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記従来
例においては次のような問題点がある。すなわち、紫
外域の光線で組立、調整を行おうとすると、光源が例え
ば水銀ランプのように取扱いが不便な物であったり、光
の強度が不十分であったり、不可視光であるため観察す
るには何かしらの変換手段を必要としその手段を高精度
化しなければならない等、生産効率上または精度上の問
題点があり、さらには不可視光であるため人体に対する
危険もある。一方、紫外域と可視域の両方の波長に対
して所望の光学特性を持たせた光学部材を用い、組立、
調整時は可視光で行うとすると、非常に高価な光学部材
となって装置コストのアップを招く。さらに、光学装
置の光軸精度を維持するための光軸モニタ手段を備えて
いない。
However, the above-mentioned conventional example has the following problems. In other words, when trying to assemble and adjust the light in the ultraviolet range, the light source is inconvenient to handle, such as a mercury lamp, the intensity of the light is insufficient, or it is invisible. Has some problems in terms of production efficiency or accuracy, such as the need for some kind of conversion means, and the means must be made highly accurate. Further, since it is invisible light, there is a danger to the human body. On the other hand, using an optical member having desired optical characteristics for both wavelengths in the ultraviolet region and visible region, assembly,
If the adjustment is performed with visible light, it becomes an extremely expensive optical member, resulting in an increase in device cost. Furthermore, the optical axis monitor means for maintaining the optical axis accuracy of the optical device is not provided.

【0006】本発明の目的は、このような従来技術の問
題点に鑑み、簡便で低コストかつ高精度の光学装置を提
供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a simple, low-cost and highly accurate optical device in view of the above problems of the prior art.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
本発明では、光学系内にその光路を折り曲げるための反
射面を有する光路折り曲げ部材を備えた光学装置におい
て、その反射面は異なる分光反射率特性を有する複数の
反射領域を、同一面上に具備するようにしている。さら
に、前記複数の反射領域をそれぞれ介しており、かつそ
れらの分光反射率特性にそれぞれ適合した波長の光によ
る複数の光学系を形成しているのが好ましい。
In order to achieve this object, according to the present invention, in an optical device provided with an optical path bending member having a reflecting surface for bending the optical path in an optical system, the reflecting surface has different spectral reflection. A plurality of reflective regions having a rate characteristic are provided on the same surface. Further, it is preferable that a plurality of optical systems are formed through the plurality of reflection regions, and the light having wavelengths adapted to their spectral reflectance characteristics is formed.

【0008】[0008]

【作用】本発明者が詳細に検討した結果、光学装置にお
いては、光学系の中で用いられている光路の折り曲げ部
材が光学系の精度および精度安定性に対して寄与度が高
いことに着目し、装置のコンパクト化等のために、上記
構成を採用している。これによれば、光路折り曲げ部材
の反射面は異なる分光反射率特性を有する複数の反射領
域を同一面上に備えるため、装置の本来の用途のために
使用する主観察光学系の波長の光によらずとも、他の波
長の可視光等を、それに対応する分光反射率特性を有す
る反射領域に照射しその反射光を観察することにより、
間接的ではあるが非常に正確に折り曲げ部材の位置をモ
ニタすることができ、可視光により簡便かつ安全に折り
曲げ部材の取付けや調整が行われる。しかも、取付け・
調整後も、同様にして可視域波長の光で折り曲げ部材の
位置がモニタされる。したがって、高価な光学部材や特
別な光電検出手段等が必要なく、高精度かつ簡便で低コ
ストな光学装置の提供が行われる。
As a result of a detailed study by the present inventor, in the optical device, it is noted that the bending member of the optical path used in the optical system has a high contribution to the accuracy and precision stability of the optical system. However, the above-mentioned configuration is adopted in order to make the apparatus compact. According to this, since the reflecting surface of the optical path bending member is provided with a plurality of reflecting regions having different spectral reflectance characteristics on the same surface, the light of the wavelength of the main observation optical system used for the original application of the device is used. Irrespective of, by observing the reflected light by irradiating visible light of other wavelengths, etc. to the reflection area having the spectral reflectance characteristic corresponding to it,
The position of the bending member can be monitored very accurately though indirectly, and the bending member can be easily and safely attached and adjusted by visible light. Moreover, mounting
Even after the adjustment, the position of the bending member is similarly monitored with light in the visible wavelength range. Therefore, it is possible to provide a highly accurate, simple, and low-cost optical device without requiring an expensive optical member or a special photoelectric detection unit.

【0009】[0009]

【実施例】図1は本発明の一実施例に係る光学装置を用
いた観察装置の断面図である。この装置は、エキシマ光
(波長248nm)を主観察光、He−Neレーザ(波
長633nm)を組立調整光、LED(波長630n
m)をモニタ光として使用している。図2は図1のA〜
A方向から見た図である。
FIG. 1 is a sectional view of an observation apparatus using an optical device according to an embodiment of the present invention. This device uses excimer light (wavelength 248 nm) as main observation light, He-Ne laser (wavelength 633 nm) as assembly adjustment light, and LED (wavelength 630n).
m) is used as the monitor light. FIG. 2 shows A to FIG.
It is the figure seen from the A direction.

【0010】これらの図において、1は光学系を保持す
る本体、2−1〜4は主観察光であるエキシマ光の光軸
である第1の光軸、3−1〜4はそれぞれ第1軸2−1
〜4と平行で同一ピッチの第2の軸、4−1〜4は第2
軸3−1〜4の延長線がそれぞれ本体1を通る位置にそ
れぞれ第2軸3−1〜4と同軸となるように本体1上に
配置した調整用基準穴、5は第2軸3−1に直交する面
内に配置された調整用基準ミラー、6は不図示の位置・
姿勢調整部材により保持された対物レンズ鏡筒、7−1
〜3は不図示の位置・姿勢調整部材により保持された光
路折り曲げ部材、8は不図示の位置・姿勢調整部材によ
り保持されたリレーレンズ鏡筒、9は本体1に不図示の
機構で保持された観察または光電検出するためのCCD
カメラ、10はエキシマ光を使用した不図示の照明手段
により照明された透過物体で構成された観察物体面、1
1はLEDによる光源12、コンデンサーレンズ13、
ミラー15、基準マーク14、投影レンズ16等で構成
された光軸モニタ投光部、17は結像レンズ18、検出
部19等で構成され光軸モニタ投光部11からの光線を
受光して光線の位置と傾きを検出する光軸モニタ検出
部、20はHe−Neレーザビーム、21は光路折り曲
げ部材7−1の基板であるガラス基板、22はガラス基
板21上において主観察光であるエキシマ光を反射する
必要領域、23はガラス基板21上に配置されエキシマ
光を反射する第1の反射コート面である。24はHe−
NeレーザとLEDの波長の光に十分な反射特性を持つ
第2の反射コート面であり、第2の軸3−1とガラス基
板21との交点を中心とした、光軸モニタ投光部11か
らの光を反射するガラス基板21上の必要領域に配置さ
れている。光路折り曲げ部材7−2および7−3には、
第1の反射コート面23と第2の反射コート面24が光
路折り曲げ部材7−1の場合と同様に配置されている。
41はリレーレンズの光軸に対して直交する面となるよ
うに加工されたリレーレンズ鏡筒面、42は対物レンズ
の光軸に対して直交する面となるように加工された対物
レンズ鏡筒面である。
In these figures, 1 is a main body for holding an optical system, 2-1 to 4 are first optical axes which are optical axes of excimer light which is main observation light, and 3-1 to 4 are first optical axes, respectively. Axis 2-1
2nd axis parallel to 4 and having the same pitch, 4-1 to 4 are second
The reference holes for adjustment 5 arranged on the main body 1 so that the extension lines of the shafts 3-1 to 4 are coaxial with the second shafts 3-1 to 4 at positions passing through the main body 1, respectively. A reference mirror for adjustment arranged in a plane orthogonal to 1, 6 is a position not shown
Objective lens barrel held by the attitude adjusting member, 7-1
3 to 3 are optical path bending members held by a position / posture adjusting member (not shown), 8 is a relay lens barrel held by a position / posture adjusting member (not shown), and 9 is held by the main body 1 by a mechanism (not shown). CCD for observation or photoelectric detection
A camera 10 is an observation object plane composed of a transmissive object illuminated by an illumination means (not shown) using excimer light, 1
1 is a light source 12 by an LED, a condenser lens 13,
An optical axis monitor light projecting unit composed of a mirror 15, a reference mark 14, a projection lens 16 and the like, and 17 receives a light beam from the optical axis monitor light projecting unit 11 composed of an imaging lens 18, a detection unit 19 and the like. An optical axis monitor detector for detecting the position and inclination of the light beam, 20 is a He-Ne laser beam, 21 is a glass substrate which is a substrate of the optical path bending member 7-1, and 22 is an excimer which is main observation light on the glass substrate 21. A necessary area for reflecting light, 23 is a first reflection coating surface which is arranged on the glass substrate 21 and reflects excimer light. 24 is He-
The optical axis monitor light projecting unit 11 is a second reflective coating surface having a sufficient reflection characteristic for the light of the wavelength of the Ne laser and the LED, and is centered on the intersection of the second axis 3-1 and the glass substrate 21. It is arranged in a necessary area on the glass substrate 21 which reflects the light from the. In the optical path bending members 7-2 and 7-3,
The first reflection coated surface 23 and the second reflection coated surface 24 are arranged similarly to the case of the optical path bending member 7-1.
41 is a relay lens barrel surface processed to be a surface orthogonal to the optical axis of the relay lens, and 42 is an objective lens barrel processed to be a surface orthogonal to the optical axis of the objective lens. The surface.

【0011】次に、この構成において、組立調整を行う
手順を説明する。 (1)He−Neレーザビーム20を図中の矢印方向に
基準ミラー5に入射させ、入射光と基準ミラー5からの
反射光の光軸が一致するようにHe−Neレーザビーム
20の姿勢を調整する。次にHe−Neレーザビーム2
0を平行移動させ基準穴4と同軸な位置にHe−Neレ
ーザビーム20が入射するようにHe−Neレーザビー
ム20の位置を調整する。次に、光路折り曲げ部材7−
1を本体1に取り付ける。この時、第2の軸3−1と光
路折り曲げ部材7−1の第2の反射コート面24は略合
致しHe−Neレーザビームを十分な強度で反射する。
Next, a procedure for performing assembly adjustment in this configuration will be described. (1) The He-Ne laser beam 20 is made incident on the reference mirror 5 in the direction of the arrow in the drawing, and the posture of the He-Ne laser beam 20 is adjusted so that the optical axes of the incident light and the reflected light from the reference mirror 5 coincide with each other. adjust. Next, He-Ne laser beam 2
0 is translated and the position of the He—Ne laser beam 20 is adjusted so that the He—Ne laser beam 20 enters the position coaxial with the reference hole 4. Next, the optical path bending member 7-
1 is attached to the main body 1. At this time, the second axis 3-1 and the second reflection coating surface 24 of the optical path bending member 7-1 are substantially aligned with each other and reflect the He—Ne laser beam with sufficient intensity.

【0012】(2)次に、基準ミラー5と同様なミラー
(不図示)を本体1外で第2の光軸3−2の延長線上
(図中破線指示)に配置する。
(2) Next, a mirror (not shown) similar to the reference mirror 5 is arranged outside the main body 1 on the extension line of the second optical axis 3-2 (indicated by a broken line in the figure).

【0013】(3)次に、このミラーにHe−Neレー
ザビーム20を入射させ、その入射光とミラーからの反
射光の光軸が一致するように、光路折り曲げ部材7−1
の姿勢を調整する。
(3) Next, the He-Ne laser beam 20 is made incident on this mirror, and the optical path bending member 7-1 is arranged so that the incident light and the optical axis of the reflected light from the mirror coincide with each other.
Adjust the posture of.

【0014】(4)次に、基準穴4−2の中心にHe−
Neレーザビーム20の光軸が一致するように光路折り
曲げ部材7−1を平行移動させる。これにより、He−
Neレーザビーム20は第2の反射コート面24に当た
っているので十分な光強度が得られ高精度な調整が可能
となる。
(4) Next, at the center of the reference hole 4-2, He-
The optical path bending member 7-1 is moved in parallel so that the optical axes of the Ne laser beam 20 coincide with each other. This allows He-
Since the Ne laser beam 20 strikes the second reflective coating surface 24, sufficient light intensity can be obtained and highly accurate adjustment can be performed.

【0015】(5)光路折り曲げ部材7−2および7−
3についても前記(2)〜(4)と同様な手順で順番に
調整を行なう。これにより、光路折り曲げ部材7−2お
よび7−3についても前記(4)と同様、それぞれ第2
の光軸3−2および3−3との交点には第2の反射コー
ト面24が略合致し、高精度な調整が可能となる。以上
の(1)〜(5)の手順で、光路折り曲げ部材7−1〜
3の高精度な調整が完了する。
(5) Optical path bending members 7-2 and 7-
For 3 as well, adjustment is performed in order by the same procedure as in (2) to (4) above. As a result, the optical path bending members 7-2 and 7-3 are each set to the second position as in (4) above.
The second reflection coated surface 24 substantially coincides with the intersection of the optical axes 3-2 and 3-3, which enables highly accurate adjustment. The optical path bending members 7-1 to 7-1 are executed by the above steps (1) to (5).
High-precision adjustment of 3 is completed.

【0016】(6)次に、リレーレンズ鏡筒8をその鏡
筒面41等を利用し、公知の方法を用いて姿勢および位
置調整し本体1に取り付ける。次に、同様に対物レンズ
鏡筒6もその鏡筒面42を用いて本体1に取り付ける。
(6) Next, the relay lens barrel 8 is attached to the main body 1 by utilizing the lens barrel surface 41 and the like and adjusting its posture and position by a known method. Next, similarly, the objective lens barrel 6 is also attached to the main body 1 using the lens barrel surface 42.

【0017】(7)次に、CCDカメラ9を本体1に取
り付ける。これにより、主光学系の光軸に関する調整が
完了する。
(7) Next, the CCD camera 9 is attached to the main body 1. This completes the adjustment regarding the optical axis of the main optical system.

【0018】(8)次に、エキシマ光を照明光とした不
図示の光学系で、観察物体面10上に配置された不図示
のパターンを照明し、CCDカメラ9の不図示のモニタ
上の画像を見ながら対物レンズ鏡筒6とリレーレンズ鏡
筒8の相対位置を調整する。これにより、主光学系の結
像に関するピント調整が完了する。
(8) Next, an unillustrated optical system using the excimer light as illumination light illuminates an unillustrated pattern arranged on the observation object surface 10, and the CCD camera 9 displays it on an unillustrated monitor. The relative positions of the objective lens barrel 6 and the relay lens barrel 8 are adjusted while viewing the image. This completes the focus adjustment relating to the image formation of the main optical system.

【0019】(9)次に、光軸モニタ投光部11を、そ
の光軸が第2の軸3−1と一致するように本体1に取り
付け、また、光軸モニタ検出部17を、その光軸が第2
の軸3−4と一致するように本体1に取り付ける。
(9) Next, the optical axis monitor light projecting section 11 is attached to the main body 1 so that the optical axis thereof coincides with the second axis 3-1 and the optical axis monitor detecting section 17 is attached thereto. The optical axis is second
It is attached to the main body 1 so as to coincide with the axis 3-4.

【0020】(10)そして、検出部19のゼロ調整を
行う。
(10) Then, the zero adjustment of the detector 19 is performed.

【0021】以上で組立と調整が完了する。当然なが
ら、組立、調整が完了すればHe−Neレーザビーム2
0や調整用基準ミラー5は、以降、不要となる。
The above steps complete the assembly and adjustment. Of course, once the assembly and adjustment are completed, the He-Ne laser beam 2
The 0 and the adjustment reference mirror 5 are no longer necessary.

【0022】次に、本観察装置をステッパ等に装着した
以降の動作について説明する。不図示の縮小投影レンズ
等を介して、エキシマ光が観察物体面10を照明する
と、物体面10に配置されているアライメントマークや
フォーカス検出マークの光情報を含む光が、対物レンズ
鏡筒6、光路折り曲げ部材7−1、リレーレンズ鏡筒
8、光路折り曲げ部材7−2〜3を介してCCDカメラ
9に受光される。そして、CCDカメラ9からの信号に
より、物体面10の位置情報やフォーカス情報が不図示
の演算制御装置により演算され、物体面10の位置決め
その他の制御が行われる。
Next, the operation after the observation apparatus is mounted on the stepper or the like will be described. When the excimer light illuminates the observation object plane 10 via a reduction projection lens (not shown) or the like, the light including the optical information of the alignment mark and the focus detection mark arranged on the object plane 10 is converted into the objective lens barrel 6, The light is received by the CCD camera 9 via the optical path bending member 7-1, the relay lens barrel 8, and the optical path bending members 7-2 to 7-3. Then, based on a signal from the CCD camera 9, position information and focus information of the object plane 10 are calculated by a calculation control device (not shown), and positioning of the object plane 10 and other controls are performed.

【0023】また、モニタ系は、常時または必要に応じ
て光軸変動をモニタし、異常が生じた場合は、不図示の
制御装置で警告信号を発したり、CCDカメラ9からの
信号を補正するようになっている。
The monitor system constantly or as needed monitors optical axis fluctuations, and when an abnormality occurs, a control device (not shown) issues a warning signal or corrects a signal from the CCD camera 9. It is like this.

【0024】図5は本発明の他の実施例に係る光学装置
を適用した加工装置を示す。この装置は、転写体28に
設けられたパターンを被転写体29に露光・転写するこ
とによって被転写体29を加工するものであり、光路折
り曲げ部材7−2の第1の反射コート面がハーフミラー
で構成され、転写体28を不図示の照明系からの照明光
30で照明し、光学系の光路折り曲げ部材7−3、7−
2、リレーレンズ鏡筒8、光路折り曲げ部材7−1、お
よび対物レンズ鏡筒6を経て被転写体29を露光し加工
するようになっている。CCDカメラ9は被転写体29
からの反射光が光路折り曲げ部材7−2を透過した光を
用いて被転写体29を観察出来るようになっている。他
の構成は、上述実施例の場合と同様である。
FIG. 5 shows a processing apparatus to which an optical device according to another embodiment of the present invention is applied. This device is for processing the transferred material 29 by exposing and transferring the pattern provided on the transfer material 28 to the transferred material 29, and the first reflection coated surface of the optical path bending member 7-2 is half-shaped. The transfer member 28, which is composed of a mirror, is illuminated with illumination light 30 from an illumination system (not shown), and the optical path bending members 7-3 and 7- of the optical system are illuminated.
2, the transfer lens 29 is exposed and processed through the relay lens barrel 8, the optical path bending member 7-1, and the objective lens barrel 6. The CCD camera 9 is the transferred object 29.
The transferred material 29 can be observed by using the light reflected by the light transmitted through the optical path bending member 7-2. Other configurations are the same as those in the above-mentioned embodiment.

【0025】なお、本発明はこれらの実施例に限られ
ず、適宜変形して実施することができる。例えば、反射
コート面は任意の形状、配置及び面積にすることが可能
であり、図3に示すような、第1の反射コート面26お
よび第2の反射コート面25としてもよい。また、図4
に示すように、第1の反射コート面26上の4箇所に第
2の反射コート面27−1〜4を設けるようにしてもよ
い。第1の反射コート面も、エキシマ光反射領域をカバ
ーすれば任意の形状にすることが可能である。
The present invention is not limited to these embodiments, but can be implemented by appropriately modifying it. For example, the reflection coated surface can have any shape, arrangement and area, and may be the first reflection coated surface 26 and the second reflection coated surface 25 as shown in FIG. Also, FIG.
As shown in FIG. 2, the second reflection coated surfaces 27-1 to 27-4 may be provided at four locations on the first reflection coated surface 26. The first reflection coated surface can also be formed in any shape as long as it covers the excimer light reflection area.

【0026】また、エキシマ光以外の他の波長のもの
を、観察光または検出光として使用することも可能であ
る。He−Neレーザ以外の波長の光も、第2の反射コ
ート面をその波長に対応させれば、調整用の光として用
いることができる。さらに、2種類以上の波長の光を用
いて、観察・調整を行うようにしてもよい。
It is also possible to use light having a wavelength other than the excimer light as the observation light or the detection light. Light having a wavelength other than the He-Ne laser can also be used as light for adjustment by making the second reflection coating surface correspond to the wavelength. Furthermore, observation / adjustment may be performed using light of two or more types of wavelengths.

【0027】[0027]

【発明の効果】以上説明したように本発明によれば、光
路折り曲げ部材の反射面は異なる分光反射率特性を有す
る複数の反射領域を同一面上に備え、さらにはそれらの
分光反射率特性にそれぞれ応じた光による複数の光学系
を備えるようにしたため、これら光学系を、例えば、主
観察系、組立調整系、モニタ系等として用い、組立調整
系やモニタ系に可視域波長の光を使用することができ
る。したがって、高価な光学部材や特別な光電検出等が
不要となり光学装置のコストダウンを図ることができ
る。また、光学系の経時変化を監視し、更には補正する
ためのモニタ光学系を簡便かつ低コストで実現すること
ができ、よって光学装置を高精度に維持でき、ひいては
生産性の向上に寄与することができる。さらに、組立調
整用に特殊な光源を用いることが不要になり、生産コス
トの低減を図ることができると共に、人体に対する安全
性も向上させることができる。
As described above, according to the present invention, the reflecting surface of the optical path bending member is provided with a plurality of reflecting regions having different spectral reflectance characteristics on the same surface, and further the spectral reflectance characteristics thereof are Since a plurality of optical systems for different lights are provided, these optical systems are used, for example, as the main observation system, assembly adjustment system, monitor system, etc., and light of visible wavelength is used for the assembly adjustment system and monitor system. can do. Therefore, an expensive optical member, special photoelectric detection, etc. are not required, and the cost of the optical device can be reduced. Further, a monitor optical system for monitoring and correcting the change with time of the optical system can be realized simply and at low cost, so that the optical device can be maintained with high accuracy, which contributes to the improvement of productivity. be able to. Further, since it is not necessary to use a special light source for assembly and adjustment, the production cost can be reduced and the safety for the human body can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例に係る光学装置を用いた観
察装置の断面図である。
FIG. 1 is a sectional view of an observation apparatus using an optical device according to an embodiment of the present invention.

【図2】 図1のA〜A方向から見た図である。FIG. 2 is a view seen from the direction AA of FIG.

【図3】 図1の装置における折曲げ部材の他の例を示
す模式図である。
FIG. 3 is a schematic view showing another example of the bending member in the device of FIG.

【図4】 図1の装置における折曲げ部材のさらに他の
例を示す模式図である。
FIG. 4 is a schematic diagram showing still another example of the bending member in the apparatus of FIG.

【図5】 本発明の他の実施例に係る光学装置を適用し
た加工装置を示す断面図である。
FIG. 5 is a cross-sectional view showing a processing device to which an optical device according to another embodiment of the present invention is applied.

【図6】 従来の光学装置の一例を示す断面図である。FIG. 6 is a cross-sectional view showing an example of a conventional optical device.

【符号の説明】[Explanation of symbols]

1:光学装置本体、6:対物レンズ鏡筒、7−1〜3:
光路折り曲げ部材、8:リレーレンズ鏡筒、9:CCD
カメラ、11:光軸モニタ投光部、17:光軸モニタ受
光部、21:ガラス基板、23,26:第1の反射コー
ト面、24,25,27:第2の反射コート面。
1: Optical device body, 6: Objective lens barrel, 7-1 to 3:
Optical path bending member, 8: relay lens barrel, 9: CCD
Cameras, 11: optical axis monitor light projecting section, 17: optical axis monitor light receiving section, 21: glass substrate, 23, 26: first reflective coated surface, 24, 25, 27: second reflective coated surface.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 光学系内にその光路を折り曲げるための
反射面を有する光路折り曲げ部材を備えた光学装置にお
いて、その反射面は異なる分光反射率特性を有する複数
の反射領域を同一面上に具備することを特徴とする光学
装置。
1. An optical device comprising an optical path bending member having a reflection surface for bending the optical path in an optical system, the reflection surface having a plurality of reflection regions having different spectral reflectance characteristics on the same surface. An optical device characterized by:
【請求項2】 前記複数の反射領域をそれぞれ介してお
り、かつそれらの分光反射率特性にそれぞれ適合した波
長の光による複数の光学系を形成していることを特徴と
する請求項1記載の光学装置。
2. A plurality of optical systems for transmitting light having wavelengths respectively adapted to the spectral reflectance characteristics of the plurality of reflective areas, respectively, to form a plurality of optical systems. Optical device.
JP4296517A 1992-10-09 1992-10-09 Optical device Pending JPH06118338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4296517A JPH06118338A (en) 1992-10-09 1992-10-09 Optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4296517A JPH06118338A (en) 1992-10-09 1992-10-09 Optical device

Publications (1)

Publication Number Publication Date
JPH06118338A true JPH06118338A (en) 1994-04-28

Family

ID=17834566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4296517A Pending JPH06118338A (en) 1992-10-09 1992-10-09 Optical device

Country Status (1)

Country Link
JP (1) JPH06118338A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004266264A (en) * 2003-02-13 2004-09-24 Canon Inc Optical system, aligner, method for manufacturing device
JP2011247924A (en) * 2010-05-24 2011-12-08 Hitachi High-Technologies Corp Light source unit, optical axis adjusting method for light source unit, proximity exposure device, exposure light irradiating method for proximity exposure device, and manufacturing method of display panel substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004266264A (en) * 2003-02-13 2004-09-24 Canon Inc Optical system, aligner, method for manufacturing device
JP2011247924A (en) * 2010-05-24 2011-12-08 Hitachi High-Technologies Corp Light source unit, optical axis adjusting method for light source unit, proximity exposure device, exposure light irradiating method for proximity exposure device, and manufacturing method of display panel substrate

Similar Documents

Publication Publication Date Title
JP4183228B2 (en) Projection exposure apparatus and method for correcting an imaging error generated in a projection optical system of a projection exposure apparatus especially for microlithography
US6958803B2 (en) Projection exposure apparatus and method with adjustment of rotationally asymmetric optical characteristics
US5999245A (en) Proximity exposure device with distance adjustment device
WO1999060361A1 (en) Aberration measuring instrument and measuring method, projection exposure apparatus provided with the instrument and device-manufacturing method using the measuring method, and exposure method
WO2014139543A1 (en) Microlithographic apparatus
US6081320A (en) Illumination apparatus and exposure apparatus
JP2862311B2 (en) Surface position detection device
JP2000081320A (en) Face position detector and fabrication of device employing it
US6023321A (en) Projection exposure apparatus and method
JPH0926554A (en) Projection aligner
JPH06118338A (en) Optical device
KR20210035181A (en) Method and device for determining the heating state of an optical element in an optical system for microlithography
CN117859100A (en) Heating device and method for heating an optical element
JP2000156337A (en) Position sensing method and apparatus, and method and apparatus of projection exposure, and manufacture of device
JPH11238666A (en) X-ray projection aligner
JP3316694B2 (en) Projection exposure apparatus and transfer method
JP2003045793A (en) Wavefront aberration measurement method, adjustment and exposure methods of projection optical system, and manufacturing method of aligner
US6765649B2 (en) Exposure apparatus and method
JP3143514B2 (en) Surface position detecting apparatus and exposure apparatus having the same
JP4055471B2 (en) Optical apparatus, position detection apparatus, exposure apparatus, and microdevice manufacturing method
JP2006078262A (en) Position detection device, exposure device, measuring system and position detection method
JP3313932B2 (en) Projection exposure equipment
JP3352161B2 (en) Exposure apparatus and method of manufacturing semiconductor chip using the same
JP2780302B2 (en) Exposure equipment
JP2000133562A (en) Reduction stepper