JP2984154B2 - Atomic force microscope - Google Patents

Atomic force microscope

Info

Publication number
JP2984154B2
JP2984154B2 JP4267059A JP26705992A JP2984154B2 JP 2984154 B2 JP2984154 B2 JP 2984154B2 JP 4267059 A JP4267059 A JP 4267059A JP 26705992 A JP26705992 A JP 26705992A JP 2984154 B2 JP2984154 B2 JP 2984154B2
Authority
JP
Japan
Prior art keywords
sample
atomic force
quantum
force microscope
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4267059A
Other languages
Japanese (ja)
Other versions
JPH06117847A (en
Inventor
巖 酒井
昭次 奥富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON DENSHI ENJINIARINGU KK
NIPPON DENSHI KK
Original Assignee
NIPPON DENSHI ENJINIARINGU KK
NIPPON DENSHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON DENSHI ENJINIARINGU KK, NIPPON DENSHI KK filed Critical NIPPON DENSHI ENJINIARINGU KK
Priority to JP4267059A priority Critical patent/JP2984154B2/en
Publication of JPH06117847A publication Critical patent/JPH06117847A/en
Application granted granted Critical
Publication of JP2984154B2 publication Critical patent/JP2984154B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、バネ体で支持した探針
に試料を接近させた時の探針と試料との間に作用する原
子間力によるバネ体の変位を検出し試料の表面観察を行
う原子間力顕微鏡に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting the displacement of a spring body caused by an atomic force acting between the probe and the sample when the sample approaches the probe supported by the spring body, and detecting the surface of the sample. The present invention relates to an atomic force microscope for performing observation.

【0002】[0002]

【従来の技術】探針をカンチレバーで支持してサンプル
に10Å〜5Å程度まで近づけてゆくと、探針とサンプ
ルとの間に作用する力が引力から斥力(反力)に変わ
る。原子間力顕微鏡は、この変化に基づくカンチレバー
のしなり角の変化を検出して、サンプルの表面を探針で
走査することによりサンプル表面の観察を行うものであ
り、従来は、カンチレバーと変調光テコ方式やカンチレ
バーと光干渉テコ方式、STMによるバネの変位量検出
方式等が提案されている。
2. Description of the Related Art When a probe is supported by a cantilever and approaches a sample of about 10 to 5 degrees, a force acting between the probe and the sample changes from an attractive force to a repulsive force (reaction force). Atomic force microscopes detect changes in the bending angle of the cantilever based on this change, and observe the sample surface by scanning the surface of the sample with a probe.Conventionally, the cantilever and the modulated light A lever method, a cantilever-light interference lever method, a spring displacement detection method by STM, and the like have been proposed.

【0003】カンチレバーと変調光テコ方式は、レーザ
光をカンチレバーの先端部に照射してその反射光を検出
することによってカンチレバーのしなり角の変化に対応
した光量変化を検出するものであり、カンチレバーと光
干渉テコ方式は、カンチレバーのしなり角の変化に伴う
干渉縞の変化を検出するものである。また、STMによ
るバネの変位量検出方式は、探針にバイアスを印加しカ
ンチレバーに10Å近くまで近づけてゆくと流れるトン
ネル電流を検出してカンチレバーの変位量を検出するも
のである。
The cantilever and the modulated light lever system detect a change in the amount of light corresponding to a change in the bending angle of the cantilever by irradiating the tip of the cantilever with a laser beam and detecting the reflected light. The optical interference lever method detects a change in interference fringes accompanying a change in the bending angle of the cantilever. In the spring displacement detection method using STM, a bias current is applied to the probe to approach the cantilever up to about 10 °, and a tunnel current flowing therethrough is detected to detect the displacement of the cantilever.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記レーザ光
を用いる従来の方式は、レーザ光照射装置や光テコ機
構、光検出器を試料台に直結或いは近傍に堅牢に装着さ
れなければならない。通常は数mm程度の大きさの試料
を0.数mmの探針で観察するが、カンチレバーの変位
をレーザで検出するには、Åオーダのストローク変化を
拡大しなければならない。そのため、光学系のため装置
が大きくなり小型化が難しく、電子顕微鏡に組み込まれ
るアタッチメントとして不適当であった。しかも、レー
ザ光照射装置や光テコ機構、光検出器の構成部品は、高
精度が要求されるため、価格も高くなるというのも問題
であった。
However, in the conventional system using the above-mentioned laser beam, the laser beam irradiation device, the optical lever mechanism, and the photodetector must be directly connected to the sample table or firmly mounted near the sample table. Usually, a sample having a size of about several mm is used for 0.1 mm. Observation is performed with a probe of several mm. However, in order to detect the displacement of the cantilever with a laser, it is necessary to enlarge the stroke change on the order of Å. For this reason, the optical system makes the device large and difficult to miniaturize, making it unsuitable as an attachment incorporated in an electron microscope. In addition, since the components of the laser beam irradiation device, the optical lever mechanism, and the photodetector are required to have high accuracy, there is also a problem that the price is high.

【0005】また、STMを用いる方式も、カンチレバ
ーの上にさらにトンネル顕微鏡を装着しなければならな
いため、同様に装置の小型化が難しく、電子顕微鏡に組
み込まれるアタッチメントとして不適当であった。
Also, in the method using the STM, since a tunnel microscope must be further mounted on the cantilever, it is similarly difficult to reduce the size of the device, and it is unsuitable as an attachment incorporated in an electron microscope.

【0006】本発明は、上記の課題を解決するものであ
って、電子顕微鏡に容易にアタッチメントとして組み込
むことができ、安価で小型化が可能な原子間力顕微鏡を
提供することを目的とするものである。
An object of the present invention is to solve the above-mentioned problems, and an object of the present invention is to provide an atomic force microscope which can be easily incorporated into an electron microscope as an attachment, and is inexpensive and compact. It is.

【0007】[0007]

【課題を解決するための手段】そのために本発明は、バ
ネ体で支持した探針に試料を接近させた時の探針と試料
との間に作用する原子間力によるバネ体の変位を検出し
試料の表面観察を行う原子間力顕微鏡において、バネ体
に取り付けられる受光部材、該受光部材に量子線を照射
する量子線照射手段、及び受光部材の量子線照射位置の
変化を検出する検出手段を備え、受光部材に量子線を照
射して量子線照射位置の変化をを検出するように構成し
たことを特徴とするものである。
For this purpose, the present invention detects a displacement of a spring body caused by an atomic force acting between the probe and the sample when the sample approaches a probe supported by the spring body. In an atomic force microscope for observing the surface of a sample, a light receiving member attached to a spring body, a quantum beam irradiating means for irradiating the light receiving member with a quantum beam, and a detecting means for detecting a change in a quantum beam irradiation position of the light receiving member And irradiating the light receiving member with a quantum ray to detect a change in a quantum ray irradiation position.

【0008】[0008]

【作用】本発明の原子間力顕微鏡では、ピエゾを用いた
駆動部上に試料を取り付け、試料の上方で探針を支持す
るバネ体に小さな受光部材を取り付けるだけでよいの
で、装置の小型化が容易にできる。そして、その受光部
材に量子線を照射して受光部材からの量子線や吸収電流
の変化を検出するので、電子顕微鏡等のアタッチメント
として容易に組み込むことができ、電子顕微鏡の電子照
射機構と反射電子や二次電子、透過電子、回折電子等の
検出器をそのまま利用して変位を検出し原子間力顕微鏡
の試料像を観察することができる。
In the atomic force microscope of the present invention, it is only necessary to mount the sample on the driving unit using piezo, and to mount a small light receiving member on the spring body supporting the probe above the sample. Can be easily done. Then, the light-receiving member is irradiated with quantum rays to detect changes in the quantum rays and the absorption current from the light-receiving member, so that the light-receiving member can be easily incorporated as an attachment to an electron microscope or the like. , Secondary electrons, transmitted electrons, diffracted electrons and the like can be used as they are to detect the displacement and observe the sample image of the atomic force microscope.

【0009】[0009]

【実施例】以下、本発明の実施例を図面を参照しつつ説
明する。図1は本発明に係る原子間力顕微鏡の1実施例
を示す図、図2はAFM装置の細部構成例及び動作を説
明するための図、図3はAFM装置の1実施例構成を示
す図である。図中、1は電子銃、2は電子線、3は反射
電子・2次電子検出器、4は反射電子・2次電子、5は
上磁極、5′は下磁極、6はAFM(原子間力顕微鏡)
装置、7は試料、8は探針、9は受光器、10は透過電
子検出器、11は鏡筒、12はOリング、13は取り付
けベース、14はピエゾ駆動部、15はカンチレバー、
16は試料ホルダを示す。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a view showing one embodiment of an atomic force microscope according to the present invention, FIG. 2 is a view for explaining a detailed configuration example and operation of an AFM apparatus, and FIG. 3 is a view showing one embodiment configuration of an AFM apparatus. It is. In the figure, 1 is an electron gun, 2 is an electron beam, 3 is a reflected electron / secondary electron detector, 4 is a reflected electron / secondary electron, 5 is an upper magnetic pole, 5 'is a lower magnetic pole, and 6 is an AFM (interatomic atom). Force microscope)
Device, 7 is a sample, 8 is a probe, 9 is a light receiver, 10 is a transmitted electron detector, 11 is a lens barrel, 12 is an O-ring, 13 is a mounting base, 14 is a piezo drive, 15 is a cantilever,
Reference numeral 16 denotes a sample holder.

【0010】図1に示す実施例は、透過型電子顕微鏡を
基本構成としその鏡筒11内にAFM装置6を導入した
ものであり、電子銃1からの電子線2は、所定の径に絞
られてAFM装置6の受光器9に照射される。AFM装
置6は、鏡筒11の外側からOリング12でシールして
透過型電子顕微鏡等の試料部空間(ポールピースギャッ
プ)に装着したものであり、電子線2の照射によって受
光器9から発生する反射電子・2次電子4が反射電子・
2次電子検出器3で検出され、透過電子が透過電子検出
器10で検出される。
The embodiment shown in FIG. 1 has a transmission electron microscope as a basic configuration and an AFM device 6 introduced into a lens barrel 11 thereof. An electron beam 2 from an electron gun 1 is focused to a predetermined diameter. The light is then radiated to the light receiver 9 of the AFM device 6. The AFM device 6 is mounted on a sample space (pole piece gap) of a transmission electron microscope or the like after being sealed with an O-ring 12 from the outside of a lens barrel 11, and is generated from a light receiver 9 by irradiation of the electron beam 2. Reflected electrons and secondary electrons 4 are reflected electrons
The transmitted electrons are detected by the secondary electron detector 3 and the transmitted electrons are detected by the transmitted electron detector 10.

【0011】AFM装置6の試料7、探針8、受光器9
からなる部分の詳細は、例えば図2に示すように取り付
けベース13のピエゾ駆動部14に試料7を固定し、バ
ネ体を構成するカンチレバー15の自由端側に探針8と
受光器9を固定して探針8を試料7と対向させると共に
カンチレバー15の他端を取り付けベース13に固定し
たものである。受光器9は、(ハ)に示すように中心部
より金Auと炭素Cからなる異種材料で2分して中心部
の境界を基準ラインとして構成したものであり、
(ロ)、(ハ)に示すように上方から所定の径に絞られ
た電子線2が照射される。このような受光器9を用いる
と、AuはCに比べ二次電子が出やすいため、(ハ)に
示すように電子線2に対して受光器9が矢印A方向に変
位すると、受光器9に対する電子線2の照射面積は同じ
であっても、Auに対する電子線2の照射面積とCに対
する電子線2の照射面積の割合が変化する。その結果、
Au側から発生する二次電子の量とC側から発生する二
次電子の量とが変化するため、これらの二次電子の量の
変化から受光器9の変位を検出することができる。図2
に示すユニットは、図3(イ)に示すように試料ホルダ
16の先端に取り付けられ、(イ)のA方向からの正面
図(ロ)に示すように上磁極5、下磁極5′との間のポ
ールピースギャップに装着される。
The sample 7, the probe 8, and the light receiver 9 of the AFM device 6
For details of the portion consisting of, for example, as shown in FIG. 2, the sample 7 is fixed to the piezo drive unit 14 of the mounting base 13, and the probe 8 and the light receiver 9 are fixed to the free end side of the cantilever 15 constituting a spring body. Then, the probe 8 faces the sample 7 and the other end of the cantilever 15 is fixed to the mounting base 13. The light receiver 9 is configured by dividing the central portion into two parts of a different material made of gold Au and carbon C as shown in FIG.
As shown in (b) and (c), the electron beam 2 narrowed to a predetermined diameter from above is irradiated. When such a photodetector 9 is used, Au emits secondary electrons more easily than C, and therefore, when the photodetector 9 is displaced in the direction of arrow A with respect to the electron beam 2 as shown in FIG. Although the irradiation area of the electron beam 2 with respect to C is the same, the ratio of the irradiation area of the electron beam 2 with respect to Au and the ratio of the irradiation area of the electron beam 2 with respect to C change. as a result,
Since the amount of secondary electrons generated from the Au side and the amount of secondary electrons generated from the C side change, the displacement of the light receiver 9 can be detected from the change in the amount of these secondary electrons. FIG.
The unit shown in FIG. 3 is attached to the tip of the sample holder 16 as shown in FIG. 3A, and is connected to the upper magnetic pole 5 and the lower magnetic pole 5 'as shown in the front view from the direction A in FIG. It is attached to the gap between the pole pieces.

【0012】上記構成により、ピエゾ駆動部14のXY
ピエゾ素子を駆動して試料をXY走査しながら二次電子
を検出することによって受光器9の変位を検出し、その
変位検出信号による試料表面の観察像を出力することが
できる。また、ピエゾ駆動部14のXY方向のピエゾ素
子を駆動して試料をXY走査しながら二次電子を検出
し、この二次電子が一定になるようにピエゾ駆動部14
のZピエゾ素子を駆動することによって、Zピエゾ素子
の駆動信号による試料表面の観察像を出力することがで
きる。
With the above configuration, the XY of the piezo drive unit 14
By driving the piezo element and detecting secondary electrons while XY scanning the sample, the displacement of the light receiver 9 can be detected, and an observation image of the sample surface based on the displacement detection signal can be output. Further, the piezo elements in the XY directions of the piezo driving unit 14 are driven to detect secondary electrons while scanning the sample XY, and the piezo driving unit 14 is controlled so that the secondary electrons become constant.
By driving the Z piezo element, an observation image of the sample surface can be output by a drive signal of the Z piezo element.

【0013】図4は走査型電子顕微鏡にAFM装置を組
み込んだ本発明に係る原子間力顕微鏡の他の実施例を示
す図、図5はAFM装置の他の実施例構成を示す図であ
る。図において、21は試料室、22は電子銃、23は
電子線、24は磁極、25はAFMユニット、26は試
料キャリア、27は試料ステージ、28は反射電子・2
次電子、29は検出手段、30は表示手段、31は予備
排気室、32は仕切弁、33は試料交換棒、34はユニ
ットホルダを示す。
FIG. 4 is a diagram showing another embodiment of an atomic force microscope according to the present invention in which an AFM device is incorporated in a scanning electron microscope, and FIG. 5 is a diagram showing another embodiment of an AFM device. In the figure, reference numeral 21 denotes a sample chamber, 22 denotes an electron gun, 23 denotes an electron beam, 24 denotes a magnetic pole, 25 denotes an AFM unit, 26 denotes a sample carrier, 27 denotes a sample stage, and 28 denotes reflected electrons.
Reference numeral 29 denotes detection means, 30 denotes display means, 31 denotes a preliminary exhaust chamber, 32 denotes a gate valve, 33 denotes a sample exchange rod, and 34 denotes a unit holder.

【0014】図4に示す実施例は、試料ステージ27の
上方に反射電子・二次電子28を検出するための検出手
段28を有する走査型電子顕微鏡に試料キャリア26と
共にAFMユニット25を装着し、電子線23の照射に
よって受光器から検出される反射電子・二次電子28を
検出手段29で検出して表示手段30に表示するように
構成したものである。
In the embodiment shown in FIG. 4, an AFM unit 25 is mounted together with a sample carrier 26 on a scanning electron microscope having a detecting means 28 for detecting reflected electrons and secondary electrons 28 above a sample stage 27. The reflected electrons and secondary electrons 28 detected from the light receiver by the irradiation of the electron beam 23 are detected by the detection means 29 and displayed on the display means 30.

【0015】AFMユニット25は、図5に示したよう
に試料の代わりにユニットホルダ34を試料キャリア2
6に装着し、そのユニットホルダ34に取り付けられ
る。このAFMユニット25を試料ステージ27にセッ
トする場合には、試料交換棒33を試料キャリア26に
螺合させて、図4に示すようにまず予備排気室31に導
入する。そして、予備排気室31を排気した後に仕切弁
32を開けて試料室21の試料ステージ27にセット
し、試料交換棒26の螺合を外して予備排気室31まで
試料交換棒26を引き抜いて仕切弁32を閉じる。
The AFM unit 25 includes a unit holder 34 instead of a sample as shown in FIG.
6 and attached to the unit holder 34 thereof. When the AFM unit 25 is set on the sample stage 27, the sample exchange rod 33 is screwed into the sample carrier 26, and is first introduced into the preliminary exhaust chamber 31 as shown in FIG. After exhausting the preliminary exhaust chamber 31, the gate valve 32 is opened and set on the sample stage 27 of the sample chamber 21, the screw of the sample exchange rod 26 is removed, and the sample exchange rod 26 is pulled out to the preliminary exhaust chamber 31 to partition. Close valve 32.

【0016】図6は受光器の吸収電流を検出する本発明
に係る原子間力顕微鏡の他の実施例を示す図、図7はA
FMユニットの他の実施例構成を示す図である。図にお
いて、41は試料室、42は電子銃、43は電子線、4
4はレンズ、45はAFMユニット、46は電流取り出
し線、47は電流検出端子、48は電流検出手段、49
は表示手段、51は反射電子・二次電子、52は透過電
子・反射電子(回折)、53は受光器、54はカンチレ
バー、55は探針、56はサンプル、57はピエゾ素
子、58は取り付けベース、59はインシュレータを示
す。
FIG. 6 is a diagram showing another embodiment of the atomic force microscope according to the present invention for detecting the absorption current of the light receiver, and FIG.
It is a figure showing other examples composition of an FM unit. In the figure, 41 is a sample chamber, 42 is an electron gun, 43 is an electron beam, 4
4 is a lens, 45 is an AFM unit, 46 is a current extraction line, 47 is a current detection terminal, 48 is current detection means, 49
Is a display means, 51 is reflected electrons / secondary electrons, 52 is transmitted electrons / reflected electrons (diffraction), 53 is a light receiver, 54 is a cantilever, 55 is a probe, 56 is a sample, 57 is a piezo element, and 58 is a mounting element. A base 59 indicates an insulator.

【0017】図6に示す実施例は、電子銃42からの電
子線43をレンズ44で制御してAFMユニット45の
受光器に照射し、その受光器の吸収電流を電流取り出し
線46から電流検出端子47を通して電流検出手段48
で検出し、表示手段49に吸収電流による試料表面の観
察像を表示できるように構成したものである。そのため
に、図7に示すように取り付けベース58は、インシュ
レータ59でカンチレバー54の取り付け側を電気的に
絶縁して浮かし、カンチレバー54に電流取り出し線4
6を接続している。したがって、受光器53が振れて変
位すると、その変位に伴って受光器53のAuとCに対
する電子線の照射量が変化して受光器53のAu側の吸
収電流とC側の吸収電流が変化するので、この変化量か
ら受光器53の変位量を検出することができる。
In the embodiment shown in FIG. 6, an electron beam 43 from an electron gun 42 is controlled by a lens 44 to irradiate a photodetector of an AFM unit 45. Current detection means 48 through terminal 47
And an observation image of the sample surface by the absorption current can be displayed on the display means 49. For this purpose, as shown in FIG. 7, the mounting base 58 is electrically insulated from the mounting side of the cantilever 54 by an insulator 59 and floats.
6 are connected. Therefore, when the light receiving device 53 is displaced by swinging, the irradiation amount of the electron beam to the Au and C of the light receiving device 53 changes with the displacement, and the absorption current on the Au side and the absorption current on the C side of the light receiving device 53 change. Therefore, the amount of displacement of the light receiver 53 can be detected from the amount of change.

【0018】なお、本発明は、上記の実施例に限定され
るものではなく、種々の変形が可能である。例えば上記
の実施例では、受光器をカンチレバーに取り付けてその
受光器に電子線を照射し、二次電子、反射電子、透過電
子、回折電子の検出、吸収電流の検出を行うようにした
が、散乱電子や特性X線等の他の量子線の検出を行うよ
うにしてもよいし、電子線に代えてX線や他の量子線を
照射してもよい。探針と受光器は、カンチレバーに取り
付けるようにしたが、一端を固定したスプリングの他端
に探針及び受光器を取り付けたり、その他のバネ体によ
る取り付け機構を採用してもよいことはいうまでもな
い。
It should be noted that the present invention is not limited to the above embodiment, and various modifications are possible. For example, in the above-described embodiment, the light receiver is attached to the cantilever and the light receiver is irradiated with an electron beam, and secondary electrons, reflected electrons, transmitted electrons, detection of diffracted electrons, and absorption current are detected. Other quantum rays such as scattered electrons and characteristic X-rays may be detected, or X-rays and other quantum rays may be irradiated instead of the electron beam. The probe and the receiver are attached to the cantilever, but it goes without saying that the probe and the receiver may be attached to the other end of the spring with one end fixed, or an attachment mechanism using another spring body may be adopted. Nor.

【0019】また、受光部材は、AuとCを組み合わせ
たものを用いたが、量子線の照射領域が変化した場合に
量子線の検出量が異なるものであれば、他の異種材料の
組み合わせたり異種材料の繰り返しパターンにしてもよ
いし、特殊形状にしたり孔を設けたり模様を設けて、受
光部材の変位を検出するように構成してもよい。さらに
この場合、所定の径に絞ったプローブを照射したが、細
いビームにより一定領域の受光材料面を走査して基準ラ
インの変位を検出するように構成してもよいし、受光部
材の変位を電子顕微鏡の走査像や透過像で観るようにし
てもよい。
The light receiving member used is a combination of Au and C. However, if the amount of detection of the quantum beam differs when the irradiation area of the quantum beam changes, the combination of other different materials may be used. A repetitive pattern of different materials may be used, or a special shape, a hole or a pattern may be provided to detect the displacement of the light receiving member. Further, in this case, the probe which is narrowed to a predetermined diameter is irradiated, but the light receiving material surface in a certain area may be scanned with a thin beam to detect the displacement of the reference line, or the displacement of the light receiving member may be detected. It may be viewed as a scanning image or a transmission image of an electron microscope.

【0020】[0020]

【発明の効果】以上の説明から明らかなように、本発明
によれば、ピエゾを用いた駆動部上に試料を取り付け、
試料の上方で探針を支持するバネ体に小さな受光器を取
り付けるだけでよいので、従来例のような変調光テコ部
が不要となり、装置が小型化でき、電子顕微鏡等にAF
M装置をアタッチメントとして組み込む場合にも、ポー
ルピースギャップの中にも組み込むことができ、コスト
の低減を図ることができる。また、電子顕微鏡等にアタ
ッチメントとして組み込み、受光器に量子線を照射して
受光器からの量子線や吸収電流の変化を検出することが
できるので、電子顕微鏡の電子照射機構と反射電子や二
次電子、透過電子、回折電子等の検出器をそのまま使っ
て変位を検出し原子間力顕微鏡を観察することができ
る。さらには、電子ビームの偏向装置を使用することが
できるので、広領域でカバーでき、電子ビームのコント
ロールにより画質の加工を行うこともできる。
As is apparent from the above description, according to the present invention, a sample is mounted on a driving unit using a piezo,
Since it is only necessary to attach a small light receiver to the spring body supporting the probe above the sample, the modulation optical lever part as in the conventional example is not required, the apparatus can be downsized, and the AF can be used for an electron microscope or the like.
When the M device is incorporated as an attachment, the M device can also be incorporated in the pole piece gap, so that the cost can be reduced. In addition, it can be incorporated into an electron microscope or the like as an attachment and irradiate the photodetector with quantum rays to detect changes in the quantum rays or absorption current from the photodetector. Displacement can be detected using a detector for electrons, transmitted electrons, diffracted electrons, and the like, and an atomic force microscope can be observed. Furthermore, since an electron beam deflecting device can be used, it is possible to cover a wide area, and it is possible to perform image quality processing by controlling the electron beam.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る原間力顕微鏡の1実施例を示す
図である。
FIG. 1 is a view showing one embodiment of an atomic force microscope according to the present invention.

【図2】 AFM装置の細部構成例及び動作を説明する
ための図である。
FIG. 2 is a diagram illustrating a detailed configuration example and operation of the AFM device.

【図3】 AFM装置の1実施例構成を示す図である。FIG. 3 is a diagram showing a configuration of an embodiment of the AFM device.

【図4】 走査型電子顕微鏡にAFM装置を組み込んだ
本発明に係る原子間力顕微鏡の他の実施例を示す図であ
る。
FIG. 4 is a diagram showing another embodiment of the atomic force microscope according to the present invention, in which an AFM device is incorporated in a scanning electron microscope.

【図5】 AFM装置の他の実施例構成を示す図であ
る。
FIG. 5 is a diagram showing a configuration of another embodiment of the AFM device.

【図6】 受光器の吸収電流を検出する本発明に係る原
子間力顕微鏡の他の実施例を示す図である。
FIG. 6 is a diagram showing another embodiment of the atomic force microscope according to the present invention for detecting an absorption current of a light receiver.

【図7】 AFMユニットの他の実施例構成を示す図で
ある。
FIG. 7 is a diagram showing the configuration of another embodiment of the AFM unit.

【符号の説明】[Explanation of symbols]

1…電子銃、2…電子線、3…反射電子・2次電子検出
器、4…反射電子・2次電子、5…上磁極、5′…下磁
極、6…AFM(原子間力顕微鏡)装置、7…試料、8
…探針、9…受光器、10…透過電子検出器、11…鏡
筒、12…Oリング、13…取り付けベース、14…ピ
エゾ駆動部、15…カンチレバー、16は試料ホルダ
DESCRIPTION OF SYMBOLS 1 ... Electron gun, 2 ... Electron beam, 3 ... Backscattered electron / secondary electron detector, 4 ... Backscattered electron / secondary electron, 5 ... Upper magnetic pole, 5 '... Lower magnetic pole, 6 ... AFM (atomic force microscope) Apparatus, 7 ... sample, 8
... probe, 9 ... light receiver, 10 ... transmission electron detector, 11 ... barrel, 12 ... O-ring, 13 ... mounting base, 14 ... piezo drive unit, 15 ... cantilever, 16 is sample holder

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G01B 21/00 - 21/32 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) G01B 21/00-21/32

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 バネ体で支持した探針に試料を接近させ
た時の探針と試料との間に作用する原子間力によるバネ
体の変位を検出し試料の表面観察を行う原子間力顕微鏡
において、バネ体に取り付けられる受光部材、該受光部
材に量子線を照射する量子線照射手段、及び受光部材の
量子線照射位置の変化を検出する検出手段を備え、受光
部材に量子線を照射して量子線照射位置の変化をを検出
するように構成したことを特徴とする原子間力顕微鏡。
1. An atomic force for detecting a displacement of a spring body due to an atomic force acting between the probe and the sample when the sample approaches the probe supported by the spring body and observing the surface of the sample. The microscope includes a light receiving member attached to a spring body, a quantum beam irradiating means for irradiating the light receiving member with a quantum ray, and a detecting means for detecting a change in a quantum beam irradiation position of the light receiving member. An atomic force microscope characterized in that it is configured to detect a change in the irradiation position of the quantum beam.
【請求項2】 量子線照射手段は、量子線として電子線
を照射するものであることを特徴とする請求項1記載の
原子間力顕微鏡。
2. The atomic force microscope according to claim 1, wherein the quantum beam irradiation means irradiates an electron beam as a quantum beam.
【請求項3】 量子線照射手段は、量子線としてX線を
照射するものであることを特徴とする請求項1記載の原
子間力顕微鏡。
3. The atomic force microscope according to claim 1, wherein the quantum ray irradiation means irradiates X-rays as quantum rays.
【請求項4】 受光部材は、中心部より異種材料で2分
して構成したものであることを特徴とする請求項1記載
の原子間力顕微鏡。
4. The atomic force microscope according to claim 1, wherein the light receiving member is formed by dividing the central portion by a different material into two parts.
【請求項5】 検出手段は、受光部材からの量子線を検
出するものであることを特徴とする請求項1記載の原子
間力顕微鏡。
5. The atomic force microscope according to claim 1, wherein the detecting means detects a quantum ray from the light receiving member.
【請求項6】 検出手段は、受光部材における吸収電流
を検出するものであることを特徴とする請求項1記載の
原子間力顕微鏡。
6. The atomic force microscope according to claim 1, wherein the detecting means detects an absorption current in the light receiving member.
JP4267059A 1992-10-06 1992-10-06 Atomic force microscope Expired - Fee Related JP2984154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4267059A JP2984154B2 (en) 1992-10-06 1992-10-06 Atomic force microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4267059A JP2984154B2 (en) 1992-10-06 1992-10-06 Atomic force microscope

Publications (2)

Publication Number Publication Date
JPH06117847A JPH06117847A (en) 1994-04-28
JP2984154B2 true JP2984154B2 (en) 1999-11-29

Family

ID=17439467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4267059A Expired - Fee Related JP2984154B2 (en) 1992-10-06 1992-10-06 Atomic force microscope

Country Status (1)

Country Link
JP (1) JP2984154B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019243437A3 (en) * 2018-06-21 2020-02-06 Carl Zeiss Smt Gmbh Apparatus and method for examining and/or processing a sample
US11040379B2 (en) 2007-09-17 2021-06-22 Bruker Nano, Inc. Debris removal in high aspect structures
US11391664B2 (en) 2007-09-17 2022-07-19 Bruker Nano, Inc. Debris removal from high aspect structures

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3432091B2 (en) * 1996-11-05 2003-07-28 日本電子株式会社 Scanning electron microscope
SE0000555D0 (en) * 2000-02-22 2000-02-22 Nanofactory Instruments Ab Measuring device for transmission electron microscope
WO2008089950A1 (en) * 2007-01-22 2008-07-31 Nanofactory Instruments Ab Mems sensor for in situ tem atomic force microscopy

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11040379B2 (en) 2007-09-17 2021-06-22 Bruker Nano, Inc. Debris removal in high aspect structures
US11391664B2 (en) 2007-09-17 2022-07-19 Bruker Nano, Inc. Debris removal from high aspect structures
US11577286B2 (en) 2007-09-17 2023-02-14 Bruker Nano, Inc. Debris removal in high aspect structures
US11964310B2 (en) 2007-09-17 2024-04-23 Bruker Nano, Inc. Debris removal from high aspect structures
WO2019243437A3 (en) * 2018-06-21 2020-02-06 Carl Zeiss Smt Gmbh Apparatus and method for examining and/or processing a sample
TWI729418B (en) * 2018-06-21 2021-06-01 德商卡爾蔡司Smt有限公司 Apparatus and method for examining and/or processing a sample
US11262378B2 (en) 2018-06-21 2022-03-01 Carl Zeiss Smt Gmbh Apparatus and method for examining and/or processing a sample
US11592461B2 (en) 2018-06-21 2023-02-28 Carl Zeiss Smt Gmbh Apparatus and method for examining and/or processing a sample

Also Published As

Publication number Publication date
JPH06117847A (en) 1994-04-28

Similar Documents

Publication Publication Date Title
US6590703B2 (en) Optical system for scanning microscope
US5496999A (en) Scanning probe microscope
US6265718B1 (en) Scanning probe microscope with scan correction
JP3095226B2 (en) Photon scanning tunneling microscopy
US5763767A (en) Atomic force microscope employing beam-tracking
US5627365A (en) Scanning near-field optic/atomic force microscope in which imaging light is controlled in relation to a vibrating position of an optical fiber probe
JPH0650750A (en) Scanning-type microscope including force detecting means
US20040250608A1 (en) Removable probe sensor assembly and scanning probe microscope
US4874945A (en) Electron microscope equipped with scanning tunneling microscope
JP2005535878A (en) Improved method and system for a scanning apertureless fluorescence microscope
US6189373B1 (en) Scanning force microscope and method for beam detection and alignment
JP2984154B2 (en) Atomic force microscope
JP3497734B2 (en) Scanning probe microscope
GB2152697A (en) Improvements in or relating to scanning optical microscopes
JP3015980B2 (en) Atomic force microscope, recording / reproducing device and reproducing device
JP3189244B2 (en) Near field microscope
JP2005147979A (en) Scanning probe microscope
JPH06117848A (en) Interatomic force microscope unit
US6748795B1 (en) Pendulum scanner for scanning probe microscope
JPH06148400A (en) Apparatus and method for observing surface indentation image and x-ray transmission image
JPH08220113A (en) Scanning proximity field optical microscope
JP3188024B2 (en) Scanning probe microscope
JPH11316241A (en) Probe for scanning near-field optical microscope and scanning near-field optical microscope
JPH0676771A (en) Scanning type image pickup device, image pickup method, and image pickup plate used therefor
JPH0972924A (en) Scanning type probe microscope

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990907

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees