JPH06118194A - Method for detecting vapor phase, which appears in liquid phase in room, with ultrasonic wave - Google Patents

Method for detecting vapor phase, which appears in liquid phase in room, with ultrasonic wave

Info

Publication number
JPH06118194A
JPH06118194A JP3044596A JP4459691A JPH06118194A JP H06118194 A JPH06118194 A JP H06118194A JP 3044596 A JP3044596 A JP 3044596A JP 4459691 A JP4459691 A JP 4459691A JP H06118194 A JPH06118194 A JP H06118194A
Authority
JP
Japan
Prior art keywords
chamber
ultrasonic
liquid
liquid phase
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3044596A
Other languages
Japanese (ja)
Other versions
JP3041728B2 (en
Inventor
Garnaud Pierre
ピエール・ガルノー
Demarais Raynald
ライノール・デマレ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of JPH06118194A publication Critical patent/JPH06118194A/en
Application granted granted Critical
Publication of JP3041728B2 publication Critical patent/JP3041728B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/032Analysing fluids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2462Probes with waveguides, e.g. SAW devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/34Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
    • G01N29/341Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with time characteristics
    • G01N29/343Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with time characteristics pulse waves, e.g. particular sequence of pulses, bursts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/34Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
    • G01N29/348Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with frequency characteristics, e.g. single frequency signals, chirp signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/36Detecting the response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/40Detecting the response signal, e.g. electronic circuits specially adapted therefor by amplitude filtering, e.g. by applying a threshold or by gain control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/01Indexing codes associated with the measuring variable
    • G01N2291/015Attenuation, scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/024Mixtures
    • G01N2291/02433Gases in liquids, e.g. bubbles, foams
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/102Number of transducers one emitter, one receiver

Landscapes

  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE: To detect a gaseous phase which appears in a liquid phase in a chamber by detecting whole outlet signals of a liquid phase/chamber system and detecting the possible attenuation of the amplitude characteristic of the gaseous phase in the liquid phase by separating an effective part from the signals. CONSTITUTION: A synchronous pulse generator 28 generates pulses 2 and 4. The pulses control a sine wave generator 30 at an ultrasonic frequency and generate wave trains 6 and 8. The wave trains are amplified by means of an amplifier 32 and excite a radiation transducer 34. The ultrasonic wave trains carried to the wall 22 of a steam generator 20 are collected by means of a waveguide 38 and a reception transducer 40. The received wave train IC is amplified 44 after pre-amplification 42. Received composite signals are filtrated to reduce background noise and shaped by means of a shaper 46. Synchronous detection which is delayed by time (t) by a window having a width Δt is synchronized to a synchronization generator 28 and a signal 1f is obtained at the outlet of a synchronous detector 48 and compared with an alarming threshold 18 at a comparator 50. When the peak of a signal 14 received by the comparator 50 is smaller than the threshold 18, the presence of a gaseous phase which attenuates the energy of the ultrasonic wave trains on an ultrasonic route can be inferred.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、室内に入っているかま
たは室内に流入する液体の内部にあり得る気泡の出現を
確認する目的でこのような液相を監視することに関す
る。
FIELD OF THE INVENTION The present invention relates to monitoring such liquid phases for the purpose of identifying the appearance of bubbles which may be inside the liquid entering or entering the chamber.

【0002】[0002]

【従来の技術】この監視の問題は、或る産業分野におい
て、更に精密且つ特徴的には、液体ナトリウムにより冷
却され、蒸気発生器の水が蒸気発生器の管からの水また
は蒸気の漏れに伴いナトリウムと接触するのを可能な限
り速やかに表示するようにした高速中性子炉の蒸気発生
器の場合において発生する。
BACKGROUND OF THE INVENTION The problem of monitoring is, in some industries, more precisely and characteristically, that water in a steam generator cooled by liquid sodium causes water or steam to leak from the tubes of the steam generator. It is generated in the case of a steam generator of a fast neutron reactor, which is designed to indicate contact with sodium as soon as possible.

【0003】事実、ナトリウムの水に対する反応は猛烈
な化学反応であって、水素の泡を生じ、この泡の出現は
他の現象と関連して蒸気発生器の内部に非常に重大な損
傷を生じやすい。したがって一旦この漏れが出現すれ
ば、すなわち水素の泡が蒸気発生器に出現し始めるや否
や、この現象により重大な損傷が生ずる前に、漏れを検
出できることが不可欠である。
In fact, the reaction of sodium with water is a violent chemical reaction that results in the formation of hydrogen bubbles, the appearance of which in association with other phenomena causes very serious damage to the interior of the steam generator. Cheap. It is therefore essential to be able to detect the leak once it appears, ie as soon as hydrogen bubbles begin to appear in the steam generator, before this event causes serious damage.

【0004】これまで従来技術では、液体内の気相の存
在は液体が入っている室の壁に対して必然的に生ずる不
要な信号に影響されないように液体に直接接触して設置
された超音波発信器/受信機システムの助けを借りて検
出されている。これらのシステムについてはフランス特
許FR−A−7337233に述べられている。
Heretofore, in the prior art, the presence of the gas phase in the liquid was placed in direct contact with the liquid so that it was not affected by unwanted signals that would inevitably occur on the wall of the chamber containing the liquid. Detected with the help of a sound wave transmitter / receiver system. These systems are described in French patent FR-A-7337233.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述の
ような方法はトランスジューサを設置することができる
ように液相の入っている室の壁に穴あけしなければなら
ないという重大な欠点を示す。このため構造がこわれや
すくなり、測定点を正確に決めるという事前の位置決め
も必要になる。
The method described above, however, presents a serious drawback in that the wall of the chamber containing the liquid phase must be perforated in order to be able to install the transducer. For this reason, the structure is easily broken, and it is also necessary to perform pre-positioning to accurately determine the measurement point.

【0006】本発明の目的は、室内にあるまたは該室内
に流入する液相内に気相の出現するのを室自身の内部に
侵入せずに超音波検出する方法を提供することである。
It is an object of the present invention to provide a method for ultrasonically detecting the appearance of a gas phase in a liquid phase that is in or flowing into a room without invading the room itself.

【0007】[0007]

【課題を解決するための手段】この方法は、1秒という
極めて短い時間内に、しかも公称出力時の蒸気発生器
の、広帯域背景雑音のような、大量の背景雑音が存在す
る場合にも、設置される二重相を開示することにより簡
単に実施される。
SUMMARY OF THE INVENTION This method provides a very short time of 1 second, even in the presence of large amounts of background noise, such as the broadband background noise of steam generators at nominal power. It is simply implemented by disclosing the installed dual phase.

【0008】この方法は、 −少くとも一つの超音波発信機を用いて、室および液体
から構成される系を通して、20kHzを超える周波数
および約10-3sという短い持続時間および充分な時間
間隔、好ましくは室のそれらの出口で集められる受信信
号が重ならないように約10-1s乃至10-2sを、有す
る波列を通過させること、 −少くとも一つの超音受信機を用いて、液相/室系を通
して伝達された出口信号全体を検出すること、 −この受信した信号全体から液相の通過に対応する有効
部分を分離すること、 −信号のこの有効部分について、液相内に存在する気相
の振幅特性のあり得る減衰を検出すること、 から構成されることを特徴とする。
The method comprises: using at least one ultrasonic transmitter, through a system composed of a chamber and a liquid, frequencies above 20 kHz and short durations of about 10 -3 s and sufficient time intervals; Passing a wave train having preferably about 10 -1 s to 10 -2 s such that the received signals collected at their outlets in the chamber do not overlap, -using at least one ultrasonic receiver, Detecting the entire exit signal transmitted through the liquid / chamber system, -separating the effective part corresponding to the passage of the liquid phase from the whole received signal, -for this effective part of the signal in the liquid phase Detecting possible attenuation of the amplitude characteristic of the existing gas phase.

【0009】後にわかるとおり、本発明の方法は、超音
波のビームが横断する室および室に入っている液体から
成り、1秒につき数回周期的に液相の超音波放射に対す
る透明度を制御する系を備えて構成される。
As will be seen, the method of the present invention comprises a chamber traversed by a beam of ultrasonic waves and a liquid contained in the chamber to control the transparency of the liquid phase to ultrasonic radiation periodically at several times per second. It is configured with a system.

【0010】漏れ、したがってナトリウムの水に対する
反応が存在しない場合には、これはナトリウムで冷却さ
れる原子炉蒸気発生器に関する場合であるが、前述の透
明度は極大である。他方、液体媒質のいずれかの点で二
重相が、すなわち実際上は超音波経路に気泡が、出現す
るや否や、これら泡は直ちにエネルギを喪失し、前述の
透明度がかなり速やかに減少する。
When there is no leakage and therefore sodium reaction to water, this is the case with sodium cooled reactor steam generators, but the transparency mentioned above is maximal. On the other hand, as soon as a dual phase appears at any point in the liquid medium, ie, in effect bubbles in the ultrasonic path, these bubbles immediately lose energy and the aforementioned transparency decreases fairly quickly.

【0011】本発明の方法にしたがって、測定を行う前
に室の壁を突通すことは全く必要なく、また超音波発信
機は、超音波受信機と同様、液相のケースを構成する室
の外側に設置されるので、非侵入式の能動音響検出に関
する。更に、各超音波発信機および受信機は、室の壁の
外面に直接固定することにより室に直接結合することが
でき、または他方、室から一定の距離に設置する、すな
わち室に溶接された導波管により室の壁に接続すること
ができる。
According to the method of the present invention, it is not necessary to penetrate the wall of the chamber before the measurement is carried out, and the ultrasonic transmitter, like the ultrasonic receiver, is of the type of chamber that constitutes the liquid phase case. Since it is installed outside, it relates to non-intrusive active acoustic detection. Furthermore, each ultrasonic transmitter and receiver can be directly coupled to the chamber by fixing it directly to the outer surface of the chamber wall, or, on the other hand, installed at a certain distance from the chamber, ie welded to the chamber. A waveguide can connect to the wall of the chamber.

【0012】出願人は、周波数が20kHzを超え持続
時間が約10-3sで且つ充分な時間間隔(好ましくは1
-1乃至10-2s)を有する超音波源として波列を使用
すれば、室の出口で集められる受信信号の重なりを避け
ることが可能であることを実証した。更に、系の入口に
放射された波列が一定の振幅を有し且つ互いに充分に時
間的に離れていれば、信号が室の出口で受信され、それ
らの信号は各種環境(室、液体、室内部の可能な障害
物、など)における超音波の各種伝ぱん速度のため第1
に時間校正され、第2に各々が系内の特定の超音波経路
に対応する幾つかの異なる振幅ピークを示す。それでこ
れら連続する振幅ピークから信号の有効部分に対応する
もの、すなわち液相を通る超音波の遷移に対応するも
の、を分離するだけで充分である。
The Applicant has found that the frequency is above 20 kHz and has a duration of about 10 -3 s and a sufficient time interval (preferably 1
It has been demonstrated that it is possible to avoid overlapping received signals collected at the exit of the chamber by using a wave train as an ultrasonic source having 0 -1 to 10 -2 s). Furthermore, if the wave trains radiated at the inlet of the system have constant amplitude and are sufficiently temporally separated from each other, signals are received at the outlet of the chamber and these signals are received in different environments (chamber, liquid, First because of various propagation speeds of ultrasonic waves in possible obstacles in the room, etc.)
Second, it exhibits several different amplitude peaks, each corresponding to a particular ultrasonic path in the system. It is then sufficient to separate from these successive amplitude peaks the ones corresponding to the useful part of the signal, ie the ones corresponding to the transitions of the ultrasonic waves through the liquid phase.

【0013】原子炉のナトリウム/水交換蒸気発生器の
特定の場合には、有効成分の前記分離は、系を構成する
下記三つの媒質中の超音波の速度が異なることを利用し
て容易に行うことができる。鋼では6000m/s、ナ
トリウムの中では2200m/s、および水中では15
00m/s。
In the particular case of sodium / water exchange steam generators in nuclear reactors, the separation of the active ingredients is facilitated by the fact that the velocities of the ultrasonic waves in the three media making up the system are different: It can be carried out. 6000 m / s for steel, 2200 m / s in sodium and 15 in water
00 m / s.

【0014】本発明によれば、信号の有効成分の検出
は、各波列の放射開始時期と同期して、ただし液体内の
超音波の遷移の特定の振幅ピークの出現時期に対応する
遅れを有して、行われる。
According to the invention, the detection of the active component of the signal is synchronized with the emission start time of each wave train, but with a delay corresponding to the time of appearance of a particular amplitude peak of the ultrasonic transition in the liquid. Have and be done.

【0015】装置を事前に実験的に校正することにより
各波列の注入開始後の信号の有効部分の出現時期、およ
び第2に、監視を受ける液体に気体を実験的に注入する
ことにより、臨界振幅しきい値、すなわちその値より下
では集められた有効信号が充分広範囲の振幅減衰を示す
ので超音波の経路に気相が存在することを確認すること
が可能になる値、を共に決定することが可能になる。
By preliminarily empirically calibrating the device, the time of appearance of the useful part of the signal after the start of injection of each wave train, and secondly, by experimentally injecting gas into the liquid to be monitored, A critical amplitude threshold is also determined, i.e. below which a useful signal collected exhibits a sufficiently wide range of amplitude attenuation so that it is possible to confirm the presence of the gas phase in the ultrasound path. It becomes possible to do.

【0016】[0016]

【実施例】いずれにしても、本発明は、本発明の実施例
を読むことにより一層容易に理解されるはずであり、該
実施例を、図1および図2を参照して、図解により且つ
限定的にではなく示すことにするが、この実施例はナト
リウムで冷却される高速中性子炉のナトリウム/水蒸気
発生器を監視する事例に関する。
In any case, the invention should be understood more easily by reading the embodiments of the invention, which are illustrated by way of illustration with reference to FIGS. 1 and 2. By way of illustration and not limitation, this example relates to the case of monitoring a sodium / steam generator of a sodium cooled fast neutron reactor.

【0017】図1は、横座標で表わされる時間関数とし
て本方法の経過を同期化する方形パルス2および4を示
す。換言すれば、パルス2および4は時間軸、およびそ
の期間中波列6および8が蒸気発生器の室、室に入って
いるナトリウム、および室を横断している水管、から構
成される系を通して伝達され且つ注入されるストローブ
を規定する。
FIG. 1 shows square pulses 2 and 4 which synchronize the course of the method as a function of time on the abscissa. In other words, the pulses 2 and 4 pass through the time axis and the system through which the wave trains 6 and 8 consist of the chamber of the steam generator, the sodium contained in the chamber and the water pipe traversing the chamber. It defines the strobe to be transmitted and injected.

【0018】図1bでわかるように、波列6および8
は、一定の振幅を備えており、両者とも同一である。本
発明によれば、波列6および8は、少くとも20kHz
の周波数を有し、持続時間は約10-3sで約10-1sだ
け離れている。
As can be seen in FIG. 1b, the wave trains 6 and 8
Have a constant amplitude and are the same for both. According to the invention, the wave trains 6 and 8 are at least 20 kHz.
With frequencies of about 10 -3 s and separated by about 10 -1 s.

【0019】図1cは、蒸気発生器の室の出口で集めら
れた信号を蒸気発生器から出たままの形で示す。この図
は幾つかの現象をも示している。
FIG. 1c shows the signal collected at the outlet of the steam generator chamber as it exits the steam generator. This figure also shows some phenomena.

【0020】先づ第1に、受信波列6aの時間移動は波
列6に対応し、8aは波列8に対応する。勿論、この時
間移動は、横断構造を通る超音波信号の遷移時間に対応
する。この図1cで見ることができる他の現象は、受信
波列6aおよび8aが放射波列6および8に対して時間
伸長していることである。この伸長は、各種横断媒質
(鋼、ナトリウム・・・)内の超音波の伝ぱん速度が異
なること、および超音波ビームがその経路上にらある各
種要素から受ける複数の反射から生ずる。最後に、10
で見得る背景雑音をこれまでの二つの変形に加えて受信
した全体の生信号を図1cに示す局面に示すようにすべ
きである。
First, first, the time shift of the received wave train 6a corresponds to the wave train 6, and 8a corresponds to the wave train 8. Of course, this time shift corresponds to the transit time of the ultrasonic signal through the transverse structure. Another phenomenon that can be seen in this FIG. 1c is that the received wave trains 6a and 8a are time-extended with respect to the radiated wave trains 6 and 8. This stretching results from the different propagation speeds of the ultrasonic waves in the various transverse media (steel, sodium ...) And from the multiple reflections that the ultrasonic beam receives from the various elements along its path. Finally 10
In addition to the background noise seen at 2 above, the overall raw signal received should be as shown in the phase shown in FIG. 1c.

【0021】本発明を実施するのに基本となる他の重要
な観察は、図1cに示す出口波列6aおよび8aの特定
の形から生ずる。事実、これらの各々は、実際上三つの
ピーク、すなわち一つの入口ピーク12、一つの中間ピ
ーク14、および一つの出口ピーク16、に分割された
振幅変動から構成されている。これらの解釈は簡単であ
る。入口ピーク12は蒸気発生器の鋼構造内の波列の遷
移に対応し、その6000m/sという伝ぱん速度は事
実上最高である。中央の振幅ピーク14は、液体、この
例ではナトリウム、により約2200m/sの速さで伝
達された信号に対応する。第3の振幅ピーク16に関し
ては、これは横断または遭遇した構造による最初の波列
の液体ナトリウム内での多様な反射によるものである。
先に説明したとおり、各種周波数の選択および連続波列
の重なりパラメータが存在しないことのため得られるの
は三つの振幅ピークから構成されるこの特定の形態であ
り、これにより一連の気泡の出現を非常に速やかに検出
することが可能な液体による超音波の伝達に対応する信
号の部分を選択することによる検出方法を実施すること
が可能になる。
Another important observation underlying the practice of the invention results from the particular shape of the exit wave train 6a and 8a shown in FIG. 1c. In fact, each of these effectively consists of an amplitude variation divided into three peaks, one inlet peak 12, one intermediate peak 14 and one outlet peak 16. These interpretations are straightforward. The inlet peak 12 corresponds to the transition of the wave train in the steel structure of the steam generator, whose propagation speed of 6000 m / s is virtually the highest. The central amplitude peak 14 corresponds to the signal transmitted by the liquid, sodium in this example, at a speed of about 2200 m / s. With respect to the third amplitude peak 16, this is due to the multiple reflections within the liquid sodium of the first wave train due to traversing or encountered structures.
As explained above, it is this particular form consisting of three amplitude peaks that results from the choice of various frequencies and the absence of overlapping parameters of the continuous wave train, which allows the appearance of a series of bubbles to It becomes possible to implement the detection method by selecting the part of the signal corresponding to the transmission of ultrasonic waves by the liquid, which can be detected very quickly.

【0022】これを達成するため、その手順は以下のと
おりである。先づ第1に、図1dで示したように、背景
雑音を除去し、受信信号の最大振幅のプロファイルを構
成し、かくして信号の実際値を表わすプロファイル中に
三つの振幅12、14、および16だけを明示する。
To achieve this, the procedure is as follows. First of all, as shown in FIG. 1d, the background noise is removed and a profile of the maximum amplitude of the received signal is constructed, thus giving three amplitudes 12, 14, and 16 in the profile representing the actual value of the signal. Only explicitly.

【0023】次にこれら三つのピークから液相の伝達の
一つの特性を選択する必要がある。一般的に言って且つ
図1eおよび図1fで表わされている例では、中央ピー
クを選択する。同期検波は中央ピーク14の最大振幅を
有する校正ずみパルスの選択を可能とする周期Δγを有
する選択ストローブを時間の終りに開くことにより行わ
れる。しかし、或る場合には−たとえば、室が大きくて
多数の内部構造を備えていれば−内部構造による波列の
液体ナトリウム内での複数反射によるピーク16を選択
するのが有利のときもある。
Next, it is necessary to select one characteristic of liquid phase transfer from these three peaks. Generally speaking and in the examples represented in Figures 1e and 1f, the central peak is selected. Synchronous detection is performed by opening a selection strobe at the end of time with a period Δγ that allows the selection of the calibrated pulse with the maximum amplitude of the central peak 14. However, in some cases-for example, if the chamber is large and has a large number of internal structures-it may be advantageous to select a peak 16 due to multiple reflections in the liquid sodium of the wave train by the internal structure. .

【0024】既知の状況を基に且つ気体の流れを慎重且
つ良く調節して液体に注入することによりあらかじめ校
正してある装置を用いて、その下では振幅14の減衰が
必然的に気相の出現を意味する警報しきい値18を実験
的に決定する。
On the basis of the known situation and with a device which has been calibrated beforehand by pouring into the liquid with careful and good regulation of the gas flow, below which the attenuation of the amplitude 14 is necessarily gas phase. The alarm threshold value 18 meaning the occurrence is experimentally determined.

【0025】図2はナトリウムで冷却される原子炉のナ
トリウム/水・蒸気発生器を図式に示してあり、この発
生器は、金属的鋼室22、液体ナトリウム相24、およ
び水により通過せしめられる熱交換管26を備えてい
る。
FIG. 2 diagrammatically shows a sodium-cooled reactor sodium / water steam generator which is passed by a metallic steel chamber 22, a liquid sodium phase 24 and water. A heat exchange tube 26 is provided.

【0026】この蒸気発生器20の内部に発生している
こと、特にナトリウム24に水素の泡が出現しているこ
とを監視するように、装置は図2に示すように使用され
る。
The device is used as shown in FIG. 2 in order to monitor what is occurring inside this steam generator 20, in particular the appearance of hydrogen bubbles in the sodium 24.

【0027】同期パルス発生器28は、図1aのパルス
(2および4)のようなパルスを発生する。これらパル
スは次に正弦波発生器30を超音波周波数で制御し、こ
の発生器は図1bの波列6および8を発生する。発生器
30の出口におけるこれら波列は増幅器32により増幅
されて次に導波管36により蒸気発生器20の外壁22
に結合された放射トランスジューサ34を励起するよう
にする。このように発生されて蒸気発生器20の壁22
にまで管で運び上げられた超音波の波列は前述の系を通
して拡がり、次に導波管38および受信トランスジュー
サ40により集められる。受信波列は、図1cに示すも
のの形をなしているが、次に42で予備増幅され、44
で増幅される。
The sync pulse generator 28 generates pulses such as the pulses (2 and 4) of FIG. 1a. These pulses then control the sine wave generator 30 at the ultrasonic frequency, which produces the wave trains 6 and 8 of FIG. 1b. These wave trains at the outlet of the generator 30 are amplified by the amplifier 32 and then guided by the waveguide 36 to the outer wall 22 of the steam generator 20.
To excite a radiation transducer 34 coupled to the. Thus generated, the wall 22 of the steam generator 20
The wave train of ultrasonic waves carried up by the tube spreads through the system described above and is then collected by the waveguide 38 and the receiving transducer 40. The received wave train, which is in the form of that shown in FIG. 1c, is then pre-amplified at 42, 44
Is amplified by.

【0028】受信複合信号はしたがって、構造、すなわ
ち発生器20の室の壁22、による伝達に対応する第1
の部分、液体を通る伝達に対応する一つの中央部分、お
よび蒸気発生器から得られる広帯域背景雑音、から構成
される。この複合信号は、図1cのものに対応するが、
次に波列の放射周波数に中心を有する狭い帯域について
濾波され、背景雑音を可能な限り少くするようにし、次
に、図1dに示すように、狭帯域フィルタおよび実際値
整形器から成る装置46の実際の値に従って形成され
る。
The received composite signal is thus the first corresponding to the structure, ie the transmission of the wall 22 of the chamber of the generator 20.
, A central part corresponding to the transmission through the liquid, and broadband background noise obtained from the steam generator. This composite signal corresponds to that of FIG. 1c, but
A narrow band centered at the emission frequency of the wave train is then filtered to minimize background noise, and then a device 46 consisting of a narrow band filter and an actual value shaper 46, as shown in FIG. 1d. Is formed according to the actual value of.

【0029】これに続いて幅Δtのウィンドウによる時
間tの遅れ同期検波が同期発生器28と同期して動作す
る同期発生器28により行われ。る図1fの信号はこの
同期検波器48の出口で得られ、これら信号は次に比較
器50で図1fの警報しきい値18と比較されるが、こ
のしきい値は、前に説明したように、実験的にあらかじ
め決められている。信号の振幅減少すなわち減衰が比較
器50で受信された信号14のピークが警報しきい値1
8より小さいようになっている場合には、これから超音
波経路上に超音波波列のエネルギのこのかなりな減衰を
生ぜしめた気相の存在を推論することが可能である。
Following this, delayed synchronous detection of time t by a window of width Δt is performed by the synchronous generator 28 which operates in synchronization with the synchronous generator 28. The signals of FIG. 1f are obtained at the exit of this synchronous detector 48, and these signals are then compared in a comparator 50 with the alarm threshold 18 of FIG. 1f, which threshold was explained previously. As such, it is experimentally predetermined. When the signal amplitude reduction or attenuation is received by the comparator 50, the peak of the signal 14 is the alarm threshold 1.
If it is smaller than 8, it can be deduced from this that there is a gas phase on the ultrasound path that has caused this considerable attenuation of the energy of the ultrasound wave train.

【0030】図2の装置は、約1sの期間に検出を行
い、且つ1g/s未満の等価水流に対して、長さ18
m、直径0.4mの直管からの水漏れを1秒未満内に明
らかにする本発明の方法を実施するのを可能にした。
The apparatus of FIG. 2 performs detection in a period of about 1 s, and for equivalent water flows of less than 1 g / s, the length 18
It made it possible to carry out the method according to the invention which reveals a water leak from a straight tube of m, 0.4 m diameter in less than 1 second.

【0031】一定の用途について、たとえば多数の内部
構造を有する大きな室の場合に関しては、幾つかの放射
トランスジューサ34を、特に幾つかの受信トランスジ
ューサを、室に固定するのが有利なことがある。
For certain applications, for example in the case of large chambers with a large number of internal structures, it may be advantageous to fix several radiating transducers 34, in particular several receiving transducers, to the chamber.

【0032】[0032]

【発明の効果】本発明の検出方法の利点の中から主なも
のをを挙げれば次のとおりであり、1秒未満のその極め
て速い応答時間を引出すことが可能であり、蒸気発生器
の、一般的に述べれば測定の品位に関係する横断システ
ムの、背景雑音の影響が少く、漏れの検出の感度が、極
めて小さい漏れでも、優れており、且つ監視される液相
が通過する室内に入り込むことがない。更に、トランス
ジューサは室の外側にあるので、それらは常にアクセス
可能であり、液相が高温のとき受入れ不能な過熱を受け
ることなく動作することができる。
The main advantages of the detection method of the present invention are as follows. It is possible to draw out its extremely fast response time of less than 1 second, and Generally speaking, the crossing system, which is related to the quality of the measurement, is less affected by background noise, and the sensitivity of leak detection is excellent, even at very small leaks, and it enters the chamber through which the monitored liquid phase passes. Never. Moreover, because the transducers are outside the chamber, they are always accessible and can operate without unacceptable overheating when the liquid phase is hot.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1aから図1fは、伝送され、受信され、且
つ分析される各種信号から本方法の動作段階を示すもの
である。
1a to 1f show the operating stages of the method from the various signals transmitted, received and analyzed.

【図2】超音波により本発明の助けを借りて蒸気発生器
のナトリウム中に水素ガスが出現したことを検出する装
置の簡略図を示す。
2 shows a simplified diagram of an apparatus for detecting the appearance of hydrogen gas in the sodium of a steam generator with the aid of the invention by means of ultrasound.

【符号の説明】[Explanation of symbols]

2,4 方形パルス 6,8 波列 10 背景雑音 12 入口ピーク 14 中間ピーク 16 出口ピーク 20 蒸気発生器 22 室 24 液体ナトリウム 26 熱交換管 28 パルス発生器 30 正弦波発生器 32,42,44 増幅器 34 放射トランスジューサ 36,38 導波管 40 受信トランスジューサ 46 狭帯域フィルタおよび実際値整形器 48 同期検波器 50 比較器 2,4 Square pulse 6,8 Wave train 10 Background noise 12 Inlet peak 14 Intermediate peak 16 Outlet peak 20 Steam generator 22 Chamber 24 Liquid sodium 26 Heat exchange tube 28 Pulse generator 30 Sine wave generator 32, 42, 44 Amplifier 34 Radiation Transducer 36, 38 Waveguide 40 Receiving Transducer 46 Narrow Band Filter and Actual Value Shaper 48 Synchronous Detector 50 Comparator

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 室内の液相に現われる気相を超音波検出
する方法において、 少くとも一つの超音波発信機を使用して、2kHzを超
える周波数を有し且つ約10-3s継続すると共に充分
に、好適には約10-1sと10-2sとの間の時間、離し
て室の出口で集められた受信信号が重ならないようにし
た波列を室および液体を通過せしめること、 少くとも一つの超音波受信機を用いて、液相/室系を通
して伝達される出口信号全体を検出すること、 この受信した信号全体から液相の通過に対応する有効部
分を分離すること、 この信号の有効部分について、液相内の気相に存在する
気相の振幅特性のあり得る減衰を検出すること、から成
ることを特徴とする検出方法。
1. A method for ultrasonically detecting a gas phase appearing in a liquid phase in a room, wherein at least one ultrasonic oscillator is used and has a frequency of more than 2 kHz and continues for about 10 -3 s. Passing the chamber and the liquid through a wave train sufficiently separated, preferably between about 10 -1 s and 10 -2 s, so that the received signals collected at the outlet of the chamber do not overlap. Detecting at least one exit signal transmitted through the liquid / chamber system using at least one ultrasonic receiver; separating the effective part corresponding to the passage of the liquid phase from the whole received signal; Detecting the possible attenuation of the amplitude characteristic of the gas phase present in the gas phase within the liquid phase for the effective part of the signal.
【請求項2】 システムにおける波列が一定の振幅を有
し、システムの出口における波列が時間校正されており
且つ各々がシステム内の特定の超音波経路に対応する幾
つかの振幅ピークを有しているので、その検出は各波列
の開始の発生期間と、ただし液相を通る超音波の遷移の
特定の振幅ピークの出現に対応する遅れと、同期化さ
れ、これにより信号の有効部分を選択することを可能と
することを特徴とする請求項1に記載の検出方法。
2. The wave train in the system has a constant amplitude, the wave train at the exit of the system is time calibrated and has several amplitude peaks each corresponding to a particular ultrasonic path in the system. Therefore, its detection is synchronized with the period of occurrence of the onset of each wave train, but with the delay corresponding to the appearance of a particular amplitude peak of the ultrasonic transition through the liquid phase, and thus the useful part of the signal. The detection method according to claim 1, wherein the detection method is selected.
【請求項3】 液相内の気相の存在は信号の有効部分の
振幅が校正時に気体を液体中に注入することにより実験
的にあらかじめ決定したしきい値より低いという事実に
より検出されることを特徴とする請求項1または2に記
載の方法。
3. The presence of a gas phase in the liquid phase is detected by the fact that the amplitude of the effective part of the signal is below the experimentally predetermined threshold by injecting gas into the liquid during calibration. The method according to claim 1 or 2, characterized in that.
【請求項4】 システムの入口および出口における超音
波発信機および/または受信機は室の壁の外面に直接固
定されていることを特徴とする請求項1に記載の方法。
4. Method according to claim 1, characterized in that the ultrasonic transmitters and / or receivers at the inlet and outlet of the system are fixed directly to the outer surface of the wall of the chamber.
【請求項5】 システムの入口および出口における超音
波発信機および/または受信機は室の壁の外面に室に溶
接された導波管により接続されている請求項1に記載の
方法。
5. The method according to claim 1, wherein the ultrasonic transmitters and / or receivers at the inlet and outlet of the system are connected to the outer surface of the wall of the chamber by a waveguide welded to the chamber.
【請求項6】 液体金属により冷却される原子炉の蒸気
発生器における漏れを監視する際に、金属内の水素ガス
の出現をこの金属が発生器の水管の一つにおける漏れに
伴う発生器の水に作用することにより監視することを特
徴とする請求項1から5までのいずれか一つに記載する
方法の応用。
6. When monitoring a leak in a steam generator of a reactor cooled by a liquid metal, the appearance of hydrogen gas in the metal causes the metal of the generator to be accompanied by a leak in one of the water tubes of the generator. Application of the method according to any one of claims 1 to 5, characterized in that it is monitored by acting on water.
JP3044596A 1990-01-26 1991-01-24 Ultrasonic detection method for gas phase appearing in liquid phase in room Expired - Lifetime JP3041728B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9000934 1990-01-26
FR9000934A FR2657693B1 (en) 1990-01-26 1990-01-26 METHOD FOR ULTRASONIC DETECTION OF THE APPEARANCE OF A GASEOUS PHASE IN A LIQUID PHASE CONTAINED IN AN ENCLOSURE.

Publications (2)

Publication Number Publication Date
JPH06118194A true JPH06118194A (en) 1994-04-28
JP3041728B2 JP3041728B2 (en) 2000-05-15

Family

ID=9393145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3044596A Expired - Lifetime JP3041728B2 (en) 1990-01-26 1991-01-24 Ultrasonic detection method for gas phase appearing in liquid phase in room

Country Status (4)

Country Link
JP (1) JP3041728B2 (en)
BE (1) BE1005905A3 (en)
FR (1) FR2657693B1 (en)
IT (1) IT1245002B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007003058A1 (en) * 2005-07-06 2007-01-11 National Research Council Of Canada Method and system for determining material properties using ultrasonic attenuation
JP2020515850A (en) * 2017-04-05 2020-05-28 テノヴァ・グッドフェロー・インコーポレイテッド Method and apparatus for acoustically detecting fluid leaks

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5824881A (en) * 1996-09-13 1998-10-20 Cobe Laboratories Gas/fluid detector for contained fluid systems
EP2813845B1 (en) * 2013-06-11 2018-07-11 Sonotec Ultraschallsensorik Halle GmbH Gas Bubble Sensing Device With Two Ultrasonic Emitters Connected To One Ultrasonic Signal Generator
CN113933219B (en) * 2021-10-08 2023-08-01 哈尔滨工程大学 Wet steam droplet volume concentration measurement experiment system and method based on ultrasonic method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2455749A1 (en) * 1974-11-26 1976-08-12 Juergen Frahm Sludge density measuring device - having electrical analog output, using ultra-sonic input
FR2544864B1 (en) * 1983-04-20 1985-09-06 Commissariat Energie Atomique METHOD AND DEVICE FOR DETERMINING THE INTERFACIAL AREA IN A DIPHASIC MIXTURE COMPRISING A GAS FLOWING PHASE IN THE FORM OF BUBBLES
US4651555A (en) * 1984-09-11 1987-03-24 Introtek Corporation Apparatus for detecting discontinuities in a fluid stream
FR2588086B1 (en) * 1985-09-30 1988-07-15 Novatome METHOD AND DEVICE FOR THE ULTRASONIC DETECTION OF GAS BUBBLES IN A LIQUID METAL

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007003058A1 (en) * 2005-07-06 2007-01-11 National Research Council Of Canada Method and system for determining material properties using ultrasonic attenuation
JP2020515850A (en) * 2017-04-05 2020-05-28 テノヴァ・グッドフェロー・インコーポレイテッド Method and apparatus for acoustically detecting fluid leaks
US11255743B2 (en) 2017-04-05 2022-02-22 Tenova Goodfellow Inc. Method and apparatus for acoustically detecting fluid leaks
US11913857B2 (en) 2017-04-05 2024-02-27 Tenova Goodfellow Inc. Method and apparatus for acoustically detecting fluid leaks

Also Published As

Publication number Publication date
IT1245002B (en) 1994-09-13
JP3041728B2 (en) 2000-05-15
BE1005905A3 (en) 1994-03-08
ITTO910035A0 (en) 1991-01-22
ITTO910035A1 (en) 1992-07-22
FR2657693B1 (en) 1994-04-22
FR2657693A1 (en) 1991-08-02

Similar Documents

Publication Publication Date Title
US6293156B1 (en) Coherent multi-path flow measurement system
US4484478A (en) Procedure and means for measuring the flow velocity of a suspension flow, utilizing ultrasonics
US5043706A (en) System and method for detecting bubbles in a flowing fluid
US5531099A (en) Underground conduit defect localization
CA1323684C (en) Method for electromagnetic ultrasonic conversion for monitoring the fill level and bubble formation in enclosures containing liquid
US4095457A (en) Apparatus for detecting changes in parameters of liquid flowing in a pipe based on sing-around method
US20050072237A1 (en) Pipeline inspection pigs
CA2101652C (en) Measurement of the flow velocities of gases and/or of quantities that can be derived from same
JPH06118194A (en) Method for detecting vapor phase, which appears in liquid phase in room, with ultrasonic wave
KR890004447B1 (en) Spiral fluid meter
GB2207755A (en) Temperature measurement in a fluid by means of reflected stress waves
JP2533699B2 (en) Acoustic leak detector
US5467321A (en) Insertion ultrasonic transducer with mode conversion and method for reducing multiple signal reception
JP2623483B2 (en) Burst position locating method using solid-state transmission sound monitoring system
US3250120A (en) Method and apparatus for determining flaw locations
RU2138037C1 (en) Process detecting corrosion defects in water supply pipe- lines
JP2005091332A (en) Ultrasonic flowmeter
JP2015179027A (en) Fluid identification device and fluid identification method
US9082518B2 (en) Nuclear reactor vibration monitoring apparatus and method of monitoring nuclear reactor vibration
Tsukada et al. Study on Velocity Profile Measurement of Saturated Jet Flow by Air-coupled Ultrasound
JP2870728B2 (en) Ultrasonic detection method of heat exchanger water leakage
JPS6041726B2 (en) Ultrasonic flow velocity measuring device
Ihara et al. Bubbly flow measurement in high temperature molten salt
JPS5815489Y2 (en) Impurity purification equipment
RU2030678C1 (en) Device to control cleaning tool passing in pipeline

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040727