JPH06118306A - Reading method of optical storage device - Google Patents

Reading method of optical storage device

Info

Publication number
JPH06118306A
JPH06118306A JP26440892A JP26440892A JPH06118306A JP H06118306 A JPH06118306 A JP H06118306A JP 26440892 A JP26440892 A JP 26440892A JP 26440892 A JP26440892 A JP 26440892A JP H06118306 A JPH06118306 A JP H06118306A
Authority
JP
Japan
Prior art keywords
data
optical system
recording medium
dimensional
recorded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26440892A
Other languages
Japanese (ja)
Inventor
Satoshi Kawada
聡 河田
Yoshimasa Kawada
善正 川田
Yoshizo Hashimoto
佳三 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SENRI OYO KEISOKU KENKYUSHO KK
Original Assignee
SENRI OYO KEISOKU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SENRI OYO KEISOKU KENKYUSHO KK filed Critical SENRI OYO KEISOKU KENKYUSHO KK
Priority to JP26440892A priority Critical patent/JPH06118306A/en
Publication of JPH06118306A publication Critical patent/JPH06118306A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To read three-dimensionally recorded data by a simple optical system without any interference between data by providing a two-dimensional photoelectric detectors which detects an image observed through a transmission type microscope optical system. CONSTITUTION:The light from a surface light source 1 is converged by a condenser lens 2 to light a medium 3 where data are recorded. A data image in a photopolymer is formed on the two-dimensional photoelectric detector 5 such as an objective 5 and a CCD. The detector reads all data in the visual field on a focal plane at a time by a two-dimensional detector such as a photoelectric detector. When an optical system is so adjusted that one data correspond to one pixel of the photoelectric detector, data of 250 Kbits can be read out at a time by using a two-dimensional photoelectric detector which has 512X512 pixels. The recording medium is scanned in an X-Y direction to read data in other areas on the same plane. Data recorded in respective depth-directional layers can be read out by moving a movable stage in a Z direction for scanning.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、記録媒体内の屈折率変
化によってデータを3次元的に記録する記録装置におい
て、記録データの光学的に読み出し装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical reading device for recording data in a recording device for three-dimensionally recording data by changing a refractive index in a recording medium.

【0002】[0002]

【従来の技術、その問題点】近年のコンピューターの高
機能化や情報の多次元化に伴い、大容量データの記録装
置が必要になり、コンパクトディスク、光磁気ディスク
など大容量を持つ記録装置が開発されている。しかし、
これらの光学的記憶装置では単位面積あたりの記録密度
は使用するレーザー光とレンズの開口によって決まる集
光スポット径の大きさで制限されるので、記録容量を飛
躍的に向上させることは困難であった。
2. Description of the Related Art As computers have become more sophisticated and information has become more multidimensional in recent years, large-capacity data recording devices have become necessary. Being developed. But,
In these optical storage devices, the recording density per unit area is limited by the size of the focused spot diameter determined by the laser light used and the aperture of the lens, so it is difficult to dramatically improve the recording capacity. It was

【0003】光学的記憶装置において、より大きな記録
容量を実現するには、データを2次元平面内だけでな
く、奥行き方向(光軸方向)にも記録し、3次元構造を
持つ光学的記憶装置を実現すればよい。
In order to realize a larger recording capacity in the optical storage device, the optical storage device has a three-dimensional structure in which data is recorded not only in the two-dimensional plane but also in the depth direction (optical axis direction). Should be realized.

【0004】記録媒体に一点ずつデータを書き込む3次
元光学的記憶が、いくつか提案されている(D. A. Parth
enopoulos and P. M. Rentzepis: Science Vol. 245, 8
43-844, 1989; S. Hunteer, F. Kiamilev, S. Esener,
D. A. Parthenopoulos, andP. M. Rentzepis: Appl. Op
t. Vol. 29, 2058-2066, 1990; J. H. Strickler and
W. W. Webb: Opt. Lett. Vol. 16, 1780-1782, 1991)。
この記憶方法は、二光子吸収が光強度の2乗に比例して
生じることを利用して、フォトポリマー中にデータを書
き込むものである。まず、記憶媒体であるフォトポリマ
ーにレーザー光を集光する。二光子吸収は光強度の2乗
に比例して生じるので、レーザー光強度の大きな焦点付
近でのみ二光子吸収が生じ、フォトポリマーの結合状態
が変化する。このフォトポリマーの構造変化によって、
レーザー焦点付近のみの屈折率が変化する。ポリマーを
3次元的に走査して、データを3次元的に一点ずつ記録
する。このようにデータを3次元的に一点ずつ記録する
と大容量の光メモリが実現できる。
Several three-dimensional optical memories for writing data one by one on a recording medium have been proposed (DA Parth
enopoulos and PM Rentzepis: Science Vol. 245, 8
43-844, 1989; S. Hunteer, F. Kiamilev, S. Esener,
DA Parthenopoulos, and P. M. Rentzepis: Appl. Op
t. Vol. 29, 2058-2066, 1990; JH Strickler and
WW Webb: Opt. Lett. Vol. 16, 1780-1782, 1991).
This storage method writes data in a photopolymer by utilizing the fact that two-photon absorption occurs in proportion to the square of the light intensity. First, laser light is focused on a photopolymer that is a storage medium. Since the two-photon absorption occurs in proportion to the square of the light intensity, the two-photon absorption occurs only near the focal point where the laser light intensity is large, and the bonding state of the photopolymer changes. Due to the structural change of this photopolymer,
The refractive index changes only near the laser focus. The polymer is scanned in three dimensions and the data is recorded point by point in three dimensions. In this way, by recording the data three-dimensionally point by point, a large capacity optical memory can be realized.

【0005】記録媒体内に3次元的に記録されたデータ
を読みだす方法としては、共焦点光学系を用いた方法が
提案されている(橋本・川田・河田: 光学連合シンポジ
ウム京都講演予稿集 p. 39-40, 1992)。しかし、共焦点
光学系は、光学系の調整が困難であり、装置が高かにな
るという問題がある。
A method using a confocal optical system has been proposed as a method for reading out three-dimensionally recorded data in a recording medium (Hashimoto, Kawata, Kawada: Proceedings of Kyoto Symposium on Optical Union Symposium p. 39-40, 1992). However, the confocal optical system has a problem in that the adjustment of the optical system is difficult and the device becomes expensive.

【0006】[0006]

【発明が解決しようとする課題】本発明は、記録媒体内
に3次元的に記録されたデータの読み出し方法をデータ
間の干渉なく簡単な光学系で実現することを課題とす
る。
SUMMARY OF THE INVENTION It is an object of the present invention to realize a method for reading out three-dimensionally recorded data in a recording medium with a simple optical system without interference between data.

【0007】[0007]

【課題を解決するための手段】本発明は、記録媒体内に
3次元的に記録されたデータを、インコヒーレント照明
系を有する透過型顕微鏡光学系、もしくは位相差顕微鏡
光学系を用いて読み出すことを特徴とする。
According to the present invention, data recorded three-dimensionally in a recording medium is read using a transmission microscope optical system having an incoherent illumination system or a phase contrast microscope optical system. Is characterized by.

【0008】[0008]

【作用】本発明では、記録媒体内に3次元的にデータを
記録する記録装置において、記録媒体の屈折率変化によ
って記録されたデータを光学的に読み出す方法として、
インコヒーレント照明系を有する透過型顕微鏡光学系、
もしくは位相差顕微鏡光学系を用いる。前者の読み出し
光学系では、インコヒーレント照明系と少なくとも一個
の対物レンズを有する透過型顕微鏡光学系を構成する。
後者の読み出し光学系では、部分コヒーレントな光源を
有する位相差顕微鏡光学系を構成する。
According to the present invention, as a method for optically reading data recorded by a change in the refractive index of the recording medium in a recording apparatus for recording data three-dimensionally in the recording medium,
Transmission microscope optical system with incoherent illumination system,
Alternatively, a phase contrast microscope optical system is used. The former readout optical system constitutes a transmission microscope optical system having an incoherent illumination system and at least one objective lens.
The latter reading optical system constitutes a phase contrast microscope optical system having a partially coherent light source.

【0009】インコヒーレント照明系を有する透過型顕
微鏡光学系で、記録媒体内に屈折率変化として記録され
たデータを読み出す原理を示す。まず、フォトリフラク
ティブ結晶などを記録媒体に用いたときのように、記録
媒体内に形成される屈折率変化が小さい場合の読み出し
原理について説明する。
A principle of reading data recorded as a change in refractive index in a recording medium in a transmission microscope optical system having an incoherent illumination system will be described. First, the reading principle when the change in the refractive index formed in the recording medium is small, as in the case where a photorefractive crystal or the like is used in the recording medium, will be described.

【0010】記録媒体内に記録データとして形成される
屈折率変化は、色々な周期を持つ正弦状位相格子の重ね
合わせと考えられる。そのうち一つの位相格子に照明光
が入射すると、この位相格子によって回折され、0次光
(透過光)と回折光を生じる。位相格子の屈折率変化が
小さい場合、高次回折光は無視でき、0次回折光がそれ
ぞれ+1次回折光と−1次回折光と形成する二つの干渉
縞で位相物体の像が、検出が設置されている像面の位置
に形成される。+1次回折光と−1次回折光とが形成す
る干渉縞は振幅が小さいので無視できる。0次回折光と
±1次回折光との干渉による二つの干渉縞は、対物レン
ズの焦点面でちょうど位相が180度ずれているので、光
の強度分布は一様になる。よって位相格子の像は観測さ
れない。一方焦点面からずれた位置で位相格子の「ぼけ
像」を観察すると、前記の二つの干渉縞の位相のずれは
180度でなくなり、位相格子の像が観察できる。これ
は、位相格子が多数存在する場合も、同じように焦点位
置をずらすことによりそれぞれの位相格子の像が観察で
きる。したがって、屈折率変化として記録されたデータ
の像が、デフォーカスすることにより観察でき、データ
を読みだせる。デフォーカス量が大きくなると、データ
像のぼけが大きくなり、データ像はコントラストを失
う。そのため、3次元的に記録されたデータを読みだす
ことができる。
The change in the refractive index formed as recording data in the recording medium is considered to be the superposition of sinusoidal phase gratings having various periods. When the illumination light enters one of the phase gratings, it is diffracted by this phase grating to generate 0th order light (transmitted light) and diffracted light. When the change in the refractive index of the phase grating is small, the high-order diffracted light can be ignored, and the image of the phase object is detected by the two interference fringes formed by the 0th-order diffracted light and the + 1st-order diffracted light and the −1st-order diffracted light, respectively. It is formed at the position of the image plane. The interference fringe formed by the + 1st-order diffracted light and the -1st-order diffracted light has a small amplitude and can be ignored. The two interference fringes due to the interference between the 0th-order diffracted light and the ± 1st-order diffracted lights are exactly 180 degrees out of phase with each other in the focal plane of the objective lens, so that the light intensity distribution is uniform. Therefore, the image of the phase grating is not observed. On the other hand, when observing the "blurred image" of the phase grating at a position shifted from the focal plane, the phase shift of the above two interference fringes is
It is not 180 degrees and the image of the phase grating can be observed. Even if there are many phase gratings, the image of each phase grating can be observed by shifting the focus position in the same manner. Therefore, the image of the data recorded as the change in the refractive index can be observed by defocusing and the data can be read. When the defocus amount increases, the blur of the data image increases, and the data image loses contrast. Therefore, the three-dimensionally recorded data can be read out.

【0011】次に、フォトポリマーなどのように生じる
屈折率変化が大きい場合のデータの読み出し原理につい
て説明する。位相格子の屈折率変化が大きくなると、±
2次以上の回折光を無視できなくなる。これらの回折光
が像面で、干渉し位相物体の像を形成する。そのため、
高次回折光も像面で干渉縞を作り、像を作る。この場合
でも、全ての高次回折光を集光し、像を形成すれば、前
記の屈折率変化が小さい場合と同様に像は一様になり、
位相格子の像は観察されない。しかし、実際の光学系で
は、全ての高次回折光を対物レンズの瞳を通過させるこ
とはできず、像の形成に関与させることはできない。そ
のため、焦点面に明暗の像が形成される。したがって、
データを記録した領域での屈折率変化が大きい場合に
は、位相格子の構造はデフォーカスしなくても、透過型
顕微鏡光学系により観察できる。したがって、データを
記録した領域の屈折率変化が大きい場合も、透過顕微鏡
光学系を用いてデータを読みだせる。
Next, the principle of reading data in the case where the change in refractive index caused by photopolymer is large will be described. When the refractive index change of the phase grating becomes large, ±
The second or higher order diffracted light cannot be ignored. These diffracted lights interfere at the image plane to form an image of the phase object. for that reason,
High-order diffracted light also forms an interference fringe on the image plane to form an image. Even in this case, if all high-order diffracted light is collected and an image is formed, the image becomes uniform as in the case where the change in the refractive index is small,
No image of the phase grating is observed. However, in an actual optical system, all higher-order diffracted light cannot pass through the pupil of the objective lens and cannot be involved in image formation. Therefore, a bright and dark image is formed on the focal plane. Therefore,
When the change in the refractive index in the area where the data is recorded is large, the structure of the phase grating can be observed by the transmission microscope optical system without defocusing. Therefore, even if the change in the refractive index of the area where the data is recorded is large, the data can be read using the transmission microscope optical system.

【0012】本発明では、インコヒーレント照明を用い
る。コヒーレント照明でも、記録されたデータの像を読
みだせる。しかし、コヒーレント照明では、焦点深度が
大きくなり、3次元的に記録されたデータの奥行き方向
(光軸方向)の分解が得られない。インコヒーレント照
明では、光学系の焦点深度が浅く、他層のデータ像は焦
点面に存在するデータの像に重ならず、干渉なく一層の
みのデータの読み出しができる。
In the present invention, incoherent illumination is used. Even with coherent illumination, you can read the image of the recorded data. However, with coherent illumination, the depth of focus becomes large, and the resolution of the three-dimensionally recorded data in the depth direction (optical axis direction) cannot be obtained. In incoherent illumination, the depth of focus of the optical system is shallow, and the data image of the other layer does not overlap the image of the data existing on the focal plane, and only one layer of data can be read out without interference.

【0013】位相差顕微鏡光学系によって位相物体を観
察できる事は、Zernik により提案、解析されている(F.
Zernike: Z. Tech. Phys. Vol. 16, 454-457, 1935)。
位相差顕微鏡光学系を用いて、位相物体を観察したとき
の顕微鏡の結像特性は、通常の透過型顕微鏡光学系を用
いて、吸収物体を観察したときと同様の結像特性が得ら
れる。3次元データを位相差顕微鏡光学系を用いて観察
した場合には、焦点面以外のデータ像はぼける。つま
り、位相差顕微鏡光学系は奥行き分解能を有し、3次元
的に記録したデータを読みだすことができる。
The fact that a phase object can be observed with a phase contrast microscope optical system has been proposed and analyzed by Zernik (F.
Zernike: Z. Tech. Phys. Vol. 16, 454-457, 1935).
The imaging characteristics of the microscope when observing a phase object using the phase contrast microscope optical system are similar to those when observing an absorbing object using a normal transmission microscope optical system. When the three-dimensional data is observed using the phase contrast microscope optical system, the data image other than the focal plane is blurred. That is, the phase contrast microscope optical system has a depth resolution and can read out three-dimensionally recorded data.

【0014】[0014]

【実施例】本発明の透過型顕微鏡光学系をもちいたデー
タ読み出しの実施例を第1図に示す。この光学系は、イ
ンコヒーレントな面光源(1)、コンデンサーレンズ
(2)、屈折率変化としてデータを記録した記録媒体
(3)、3次元可動ステージ(4)、対物レンズ
(5)、CCD などの光電検出器などの2次元検出器
(6)によって構成される。光源にはタングステンラン
プ、ハロゲンランプ、キセノンランプなどの面光源を用
いる。面光源(1)からの光をコンデンサーレンズ
(2)で集光し、データの記録された媒体(3)を照明
する。この実施例では、データの記録媒体としてフォト
ポリマーを用いる。フォトポリマー内のデータ像を、対
物レンズ(5)でCCDなどの2次元光電検出器(6)
上に結像する。
FIG. 1 shows an example of data reading using the transmission microscope optical system according to the present invention. This optical system includes an incoherent surface light source (1), a condenser lens (2), a recording medium (3) on which data is recorded as a change in refractive index, a three-dimensional movable stage (4), an objective lens (5), a CCD, etc. It is composed of a two-dimensional detector (6) such as a photoelectric detector. A surface light source such as a tungsten lamp, a halogen lamp, or a xenon lamp is used as a light source. The light from the surface light source (1) is condensed by the condenser lens (2) to illuminate the medium (3) on which data is recorded. In this embodiment, a photopolymer is used as a data recording medium. A two-dimensional photoelectric detector (6) such as a CCD for the data image in the photopolymer with the objective lens (5)
Image on top.

【0015】検出器には光電検出器などの2次元検出器
を用いているので、焦点面の視野内の全データを一度に
読み取ることができる。光電検出器の1画素に1データ
が対応するように光学系を調整すると、512 x 512 の画
素数の2次元光電検出器を用いた場合には、250 キロビ
ットのデータを一度に読みだせる。記録媒体をx−y方
向(面内方向)に走査して、同じ面内に存在する他の領
域のデータを読みだす。奥行き方向の各層に記録された
データは、可動ステージをz方向(光軸方向)に走査す
ることにより読みだす。
Since a two-dimensional detector such as a photoelectric detector is used as the detector, all data in the field of view of the focal plane can be read at once. If the optical system is adjusted so that one pixel corresponds to one pixel of the photoelectric detector, when a two-dimensional photoelectric detector having 512 × 512 pixels is used, 250 kilobits of data can be read at one time. The recording medium is scanned in the xy directions (in-plane directions) to read the data in other areas existing in the same plane. The data recorded on each layer in the depth direction is read by scanning the movable stage in the z direction (optical axis direction).

【0016】第2図に前記実施例によってデータを読み
出した実験例を示す。(a), (b) はそれぞれ、左側がフ
ォトポリマー中に記録したデータのパターン、右がそれ
を本発明による透過型顕微鏡光学系で読み出した結果で
ある。(a), (b)は、奥行き方向に11層に記録されたデー
タのうち6層目と11層目を読み出した結果である。読み
出したデータの各層上の白く丸いスポットが、記録され
ている1ビットデータである。面内のデータ間隔は3マ
イクロメートル、奥行き方向の各層の間隔は20マイク
ロメートルである。各層のデータが他の層のデータの影
響を受けることなく、コントラストよく読み出せている
ことがわかる。第3図に透過型顕微鏡光学系を用いた他
のの実施例を示す。本光学系は、レーザー光源(7)、
対物レンズ(5)、データの記録媒体(3)、3次元可
動ステージ(4)、コンデンサーレンズ(2)、面検出
(8)によって構成される。
FIG. 2 shows an experimental example in which data is read according to the above embodiment. In each of (a) and (b), the left side is a pattern of data recorded in the photopolymer, and the right side is a result obtained by reading it with the transmission microscope optical system according to the present invention. (a) and (b) are the results of reading the sixth and eleventh layers of the data recorded in the eleventh layer in the depth direction. The white and round spots on each layer of the read data are the recorded 1-bit data. The in-plane data spacing is 3 micrometers, and the spacing between layers in the depth direction is 20 micrometers. It can be seen that the data of each layer can be read with good contrast without being affected by the data of the other layers. FIG. 3 shows another embodiment using a transmission microscope optical system. This optical system consists of a laser light source (7),
It is composed of an objective lens (5), a data recording medium (3), a three-dimensional movable stage (4), a condenser lens (2), and a surface detection (8).

【0017】レーザー光源(7)からの光を対物レンズ
(5)によってデータの記録媒体内の1点に集光する。
記録媒体からの透過光および回折光はコンデンサーレン
ズ(2)によって集光され、空間分解を持たない面検出
(8)で強度を検出される。
The light from the laser light source (7) is focused on one point in the data recording medium by the objective lens (5).
The transmitted light and diffracted light from the recording medium are condensed by the condenser lens (2), and the intensity is detected by the surface detection (8) having no spatial resolution.

【0018】3次元的に記録されたデータを読みだすに
は、記録媒体を3次元的に走査する。この実施例では、
記録媒体の走査は3次元可動ステージ(4)によって行
なう。本実施例の光学系では、コヒーレント光源である
レーザーを用いるにもかかわらず、インコヒーレント照
明系を有する透過型顕微鏡光学系の結像特性と等価にな
る(河田 聡、南 茂夫: 光学 Vol. 18, 380-391, 199
2)。そのため、本レーザー走査顕微鏡光学系でも3次
元的に記録されたデータを読みだすことができる。
To read the three-dimensionally recorded data, the recording medium is three-dimensionally scanned. In this example,
The recording medium is scanned by the three-dimensional movable stage (4). In the optical system of the present embodiment, even though the laser which is the coherent light source is used, it is equivalent to the imaging characteristic of the transmission microscope optical system having the incoherent illumination system (Satoshi Kawada, Shigeo Minami: Optics Vol. 18). , 380-391, 199
2). Therefore, the laser scanning microscope optical system can read out the three-dimensionally recorded data.

【0019】本実施例では、検出器に空間分解を持たな
い面検出器を用いることができる。そのため検出器には
光電子増倍管などの高感度検出器を用いる事ができる。
よって、データ像の屈折率変化が非常に小さいときで
も、高感度でデータを読みだすことができる。また、レ
ーザー走査顕微鏡では、照明光を試料の一点に集中して
照射するため、それ以外の場所からの散乱光がなく、デ
ータをコントラストよく読みだせる。
In this embodiment, a surface detector having no spatial decomposition can be used as the detector. Therefore, a high sensitivity detector such as a photomultiplier tube can be used as the detector.
Therefore, even when the change in the refractive index of the data image is very small, the data can be read out with high sensitivity. Further, in the laser scanning microscope, since the illumination light is focused and irradiated on one point of the sample, there is no scattered light from other places, and the data can be read with good contrast.

【0020】本実施例では、3次元に移動可能なステー
ジを用いて走査顕微鏡を実現したが、ガルバノミラー、
ポリゴンミラー、光音響素子などを用いて、ビームを焦
点面内で走査してもよい。ビームを走査すれば、高速な
データの読み出しが可能である。
In this embodiment, a scanning microscope is realized by using a stage that can move in three dimensions.
The beam may be scanned in the focal plane using a polygon mirror, a photoacoustic element, or the like. High-speed data reading is possible by scanning the beam.

【0021】第4図に位相差顕微鏡光学系を用いたデー
タの読み出しの実施例を示す。この光学系は、面光源
(1)、コレクターレンズ(9)、リングスリット(1
0)、コンデンサーレンズ(2)、データの記録媒体
(3)、3次元可動ステージ(4)、対物レンズ
(5)、位相板(11)、2次元検出器(6)によって
構成される。
FIG. 4 shows an embodiment of data reading using a phase contrast microscope optical system. This optical system includes a surface light source (1), a collector lens (9), and a ring slit (1).
0), a condenser lens (2), a data recording medium (3), a three-dimensional movable stage (4), an objective lens (5), a phase plate (11), and a two-dimensional detector (6).

【0022】インコヒーレントな面光源(1)からの光
はコレクターレンズ(9)により、リングスリット(1
0)上に集められる。リングスリット(10)を透過し
た光は、コンデンサーレンズ(2)によってデータの記
録媒体(3)を照明する。データの記録媒体に入射した
光は、記録媒体内の屈折率変化により、回折され、透過
光と回折光とに分れる。透過光と回折光は、対物レンズ
(5)を通過後、位相板(11)に入射する。この位相
板には、ちょうどリングスリットの像のできる位置に薄
膜で作った位相膜と吸収膜が蒸着されており、透過光と
回折光との間に90度の相対的位相差を与える。位相板
を通過した透過光と回折光は、像面で干渉し、記録媒体
内のある一層のデータ像を形成する。このデータ像を2
次元検出器6で検出し、データの読み出しを行なう。奥
行き方向に記録されたデータは、記録媒体を光軸方向に
走査して読みだす。この読み出し方法でも視野内の全デ
ータを一度に読みだせる。3次元可動ステージをx−y
方向(面内)にも走査して、視野を変化させてデータを
読み出す。
Light from the incoherent surface light source (1) is passed through the collector lens (9) to the ring slit (1
0) Collected on. The light transmitted through the ring slit (10) illuminates the data recording medium (3) by the condenser lens (2). The light incident on the data recording medium is diffracted by the change in the refractive index in the recording medium, and is divided into transmitted light and diffracted light. The transmitted light and the diffracted light enter the phase plate (11) after passing through the objective lens (5). On this phase plate, a phase film made of a thin film and an absorption film are vapor-deposited at a position where an image of a ring slit is just formed, and a relative phase difference of 90 degrees is given between transmitted light and diffracted light. The transmitted light and the diffracted light that have passed through the phase plate interfere with each other on the image plane to form a certain data image in the recording medium. This data image is 2
The dimension detector 6 detects and reads the data. The data recorded in the depth direction is read by scanning the recording medium in the optical axis direction. Even with this reading method, all the data in the field of view can be read at once. 3D movable stage xy
The data is read by changing the field of view by scanning in the direction (in-plane).

【0023】第5図に位相差顕微鏡光学系を用いた他の
実施例を示す。この光学系は、レーザー(7)、位相差
対物レンズ(12)、データ記録媒体(3)、3次元可
動ステージ(4)、点検出器(13)によって構成され
る。レーザー(7)からの光を位相差対物レンズ(1
2)を通して集光し、データの記録媒体(3)上の一点
を照明する。記録媒体(3)を透過、散乱した光は、点
検出器(13)によりコヒーレント検出される。記録媒
体を3次元的に走査し、3次元的に記録されたデータを
読みだす。点検出器(13)はピンホールと面検出器の
組み合わせでもよい。
FIG. 5 shows another embodiment using a phase contrast microscope optical system. This optical system includes a laser (7), a phase difference objective lens (12), a data recording medium (3), a three-dimensional movable stage (4), and a point detector (13). The light from the laser (7) is transmitted through the phase difference objective lens (1
The light is focused through 2) and one point on the data recording medium (3) is illuminated. The light transmitted and scattered through the recording medium (3) is coherently detected by the point detector (13). The recording medium is three-dimensionally scanned, and the three-dimensionally recorded data is read out. The point detector (13) may be a combination of a pinhole and a surface detector.

【0024】本光学系を用いると、図3の実施例と同様
に空間分解能を持たない検出器を用いることができるの
で、光電子増倍管などの高感度検出器を用いることがで
きる。そのため、高感度なデータの読み出しが可能であ
る。また、記録媒体の一点のみを照明するので、それ以
外の場所からの散乱光がなく、コントラストの高い読み
出し像が得られる。
With this optical system, a detector having no spatial resolution can be used as in the embodiment of FIG. 3, so that a high-sensitivity detector such as a photomultiplier can be used. Therefore, highly sensitive data can be read. Further, since only one point of the recording medium is illuminated, there is no scattered light from other places, and a read image with high contrast can be obtained.

【0025】焦点面内(x−y)の走査は、ガルバノミ
ラー、ポリゴンミラー、光音響素子などを用いて、ビー
ムを走査してもよい。ビームを走査することにより高速
に記録媒体内の3次元データを読みだせる。
For scanning in the focal plane (xy), a beam may be scanned using a galvano mirror, a polygon mirror, a photoacoustic element, or the like. By scanning the beam, the three-dimensional data in the recording medium can be read at high speed.

【0026】[0026]

【発明の効果】屈折率変化としてデータが3次元的に記
録された媒体から、データの読み出しのできる光学的記
憶装置を実現することによって、大容量の光メモリーを
実現することができる。
As described above, a large-capacity optical memory can be realized by realizing an optical storage device capable of reading data from a medium in which data is three-dimensionally recorded as a change in refractive index.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明におけるデータ読み出しの透過型顕微鏡
光学系の実施例を示す説明図である。
FIG. 1 is an explanatory diagram showing an example of a transmission type microscope optical system for reading data according to the present invention.

【図2】前記実施例を用いて3次元的に記録されたデー
タを読み出した結果の一例である。
FIG. 2 is an example of a result of reading three-dimensionally recorded data using the above-described embodiment.

【図3】本発明におけるデータ読み出しの他の透過型顕
微鏡光学系実施例の説明図である。
FIG. 3 is an explanatory diagram of another embodiment of a transmission microscope optical system for reading data according to the present invention.

【図4】位相差顕微鏡光学系を用いたデータ読み出し装
置の実施例の説明図である。
FIG. 4 is an explanatory diagram of an embodiment of a data reading device using a phase contrast microscope optical system.

【図5】位相差顕微鏡光学系を用いたデータ読み出し装
置の他の実施例の説明図である。
FIG. 5 is an explanatory diagram of another embodiment of a data reading device using a phase contrast microscope optical system.

【符号の説明】[Explanation of symbols]

1 面光源 2 コンデンサーレンズ 3 データの記録された記録媒体 4 3次元走査ステージ 5 対物レンズ 6 2次元検出器 7 レーザー光源 8 面検出器 9 コレクターレンズ 10 リングスリット 11 位相板 12 位相差対物レンズ 13 点検出器 1 surface light source 2 condenser lens 3 recording medium on which data is recorded 4 three-dimensional scanning stage 5 objective lens 6 two-dimensional detector 7 laser light source 8 surface detector 9 collector lens 10 ring slit 11 phase plate 12 phase difference objective lens 13 inspection Ejector

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 記録媒体の局所的な屈折率変化によって
記録媒体内にデータを3次元的に記録する記録装置にお
いて、 インコヒーレント光源と、 前記インコヒーレント光源を照明光とする透過型顕微鏡
光学系と、 前記3次元的にデータを記録した記録媒体をその深さ方
向に試料を走査するステージと、 前記透過型顕微鏡光学系で観測される像を検出する2次
元光電検出器とを有することを特徴とする3次元データ
読み取り方法。
1. A recording apparatus for three-dimensionally recording data in a recording medium by locally changing the refractive index of the recording medium, comprising: an incoherent light source; and a transmission microscope optical system using the incoherent light source as illumination light. And a stage that scans the sample in the depth direction of the recording medium in which the data is three-dimensionally recorded, and a two-dimensional photoelectric detector that detects an image observed by the transmission microscope optical system. Characteristic three-dimensional data reading method.
【請求項2】 前記透過型顕微鏡光学系は、少なくとも
位相差対物レンズを有する位相差顕微鏡光学系である請
求項1記載の3次元データ読み取り方法。
2. The three-dimensional data reading method according to claim 1, wherein the transmission microscope optical system is a phase contrast microscope optical system having at least a phase difference objective lens.
【請求項3】 前記データを3次元的に記録する記録装
置において、 レーザー光源と、 前記レーザー光源を照明光源とするレーザー走査顕微鏡
タイプ1光学系と、 前記記憶媒体内で前記レーザー走査顕微鏡タイプ1光学
系の焦点スポットを3次元に走査する走査機構と、 前記記憶媒体からの散乱光を検出する面光電検出器とを
有することを特徴とする3次元データ読み取り方法。
3. A recording apparatus for recording the data three-dimensionally, comprising: a laser light source; a laser scanning microscope type 1 optical system using the laser light source as an illumination light source; and the laser scanning microscope type 1 in the storage medium. A three-dimensional data reading method, comprising: a scanning mechanism for three-dimensionally scanning a focal spot of an optical system; and a surface photoelectric detector for detecting scattered light from the storage medium.
JP26440892A 1992-10-02 1992-10-02 Reading method of optical storage device Pending JPH06118306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26440892A JPH06118306A (en) 1992-10-02 1992-10-02 Reading method of optical storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26440892A JPH06118306A (en) 1992-10-02 1992-10-02 Reading method of optical storage device

Publications (1)

Publication Number Publication Date
JPH06118306A true JPH06118306A (en) 1994-04-28

Family

ID=17402750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26440892A Pending JPH06118306A (en) 1992-10-02 1992-10-02 Reading method of optical storage device

Country Status (1)

Country Link
JP (1) JPH06118306A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6545971B1 (en) 1999-01-27 2003-04-08 Kabushiki Kaisha Toshiba Information recording/reproducing system for recording/reproducing information in three-dimensional recording medium of a light passing-through type
WO2004107040A1 (en) * 2003-05-28 2004-12-09 Matsushita Electric Industrial Co., Ltd. Information recording medium and its manufacturing method, recording/reproducing method, and optical information recording/reproducing device
US7006425B1 (en) 1998-11-30 2006-02-28 Kabushiki Kaisha Toshiba Information recording and/or reproducing method and apparatus for three dimensional optical recording medium
WO2009001736A1 (en) 2007-06-28 2008-12-31 Ricoh Company, Ltd. Photosensitized composite material, three-dimensional memory material and recording medium, optical power limiting material and element, photocuring material and stereolithography system, and fluorescent material for multiphoton fluorescence microscope and multiphoton fluorescence microscope
US7531667B2 (en) 2003-07-18 2009-05-12 Fujifilm Corporation Two-photon absorption dye-containing material, three-dimensional refractive index modulation material, three-dimensional absorption index modulation material and three-dimensional optical recording material
US7582391B2 (en) 2004-09-10 2009-09-01 Fujifilm Corporation Two-photon absorption decolorizable material, two-photon absorption refractive index modulation material, two-photon absorption polymerization material, two-photon absorption polymerization method and three-dimensional optical recording material
EP2159227A1 (en) 2008-08-26 2010-03-03 Ricoh Company, Ltd. Two-photon absorption material and application thereof
EP2180467A1 (en) 2003-06-27 2010-04-28 Fujifilm Corporation Photon-mode recording method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7006425B1 (en) 1998-11-30 2006-02-28 Kabushiki Kaisha Toshiba Information recording and/or reproducing method and apparatus for three dimensional optical recording medium
US6545971B1 (en) 1999-01-27 2003-04-08 Kabushiki Kaisha Toshiba Information recording/reproducing system for recording/reproducing information in three-dimensional recording medium of a light passing-through type
WO2004107040A1 (en) * 2003-05-28 2004-12-09 Matsushita Electric Industrial Co., Ltd. Information recording medium and its manufacturing method, recording/reproducing method, and optical information recording/reproducing device
JPWO2004107040A1 (en) * 2003-05-28 2006-07-20 松下電器産業株式会社 Information recording medium, manufacturing method thereof, recording / reproducing method, and optical information recording / reproducing apparatus
EP2180467A1 (en) 2003-06-27 2010-04-28 Fujifilm Corporation Photon-mode recording method
US7531667B2 (en) 2003-07-18 2009-05-12 Fujifilm Corporation Two-photon absorption dye-containing material, three-dimensional refractive index modulation material, three-dimensional absorption index modulation material and three-dimensional optical recording material
US7582391B2 (en) 2004-09-10 2009-09-01 Fujifilm Corporation Two-photon absorption decolorizable material, two-photon absorption refractive index modulation material, two-photon absorption polymerization material, two-photon absorption polymerization method and three-dimensional optical recording material
WO2009001736A1 (en) 2007-06-28 2008-12-31 Ricoh Company, Ltd. Photosensitized composite material, three-dimensional memory material and recording medium, optical power limiting material and element, photocuring material and stereolithography system, and fluorescent material for multiphoton fluorescence microscope and multiphoton fluorescence microscope
US8192917B2 (en) 2007-06-28 2012-06-05 Ricoh Company, Ltd. Material for multiphoton fluorescence microscope and multiphoton fluorescence microscope
EP2159227A1 (en) 2008-08-26 2010-03-03 Ricoh Company, Ltd. Two-photon absorption material and application thereof
US8207330B2 (en) 2008-08-26 2012-06-26 Ricoh Company, Ltd. Two-photon absorption material and application thereof

Similar Documents

Publication Publication Date Title
US6376818B1 (en) Microscopy imaging apparatus and method
JP2968080B2 (en) High resolution optical microscope and mask for creating irradiation spot light
US20040027629A1 (en) Rotation correlation multiplex holography
JPH07501168A (en) Recording and reproducing method of 3D optical data
JPH0695038A (en) Ultra resolution scanning optical device, and light source device for ultra resolution of optical device and filter for ultra resolution of optical device
KR20010083041A (en) Methods and apparatus for confocal interference microscopy using wavenumber domain reflectometry and background amplitude reduction and compensation
EP0101507A1 (en) Holographic optical processing method and apparatus.
JPH06118306A (en) Reading method of optical storage device
Wilson Three‐dimensional imaging in confocal systems
JPH08152308A (en) Confocal optical apparatus
KR100279035B1 (en) System and method for caring for optical paths using a cylindrical coordinate system to access data locations in a holographic memory
JP4745383B2 (en) Holographic recording device
Kawata et al. Three-dimensional optical data storage using three-dimensional optics
WO2007054885A2 (en) Method and system with focus control for scanning an information carrier
JPH05240628A (en) Pattern inspecting device
JPH05501617A (en) Phase measurement scanning optical microscope
EP0920696B1 (en) Phase-controlled evanescent field systems and methods
JP2506974B2 (en) Robot vision device
EP0475991B1 (en) Scanning optical microscope
US4289372A (en) Technique for recording a hologram suitable for use in optical retrieval system
JP3412840B2 (en) Ultra-high resolution writing / reading method and apparatus for optical recording medium
US20090147269A1 (en) Interferometric nanoimaging system
JPH10103917A (en) Position measuring apparatus
SU960719A1 (en) Device for hologram scanning
JPH05100615A (en) Method and device for hologram reproduction