JPH06117848A - Interatomic force microscope unit - Google Patents

Interatomic force microscope unit

Info

Publication number
JPH06117848A
JPH06117848A JP26706092A JP26706092A JPH06117848A JP H06117848 A JPH06117848 A JP H06117848A JP 26706092 A JP26706092 A JP 26706092A JP 26706092 A JP26706092 A JP 26706092A JP H06117848 A JPH06117848 A JP H06117848A
Authority
JP
Japan
Prior art keywords
sample
probe
spring body
atomic force
force microscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP26706092A
Other languages
Japanese (ja)
Inventor
Iwao Sakai
巖 酒井
Shoji Okutomi
昭次 奥富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON DENSHI ENG
Jeol Ltd
Jeol Engineering Co Ltd
Original Assignee
NIPPON DENSHI ENG
Jeol Ltd
Jeol Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON DENSHI ENG, Jeol Ltd, Jeol Engineering Co Ltd filed Critical NIPPON DENSHI ENG
Priority to JP26706092A priority Critical patent/JPH06117848A/en
Publication of JPH06117848A publication Critical patent/JPH06117848A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To obtain an inexpensive interatomic force microscope which can be easily incorporated in an electron microscope as an attachment and can be reduced in size. CONSTITUTION:In an interatomic force microscope which is used for observing the surface of a sample 3 by detecting the displacement of a spring body 5 caused by the interatomic force acting between a probe 4 supported by the spring body 5 and the sample 3 when the sample 3 is brought nearer to the probe 4, The sample 3 is fixed to a driving means 2 fitted to a fitting base 1. The sample 3 fixed to the means 2, probe 4 fixed to the spring body 5, and a light receiving member 6 are constituted to a unit by fixing the probe 4 and member 6 to the free end side of the spring body 5 so that the probe 4 can be faced to the sample 3 and, at the same time, the other end of the spring body 5 to the base 1. By mounting the unit on the position where the sample 3 is irradiated with an electron beam 7 and irradiating the member 6 with the beam 7, a change in the position irradiated with the beam 7 is detected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、バネ体で支持した探針
に試料を接近させた時の探針と試料との間に作用する原
子間力によるバネ体の変位を検出し試料の表面観察を行
う原子間力顕微鏡ユニットに関する。
BACKGROUND OF THE INVENTION The present invention detects the displacement of a spring body due to an atomic force acting between the probe and the sample when the sample is brought close to the probe supported by the spring body, and the surface of the sample is detected. Atomic force microscope unit for observation.

【0002】[0002]

【従来の技術】探針をカンチレバーで支持してサンプル
に10Å〜5Å程度まで近づけてゆくと、探針とサンプ
ルとの間に作用する力が引力から斥力(反力)に変わ
る。原子間力顕微鏡は、この変化に基づくカンチレバー
のしなり角の変化を検出して、サンプルの表面を探針で
走査することによりサンプル表面の観察を行うものであ
り、従来は、カンチレバーと変調光テコ方式やカンチレ
バーと光干渉テコ方式、STMによるバネの変位量検出
方式等が提案されている。
2. Description of the Related Art When a probe is supported by a cantilever and brought closer to the sample by about 10Å to 5Å, the force acting between the probe and the sample changes from attractive force to repulsive force (reaction force). The atomic force microscope detects changes in the cantilever bending angle based on this change and observes the sample surface by scanning the sample surface with a probe. A lever method, a cantilever and optical interference lever method, a spring displacement detection method by STM, and the like have been proposed.

【0003】カンチレバーと変調光テコ方式は、レーザ
光をカンチレバーの先端部に照射してその反射光を検出
することによってカンチレバーのしなり角の変化に対応
した光量変化を検出するものであり、カンチレバーと光
干渉テコ方式は、カンチレバーのしなり角の変化に伴う
干渉縞の変化を検出するものである。また、STMによ
るバネの変位量検出方式は、探針にバイアスを印加しカ
ンチレバーとの間を10Å程度まで近づけてゆくと流れ
るトンネル電流を検出してカンチレバーの変位量を検出
するものである。
The cantilever and the modulated light lever system detect a change in the amount of light corresponding to a change in the bending angle of the cantilever by irradiating the tip of the cantilever with laser light and detecting the reflected light. The optical interference lever method detects changes in interference fringes accompanying changes in the cantilever bending angle. Further, the spring displacement amount detection method by STM is to detect the displacement amount of the cantilever by detecting a tunnel current flowing when a bias is applied to the probe and the distance between the probe and the cantilever is approached to about 10Å.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記レーザ光
を用いる従来の方式は、レーザ光照射装置や光テコ機
構、光検出器を試料台に直結或いは近傍に堅牢に装着さ
れなければならない。通常は数mm程度の大きさの試料
を0.数mmの探針で観察するが、カンチレバーの変位
をレーザで検出するには、Åオーダのストローク変化を
拡大しなければならない。そのため、光学系のため装置
が大きくなり小型化が難しく、電子顕微鏡に組み込まれ
るアタッチメントとして不適当であった。しかも、レー
ザ光照射装置や光テコ機構、光検出器の構成部品は、高
精度が要求されるため、価格も高くなるというのも問題
であった。
However, in the conventional method using the above laser light, the laser light irradiation device, the optical lever mechanism, and the photodetector must be directly connected to the sample table or firmly mounted in the vicinity thereof. Normally, a sample with a size of several mm is It is observed with a probe of several mm, but in order to detect the displacement of the cantilever with a laser, the stroke change of the order of Å must be magnified. Therefore, the device is large due to the optical system, and it is difficult to reduce the size, which is unsuitable as an attachment incorporated in an electron microscope. In addition, since the laser light irradiation device, the optical lever mechanism, and the components of the photodetector are required to have high accuracy, there is a problem that the price becomes high.

【0005】また、STMを用いる方式も、カンチレバ
ーの上にさらにトンネル顕微鏡を装着しなければならな
いため、同様に装置の小型化が難しく、電子顕微鏡に組
み込まれるアタッチメントとして不適当であった。
Further, the method using the STM is also unsuitable as an attachment to be incorporated in an electron microscope because it is difficult to downsize the apparatus because a tunnel microscope must be further mounted on the cantilever.

【0006】本発明は、上記の課題を解決するものであ
って、電子顕微鏡に容易にアタッチメントとして組み込
むことができ、安価で小型化が可能な原子間力顕微鏡ユ
ニットを提供することを目的とするものである。
An object of the present invention is to solve the above-mentioned problems, and an object thereof is to provide an atomic force microscope unit which can be easily incorporated in an electron microscope as an attachment and which is inexpensive and can be miniaturized. It is a thing.

【0007】[0007]

【課題を解決するための手段】そのために本発明は、バ
ネ体で支持した探針に試料を接近させた時の探針と試料
との間に作用する原子間力によるバネ体の変位を検出し
試料の表面観察を行う原子間力顕微鏡において、取り付
けベース上に取り付けた駆動手段に試料を固定し、バネ
体の自由端側に探針と受光部材を固定して探針を試料と
対向させると共にバネ体の他端を取り付けベースに固定
して、駆動手段に固定した試料及びバネ体に固定した探
針と受光部材をユニット化し、該ユニットを量子線の照
射試料位置に装着し受光部材に量子線を照射して量子線
照射位置の変化を検出するように構成したことを特徴と
するものである。
To this end, the present invention detects displacement of a spring body due to an atomic force acting between the probe and the sample when the sample is brought close to the probe supported by the spring body. Then, in an atomic force microscope that observes the surface of the sample, the sample is fixed to the driving means mounted on the mounting base, and the probe and the light receiving member are fixed to the free end side of the spring body so that the probe faces the sample. Along with fixing the other end of the spring body to the mounting base, the sample fixed to the driving means and the probe and the light receiving member fixed to the spring body are unitized, and the unit is attached to the quantum beam irradiation sample position to form the light receiving member. It is characterized in that it is configured to irradiate a quantum beam and detect a change in the irradiation position of the quantum beam.

【0008】[0008]

【作用】本発明の原子間力顕微鏡ユニットでは、取り付
けベース上に取り付けた例えばピエゾ素子を用いた駆動
手段に試料を固定し、バネ体の自由端側に探針と受光部
材を固定して探針を試料と対向させると共にバネ体の他
端を取り付けベースに固定して、駆動手段に固定した試
料及びバネ体に固定した探針と受光部材をユニット化し
たので、装置の小型化ができ、電子顕微鏡等のアタッチ
メントとして容易に組み込むことができる。そして、そ
の受光部材に電子線やX線等の量子線を照射して量子線
照射位置の変化として受光部材からの量子線や吸収電流
の変化を検出することができ、原子間力顕微鏡の試料像
を観察することができる。
In the atomic force microscope unit of the present invention, the sample is fixed to the driving means mounted on the mounting base using, for example, a piezo element, and the probe and the light receiving member are fixed to the free end side of the spring body to search. Since the needle is opposed to the sample and the other end of the spring body is fixed to the mounting base, the sample fixed to the driving means and the probe fixed to the spring body and the light receiving member are unitized, so that the device can be downsized, It can be easily incorporated as an attachment for an electron microscope or the like. Then, the light receiving member can be irradiated with a quantum beam such as an electron beam or an X-ray to detect a change in the quantum beam irradiation position and a change in the absorption current or the quantum beam from the light receiving member. You can observe the image.

【0009】[0009]

【実施例】以下、本発明の実施例を図面を参照しつつ説
明する。図1は本発明に係る原子間力顕微鏡ユニットの
1実施例を示す図であり、(イ)は上面図、(ロ)は正
面図、(ハ)は受光器の振れと電子線との関係を説明す
るための図、1は取り付けベース、2はピエゾ駆動部、
3は試料、4は探針、5はカンチレバー、6は受光器、
7は電子線を示す。
Embodiments of the present invention will be described below with reference to the drawings. 1A and 1B are views showing an embodiment of an atomic force microscope unit according to the present invention. FIG. 1A is a top view, FIG. 1B is a front view, and FIG. 1C is a relationship between a shake of a light receiver and an electron beam. Figure for explaining 1 is a mounting base, 2 is a piezo drive,
3 is a sample, 4 is a probe, 5 is a cantilever, 6 is a light receiver,
7 is an electron beam.

【0010】図1において、取り付けベース1は、ピエ
ゾ駆動部2、カンチレバー5を取り付けるベースであ
る。ピエゾ駆動部2は、試料3を載置してXYZの3軸
方向に駆動する3つのピエゾ素子からなるものである。
カンチレバー5は、自由端側に探針4と受光器6を固定
して探針4を試料3と対向させると共に他端を取り付け
ベース1に固定する板状のバネ体である。受光器6は、
(ハ)に示すように中心部より金Auと炭素Cからなる
異種材料で2分して中心部の境界を基準ラインとして構
成したものであり、(ロ)、(ハ)に示すように上方か
ら所定の径に絞られた電子線7が照射される。このよう
な受光器6に電子線7が照射されると、AuはCに比べ
て二次電子が出やすいため、(ハ)に示すように電子線
7に対して受光器6が矢印A方向に変位すると、受光器
6に対する電子線の照射面積は同じであっても、Auに
対する電子線7の照射面積とCに対する電子線7の照射
面積の割合が変化する。その結果、Au側から発生する
二次電子の量とC側から発生する二次電子の量とが変化
するため、これらの二次電子の量の変化から受光器の変
位を検出することができる。
In FIG. 1, a mounting base 1 is a base on which a piezo drive unit 2 and a cantilever 5 are mounted. The piezo drive unit 2 is composed of three piezo elements on which the sample 3 is placed and which is driven in the three XYZ directions.
The cantilever 5 is a plate-shaped spring body that fixes the probe 4 and the light receiver 6 on the free end side so that the probe 4 faces the sample 3 and the other end is fixed to the mounting base 1. The light receiver 6 is
As shown in (c), the center part is divided into two parts by different materials composed of gold Au and carbon C, and the boundary of the center part is used as a reference line. As shown in (b) and (c), Is irradiated with an electron beam 7 that is narrowed to a predetermined diameter. When such a light receiver 6 is irradiated with the electron beam 7, secondary electrons are more likely to be emitted from Au as compared with C, so that the light receiver 6 is directed toward the electron beam 7 in the direction of arrow A as shown in (c). If the irradiation area of the electron beam to the light receiver 6 is the same, the ratio of the irradiation area of the electron beam 7 to Au and the irradiation area of the electron beam 7 to C changes. As a result, the amount of secondary electrons generated from the Au side and the amount of secondary electrons generated from the C side change, so that the displacement of the photodetector can be detected from the change in the amount of these secondary electrons. .

【0011】上記のようなAFMユニット化により、電
子顕微鏡等の電子線照射位置に装着して電子線を照射
し、ピエゾ駆動部2のXYピエゾ素子を駆動して試料を
XY走査しながら二次電子を検出することによって受光
器6の変位を検出し、その変位検出信号による試料表面
の観察像を出力することができる。また、ピエゾ駆動部
2のXY方向のピエゾ素子を駆動して試料をXY走査し
ながら二次電子を検出し、この二次電子が一定になるよ
うにピエゾ駆動部2のZピエゾ素子を駆動することによ
って、Zピエゾ素子の駆動信号による試料表面の観察像
を出力することができる。
With the AFM unit as described above, it is mounted at an electron beam irradiation position of an electron microscope or the like to irradiate an electron beam, and the XY piezo element of the piezo drive unit 2 is driven to perform secondary scanning while XY scanning the sample. The displacement of the light receiver 6 can be detected by detecting the electrons, and an observation image of the sample surface can be output by the displacement detection signal. Further, the piezo elements of the piezo drive unit 2 are driven to detect secondary electrons while XY scanning the sample, and the Z piezo elements of the piezo drive unit 2 are driven so that the secondary electrons become constant. As a result, it is possible to output an observation image of the sample surface by the drive signal of the Z piezo element.

【0012】図2は電子顕微鏡にAFM(原子間力顕微
鏡)ユニットを組み込んだ本発明の他の実施例を示す
図、図3はAFMユニットの拡大図である。図におい
て、11は試料室、12は電子銃、13は電子線、14
はレンズ、15はAFMユニット、16と17は検出手
段、18と19は表示手段、21は反射電子・二次電
子、22は透過電子・反射電子(回折)、23は受光
器、24はカンチレバー、25は探針、26はサンプ
ル、27はピエゾ素子を示す。
FIG. 2 is a view showing another embodiment of the present invention in which an AFM (atomic force microscope) unit is incorporated in an electron microscope, and FIG. 3 is an enlarged view of the AFM unit. In the figure, 11 is a sample chamber, 12 is an electron gun, 13 is an electron beam, and 14
Is a lens, 15 is an AFM unit, 16 and 17 are detection means, 18 and 19 are display means, 21 is a reflection electron / secondary electron, 22 is a transmission electron / reflection electron (diffraction), 23 is a light receiver, and 24 is a cantilever. , 25 is a probe, 26 is a sample, and 27 is a piezo element.

【0013】図2に示す実施例は、電子銃12からの電
子線13をレンズ14で制御してAFMユニット15の
受光器に照射し、その受光器から検出される反射電子・
二次電子21を検出手段16で検出して表示手段18に
表示し、また、受光器から検出される透過電子・反射電
子(回折)22を検出手段17で検出して表示手段19
に表示することができるように構成したものである。A
FMユニット15は、図3に拡大図で示したようにカン
チレバー24の探針25を取り付けた面の丁度裏面に受
光器23を取り付け、上方から電子線13を照射するこ
とによって、受光器23の上方で反射電子・二次電子2
1が検出され、受光器23の下方で透過電子・二次電子
(回折)22が検出される。
In the embodiment shown in FIG. 2, an electron beam 13 from an electron gun 12 is controlled by a lens 14 to irradiate a photodetector of an AFM unit 15, and reflected electrons detected by the photodetector.
The secondary electrons 21 are detected by the detection means 16 and displayed on the display means 18, and the transmitted electrons / reflected electrons (diffraction) 22 detected from the light receiver are detected by the detection means 17 and displayed on the display means 19.
It is configured so that it can be displayed. A
As shown in the enlarged view of FIG. 3, the FM unit 15 has a light receiver 23 attached to the back surface of the surface of the cantilever 24 to which the probe 25 is attached, and by irradiating the electron beam 13 from above, the light receiver 23 is exposed. Reflected electrons and secondary electrons 2 above
1 is detected, and transmitted electrons / secondary electrons (diffraction) 22 are detected below the light receiver 23.

【0014】図4は受光器の吸収電流を検出する本発明
に係る原子間力顕微鏡の他の実施例を示す図、図5はA
FMユニットの他の実施例構成図である。図において、
41は試料室、42は電子銃、43は電子線、44はレ
ンズ、45はAFMユニット、46は電流取り出し線、
47は電流検出端子、48は電流検出手段、49は表示
手段、51は反射電子・二次電子、52は透過電子・反
射電子(回折)、53は受光器、54はカンチレバー、
55は探針、56はサンプル、57はピエゾ素子、58
は取り付けベース、59はインシュレータを示す。
FIG. 4 is a diagram showing another embodiment of the atomic force microscope according to the present invention for detecting the absorption current of the light receiver, and FIG.
It is a structure diagram of another embodiment of the FM unit. In the figure,
41 is a sample chamber, 42 is an electron gun, 43 is an electron beam, 44 is a lens, 45 is an AFM unit, 46 is a current extraction line,
47 is a current detection terminal, 48 is a current detection means, 49 is a display means, 51 is a reflected electron / secondary electron, 52 is a transmitted electron / reflected electron (diffraction), 53 is a light receiver, 54 is a cantilever,
55 is a probe, 56 is a sample, 57 is a piezo element, 58
Is a mounting base, and 59 is an insulator.

【0015】図4に示す実施例は、電子銃42からの電
子線43をレンズ44で制御してAFMユニット45の
受光器に照射し、その受光器の吸収電流を電流取り出し
線46から電流検出端子47を通して電流検出手段48
で検出し、表示手段49に吸収電流による試料表面の観
察像を表示できるように構成したものである。そのため
に、図5に示すように取り付けベース58は、インシュ
レータ59でカンチレバー54の取り付け側を電気的に
絶縁して浮かし、カンチレバー54に電流取り出し線4
6を接続している。したがって、受光器53が振れて変
位すると、その変位に伴って受光器53のAuとCに対
する電子線の照射量が変化して受光器53のAu側の吸
収電流とC側の吸収電流が変化するので、この変化量か
ら受光器53の変位量を検出することができる。
In the embodiment shown in FIG. 4, the electron beam 43 from the electron gun 42 is controlled by the lens 44 to irradiate the photodetector of the AFM unit 45, and the absorption current of the photodetector is detected from the current extraction line 46. Current detection means 48 through terminal 47
And an observation image of the sample surface due to the absorption current is displayed on the display means 49. Therefore, as shown in FIG. 5, the mounting base 58 is electrically insulated from the mounting side of the cantilever 54 by the insulator 59 and floated, and the current take-out wire 4 is attached to the cantilever 54.
6 are connected. Therefore, when the light receiver 53 is shaken and displaced, the irradiation amount of the electron beam with respect to Au and C of the light receiver 53 changes due to the displacement, and the absorption current on the Au side and the absorption current on the C side of the light receiver 53 changes. Therefore, the amount of displacement of the light receiver 53 can be detected from this amount of change.

【0016】なお、本発明は、上記の実施例に限定され
るものではなく、種々の変形が可能である。例えば上記
の実施例では、受光器をカンチレバーに取り付けてその
受光器に電子線を照射し、二次電子、反射電子、透過電
子、回折電子の検出、吸収電流の検出を行うようにした
が、散乱電子や特性X線等の他の量子線の検出を行うよ
うにしてもよいし、電子線に代えてX線や他の量子線を
照射してもよい。探針と受光器は、カンチレバーに取り
付けるようにしたが、一端を固定したスプリングの他端
に探針及び受光器を取り付けたり、その他のバネ体によ
る取り付け機構を採用してもよいことはいうまでもな
い。
The present invention is not limited to the above embodiment, but various modifications can be made. For example, in the above embodiment, the light receiver is attached to the cantilever, the light receiver is irradiated with an electron beam, and secondary electrons, backscattered electrons, transmitted electrons, diffracted electrons are detected, and absorption current is detected. Other quantum rays such as scattered electrons and characteristic X-rays may be detected, or X-rays and other quantum rays may be irradiated instead of the electron rays. Although the probe and the light receiver are attached to the cantilever, it goes without saying that the probe and the light receiver may be attached to the other end of the spring with one end fixed, or other spring-based attachment mechanism may be adopted. Nor.

【0017】また、受光部材は、AuとCを組み合わせ
たものを用いたが、量子線の照射領域が変化した場合に
量子線の検出量が異なるものであれば、他の異種材料の
組み合わせたり異種材料の繰り返しパターンにしてもよ
いし、特殊形状にしたり孔を設けたり模様を設けて、受
光部材の変位を検出するように構成してもよい。さらに
この場合、所定の径に絞ったプローブを照射したが、細
いビームにより一定領域の受光材料面を走査して基準ラ
インの変位を検出するように構成してもよいし、受光部
材の変位を電子顕微鏡の走査像や透過像で観るようにし
てもよい。
The light receiving member is a combination of Au and C. However, if the detected amount of the quantum rays is different when the irradiation area of the quantum rays is changed, other different materials may be combined. A repeating pattern of different materials may be used, or a special shape, a hole, or a pattern may be provided to detect the displacement of the light receiving member. Further, in this case, although the probe squeezed to a predetermined diameter is irradiated, it may be configured to detect the displacement of the reference line by scanning the light receiving material surface in a certain area with a thin beam, or to shift the light receiving member. It may be viewed as a scanning image or a transmission image of an electron microscope.

【0018】[0018]

【発明の効果】以上の説明から明らかなように、本発明
によれば、ピエゾを用いた駆動部上に試料を取り付け、
試料の上方で探針を支持するバネ体に小さな受光器を取
り付けるだけでよいので、従来例のような変調光テコ部
が不要となり、装置が小型化でき、電子顕微鏡等にAF
M装置をアタッチメントとして組み込む場合にも、ポー
ルピースギャップの中に組み込むことができ、コストの
低減を図ることができる。また、電子顕微鏡等にアタッ
チメントとして組み込み、受光器に量子線を照射して受
光器からの量子線や吸収電流の変化を検出することがで
きるので、電子顕微鏡の電子照射機構と反射電子や二次
電子、透過電子、回折電子等の検出器をそのまま使って
変位を検出し原子間力顕微鏡を観察することができる。
さらには、電子ビームの偏向装置を使用することができ
るので、広領域でカバーでき、電子ビームのコントロー
ルにより画質の加工を行うこともできる。
As is apparent from the above description, according to the present invention, the sample is mounted on the driving unit using the piezo,
Since it is only necessary to attach a small light receiver to the spring body that supports the probe above the sample, the modulated optical lever part unlike the conventional example is not required, and the device can be downsized, and it can be used as an AF for electron microscopes.
Even when the M device is incorporated as an attachment, it can be incorporated in the pole piece gap, and the cost can be reduced. In addition, since it can be incorporated in an electron microscope as an attachment and irradiate the photodetector with quantum rays to detect changes in the quantum current and absorption current from the photodetector, the electron irradiation mechanism of the electron microscope and reflected electrons and secondary electrons can be detected. The atomic force microscope can be observed by using the detectors of electrons, transmitted electrons, diffracted electrons, etc. as they are to detect displacement.
Furthermore, since an electron beam deflecting device can be used, a wide area can be covered, and the image quality can be processed by controlling the electron beam.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係る原子間力顕微鏡ユニットの1実
施例を示す図である。
FIG. 1 is a diagram showing an embodiment of an atomic force microscope unit according to the present invention.

【図2】 電子顕微鏡にAFM(原子間力顕微鏡)ユニ
ットを組み込んだ本発明の他の実施例を示す図である。
FIG. 2 is a diagram showing another embodiment of the present invention in which an AFM (atomic force microscope) unit is incorporated in an electron microscope.

【図3】 AFMユニットの拡大図である。FIG. 3 is an enlarged view of an AFM unit.

【図4】 受光器の吸収電流を検出する本発明に係る原
子間力顕微鏡の他の実施例を示す図である。
FIG. 4 is a diagram showing another embodiment of the atomic force microscope according to the present invention for detecting an absorption current of a light receiver.

【図5】 AFMユニットの他の実施例構成を示す図で
ある。
FIG. 5 is a diagram showing the configuration of another embodiment of the AFM unit.

【符号の説明】[Explanation of symbols]

1…取り付けベース、2…ピエゾ駆動部、3…試料、4
…探針、5…カンチレバー、6…受光器、7…電子線
1 ... Mounting base, 2 ... Piezo drive unit, 3 ... Sample, 4
... probe, 5 ... cantilever, 6 ... light receiver, 7 ... electron beam

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 バネ体で支持した探針に試料を接近させ
た時の探針と試料との間に作用する原子間力によるバネ
体の変位を検出し試料の表面観察を行う原子間力顕微鏡
において、取り付けベース上に取り付けた駆動手段に試
料を固定し、バネ体の自由端側に探針と受光部材を固定
して探針を試料と対向させると共にバネ体の他端を取り
付けベースに固定して、駆動手段に固定した試料及びバ
ネ体に固定した探針と受光部材をユニット化し、該ユニ
ットを量子線の照射試料位置に装着し受光部材に量子線
を照射して量子線照射位置の変化を検出するように構成
したことを特徴とする原子間力顕微鏡ユニット。
1. An atomic force for observing the surface of a sample by detecting the displacement of the spring body due to the atomic force acting between the probe and the sample when the sample is brought close to the probe supported by the spring body. In the microscope, fix the sample to the driving means mounted on the mounting base, and fix the probe and the light receiving member to the free end side of the spring body so that the probe faces the sample and the other end of the spring body to the mounting base. The probe fixed to the driving means and the probe fixed to the spring body and the light receiving member are unitized, the unit is attached to the irradiation position of the quantum beam, and the light receiving member is irradiated with the quantum beam to emit the quantum beam. Atomic force microscope unit characterized by being configured to detect changes in the
【請求項2】 取り付けベースの試料固定側とバネ体固
定側とを電気的に絶縁し、バネ体固定側に電流取り出し
線を接続したことを特徴とする請求項1記載の原子間力
顕微鏡ユニット。
2. The atomic force microscope unit according to claim 1, wherein the sample fixing side and the spring body fixing side of the mounting base are electrically insulated, and a current extraction line is connected to the spring body fixing side. .
【請求項3】 受光部材は、中心部より異種材料で2分
して構成したものであることを特徴とする請求項1記載
の原子間力顕微鏡ユニット。
3. The atomic force microscope unit according to claim 1, wherein the light receiving member is formed by dividing the center portion into two parts made of different materials.
JP26706092A 1992-10-06 1992-10-06 Interatomic force microscope unit Withdrawn JPH06117848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26706092A JPH06117848A (en) 1992-10-06 1992-10-06 Interatomic force microscope unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26706092A JPH06117848A (en) 1992-10-06 1992-10-06 Interatomic force microscope unit

Publications (1)

Publication Number Publication Date
JPH06117848A true JPH06117848A (en) 1994-04-28

Family

ID=17439481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26706092A Withdrawn JPH06117848A (en) 1992-10-06 1992-10-06 Interatomic force microscope unit

Country Status (1)

Country Link
JP (1) JPH06117848A (en)

Similar Documents

Publication Publication Date Title
US5294804A (en) Cantilever displacement detection apparatus
CA2145018C (en) Scanning near-field optic/atomic force microscope
US5587523A (en) Atomic force microscope employing beam tracking
JP2516292B2 (en) Atomic force microscope
JPH0650750A (en) Scanning-type microscope including force detecting means
US7247842B1 (en) Method and system for scanning apertureless fluorescence mircroscope
JP2005535878A (en) Improved method and system for a scanning apertureless fluorescence microscope
US4874945A (en) Electron microscope equipped with scanning tunneling microscope
US6189373B1 (en) Scanning force microscope and method for beam detection and alignment
EP0283256A2 (en) Scanning optical microscope
WO2013157419A1 (en) Compound microscope
JPH0540009A (en) Scanning tunneling microscope
US8332960B2 (en) Device for scanning a sample surface covered with a liquid
JP2984154B2 (en) Atomic force microscope
EP0652414A1 (en) Scanning near-field optic/atomic force microscope
JPH06117848A (en) Interatomic force microscope unit
JP4202076B2 (en) Scattering near-field microscope
JP2005147979A (en) Scanning probe microscope
JP3189244B2 (en) Near field microscope
JP3188024B2 (en) Scanning probe microscope
JP4262621B2 (en) Atomic force microscope
JPH08220113A (en) Scanning proximity field optical microscope
JPH0972924A (en) Scanning type probe microscope
JPH06258068A (en) Interatomic force microscope
JP3796456B2 (en) Cantilever with measuring hole and beam measuring method using the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000104