JPH06117707A - Vehicle air-conditioner - Google Patents

Vehicle air-conditioner

Info

Publication number
JPH06117707A
JPH06117707A JP4261219A JP26121992A JPH06117707A JP H06117707 A JPH06117707 A JP H06117707A JP 4261219 A JP4261219 A JP 4261219A JP 26121992 A JP26121992 A JP 26121992A JP H06117707 A JPH06117707 A JP H06117707A
Authority
JP
Japan
Prior art keywords
compressor
refrigerant
heat exchanger
pressure
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4261219A
Other languages
Japanese (ja)
Other versions
JP3339040B2 (en
Inventor
Seiji Ito
誠司 伊藤
Hiroshi Kinoshita
宏 木下
Masayoshi Enomoto
雅好 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP26121992A priority Critical patent/JP3339040B2/en
Publication of JPH06117707A publication Critical patent/JPH06117707A/en
Application granted granted Critical
Publication of JP3339040B2 publication Critical patent/JP3339040B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

PURPOSE:To reduce torque variation when the operation of the air-conditioner is changed over to a stopped state of a compressor and prevent slippage on a snow road during running of a vehicle in a heating operation using gaseous refrigerant of high temperature and high pressure (hot gas) during a freezing cycle. CONSTITUTION:A condensor 11 is arranged at a discharging side of a compressor 10 and a heat exchanger 14 is arranged at a suction side of the compressor 10. A path connecting the compressor 10 to the condensor 11 is provided with an opening or closing valve 18a. A bypassing pipe 20 bypassing from the opening or closing valve 18a to the condensor 11 is provided with a second pressure reducing device 22. During a heating operation, a compression work performed by the compressor 10 becomes a heating calorie included in hot gas and the heat is radiated by the heat exchanger 14. In the case that thermal radiation at the heat exchanger 14 is obviated and the compressor is stopped, the opening or closing valve 18a is opened and the refrigerant is flowed from the compressor 10 toward the condensor 11 for a specified period of time and then the operation of the compressor 10 is continued for a specified period of time. With such an arrangement as mentioned above, torque drop of the compressor 10 is decreased and the torque variation applied from an internal combustion engine to a driving system for running of the vehicle is reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、空調装置に関するもの
で、特に車両に搭載される車両用空調装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner, and more particularly to a vehicle air conditioner mounted on a vehicle.

【0002】[0002]

【従来の技術】圧縮機、コンデンサ、減圧装置およびエ
バポレータを接続した冷凍サイクルを有する空調装置に
おいては、一般に、圧縮機の運転を停止するとき停止音
が発生する。このため、例えば特開平3−195864
号公報に開示される空調装置においては、圧縮機の停止
直前に圧縮機の吸込圧力を低下することによって最大圧
縮トルク値を小さくした後、圧縮機を停止させ、車両用
空調装置の停止音を低減している。
2. Description of the Related Art In an air conditioner having a refrigeration cycle in which a compressor, a condenser, a pressure reducing device and an evaporator are connected, a stop sound is generally generated when the compressor is stopped. Therefore, for example, Japanese Patent Laid-Open No. 3-195864
In the air conditioner disclosed in the publication, the maximum compression torque value is reduced by lowering the suction pressure of the compressor immediately before stopping the compressor, and then the compressor is stopped, and the stop sound of the vehicle air conditioner is generated. It is decreasing.

【0003】[0003]

【発明が解決しようとする課題】ところで、従来の車両
に搭載される車両用空調装置としては、車両走行用の内
燃機関の冷却温水のもつ排熱を利用した温水ヒータが用
いられ、例えば図6に示すように、内燃機関1の冷却温
水を配管2により温水ヒータ3のヒータコア3aに導入
し、ヒータコア3aで放熱した冷却温水を配管4により
内燃機関1に戻すようにしている。この温水ヒータ3
は、車室内に導く空気の流れに対し、冷房装置を構成す
る熱交換器14の下流側に設けられている。
By the way, as a conventional vehicle air conditioner mounted on a vehicle, a hot water heater utilizing exhaust heat of cooling hot water of an internal combustion engine for running the vehicle is used, for example, as shown in FIG. As shown in FIG. 2, the cooling hot water of the internal combustion engine 1 is introduced into the heater core 3a of the hot water heater 3 through the pipe 2, and the cooling hot water radiated by the heater core 3a is returned to the internal combustion engine 1 through the pipe 4. This hot water heater 3
Is provided on the downstream side of the heat exchanger 14 constituting the cooling device with respect to the flow of air introduced into the vehicle interior.

【0004】しかし、車両走行用の内燃機関の冷却温水
のもつ排熱を熱源に利用した暖房装置は、内燃機関の低
温始動時に冷却水温度が低いことから、この冷却水を熱
源にする温水ヒータの立ち上がりが悪い。そこで、本出
願人は、このような問題点を解決するために、温水ヒー
タ等の主暖房装置に加え、冷凍サイクル中の高温高圧ガ
ス冷媒(ホットガス)を用いることで、暖房能力を向上
した簡易な車両用空調装置を先に特許出願した。
However, since the heating device utilizing the exhaust heat of the cooling hot water of the internal combustion engine for vehicle running as a heat source has a low cooling water temperature when the internal combustion engine is started at a low temperature, a hot water heater using this cooling water as a heat source. The rise of is bad. Then, in order to solve such a problem, the present applicant improved the heating capacity by using a high-temperature high-pressure gas refrigerant (hot gas) in the refrigeration cycle in addition to the main heating device such as a hot water heater. I applied for a patent for a simple vehicle air conditioner.

【0005】ところが、このようなホットガスを用いた
暖房装置においては、車両走行用の内燃機関を圧縮機の
駆動源にしているため、圧縮機の停止時には、大きなト
ルク変動が生じるため、圧縮機を駆動から停止へ切替え
る時に車両が雪道などを走行していた場合には大きなト
ルク変動によりスリップ等が起こりやすく安全性が損な
われるという問題がある。
However, in such a heating device using hot gas, since the internal combustion engine for running the vehicle is used as the drive source of the compressor, a large torque fluctuation occurs when the compressor is stopped, so the compressor is If the vehicle is traveling on a snowy road or the like at the time of switching from drive to stop, there is a problem that slippage or the like is likely to occur due to large torque fluctuations and safety is impaired.

【0006】本発明はこのような問題点を解決するため
になされたもので、圧縮機の駆動状態から停止状態への
切替時トルク変動を小さくし、車両走行時における雪道
などでのスリップを防止するようにした安全性の高い車
両用車両用空調装置を提供することを目的とする。
The present invention has been made in order to solve such a problem, and reduces the torque fluctuation at the time of switching the compressor from the driven state to the stopped state to prevent slipping on a snowy road or the like when the vehicle is running. It is an object of the present invention to provide a vehicle air-conditioning system for vehicles which is designed to be highly safe.

【0007】[0007]

【課題を解決するための手段】前記目的を達成するため
の本発明による車両用空調装置は、主暖房装置を備えた
車両用空調装置であって、冷媒を圧送する圧縮機と、こ
の圧縮機の吐出側に接続されるコンデンサと、前記圧縮
機の吸入側に接続される熱交換器であって、この熱交換
器を流通する空気流路と前記主暖房装置で加熱される空
気流路とが少なくとも一部一致するように前記主暖房装
置に対し直列に設けられる熱交換器と、前記圧縮機と前
記コンデンサとを結ぶ経路に設けられる開閉弁と、前記
コンデンサを迂回して前記開閉弁の入口側から前記コン
デンサと前記熱交換器とを結ぶ経路に接続されるバイパ
ス管と、前記バイパス管に設けられる減圧装置と、前記
バイパス管に冷媒を流す場合前記圧縮機の停止するとき
圧縮機の停止直前に前記開閉弁を開き圧縮機の吸込圧力
を低下した後圧縮機を停止させる圧縮機停止制御手段と
を備えたことを特徴とする。
A vehicle air conditioner according to the present invention for achieving the above object is a vehicle air conditioner provided with a main heating device, and a compressor for pumping a refrigerant, and this compressor. A condenser connected to the discharge side of the compressor, and a heat exchanger connected to the suction side of the compressor, the air passage flowing through the heat exchanger, and the air passage heated by the main heating device. Of a heat exchanger provided in series with the main heating device so that at least partially coincide with each other, an opening / closing valve provided in a path connecting the compressor and the condenser, and a bypass valve of the opening / closing valve bypassing the condenser. A bypass pipe connected to the path connecting the condenser and the heat exchanger from the inlet side, a decompression device provided in the bypass pipe, and a refrigerant flowing in the bypass pipe when the compressor is stopped Immediately before stop Characterized by comprising a compressor stop control means for stopping the compressor after reducing the suction pressure of the compressor to open the on-off valve.

【0008】[0008]

【作用】本発明の車両用空調装置によると、例えば内燃
機関の低温始動の際の暖房時、例えば図2に示すよう
に、車両用空調装置の圧縮機のなす圧縮仕事が熱仕事と
なって減圧装置を経て熱交換器で放熱される。したがっ
て、車両用空調装置のエバポレータの放熱量が温水ヒー
タの放熱量に加えられるので、発熱量が増大し、暖房能
力がアップする。また、圧縮機に仕事を与える内燃機関
は、その排熱が内燃機関の冷却温水に伝達されるから、
その冷却温水の流れるヒータコアからの放熱量が増加す
る。このため、急速暖房が可能になり、暖房能力がアッ
プする。
According to the vehicle air conditioner of the present invention, for example, during heating at the time of cold start of the internal combustion engine, for example, as shown in FIG. 2, the compression work performed by the compressor of the vehicle air conditioner becomes thermal work. The heat is dissipated by the heat exchanger through the pressure reducing device. Therefore, since the heat radiation amount of the evaporator of the vehicle air conditioner is added to the heat radiation amount of the hot water heater, the heat generation amount increases and the heating capacity increases. Further, in the internal combustion engine that gives work to the compressor, its exhaust heat is transferred to the hot water for cooling the internal combustion engine,
The amount of heat radiated from the heater core through which the cooling hot water flows increases. Therefore, rapid heating is possible and heating capacity is improved.

【0009】冷凍サイクルの高温ガス冷媒を用いた暖房
を継続する必要が無くなった時、圧縮機から圧送される
冷媒をコンデンサ側へも所定時間流し、かつ圧縮機の作
動を所定時間継続した状態に保持するため、圧縮機のト
ルク変動が低減し、車両走行用の内燃機関から駆動系に
与えるトルクの影響を緩やかに低下させる。このため、
車両が雪道等を走行している場合、スリップが起こりに
くく、安全性が高い。
When it becomes unnecessary to continue the heating using the high temperature gas refrigerant in the refrigeration cycle, the refrigerant pumped from the compressor is allowed to flow to the condenser side for a predetermined time, and the operation of the compressor is continued for a predetermined time. Since this is maintained, the torque fluctuation of the compressor is reduced, and the influence of the torque exerted on the drive system by the internal combustion engine for traveling the vehicle is gently reduced. For this reason,
When the vehicle is traveling on a snowy road or the like, slipping is unlikely to occur and safety is high.

【0010】[0010]

【実施例】以下、本発明の実施例を図面にもとづいて説
明する。車両用車両用空調装置に本発明を適用した第1
実施例の冷媒回路を図1に示す。車両に搭載した内燃機
関1のウォータジャケット内に連通する冷却水配管2
は、温水ヒータ3のヒータコア3aのチューブ内に連通
し、このヒータコア3aのチューブは冷却水戻し配管4
によって内燃機関1のウォータジャケットに連通する。
このウォータージャケットには水温を検出する水温セン
サ102が設けられ、冷却水配管2には開閉弁5が設け
られている。
Embodiments of the present invention will be described below with reference to the drawings. First application of the present invention to a vehicle air conditioner for a vehicle
The refrigerant circuit of the embodiment is shown in FIG. Cooling water piping 2 communicating with the water jacket of an internal combustion engine 1 mounted on a vehicle
Communicates with the inside of the tube of the heater core 3a of the hot water heater 3, and the tube of the heater core 3a is connected to the cooling water return pipe 4
Communicates with the water jacket of the internal combustion engine 1.
The water jacket is provided with a water temperature sensor 102 for detecting the water temperature, and the cooling water pipe 2 is provided with an opening / closing valve 5.

【0011】一方、車両用空調装置6の冷媒回路は、内
燃機関1により駆動される圧縮機10、コンデンサ1
1、レシーバ12、第1の減圧装置13、熱交換器1
4、アキュームレータ15が配管16により順に接続さ
れている。そして圧縮機10とコンデンサ11の間に設
けられる第1の開閉弁18aと圧縮機10との間には、
送風ファン35による風が通過可能なコンデンサ11を
迂回するバイパス管20の一端20aが接続され、バイ
パス管20の他端20bは第1の減圧装置13と熱交換
器14の間の配管16に連通する。バイパス管20に
は、第2の減圧装置22が設けられている。第2の減圧
装置22とバイパス管の一端20aの間には第2の開閉
弁18bが設けられている。
On the other hand, the refrigerant circuit of the vehicle air conditioner 6 includes a compressor 10 driven by the internal combustion engine 1 and a condenser 1
1, receiver 12, first pressure reducing device 13, heat exchanger 1
4 and the accumulator 15 are connected in order by the pipe 16. Then, between the first on-off valve 18a provided between the compressor 10 and the condenser 11 and the compressor 10,
One end 20a of the bypass pipe 20 that bypasses the condenser 11 through which the air blown by the blower fan 35 can pass is connected, and the other end 20b of the bypass pipe 20 communicates with the pipe 16 between the first pressure reducing device 13 and the heat exchanger 14. To do. The bypass pipe 20 is provided with a second pressure reducing device 22. A second opening / closing valve 18b is provided between the second pressure reducing device 22 and one end 20a of the bypass pipe.

【0012】この第2の減圧装置22により制御される
ガス冷媒の適正な圧力は、第2の減圧装置22の高圧側
で15kg/cm2 以上、低圧側で2〜4kg/cm2
である。これは、外気温が低い場合、低圧側の温度も低
いため十分な暖房能力を得るために高圧側の圧力を高く
保持し、図2に示すように、圧縮機10の負荷増大によ
る圧縮仕事を大きくする必要があるからであり、そのた
めには第2の減圧装置22の高圧側の圧力は15kg/
cm2 以上が望ましい。
[0012] appropriate pressure gas refrigerant is controlled by the second pressure reducing device 22, 15 kg / cm 2 or more on the high pressure side of the second pressure reducing device 22, 2-4 kg / cm 2 in the low-pressure side
Is. This is because when the outside air temperature is low, the temperature on the low pressure side is also low, so that the pressure on the high pressure side is kept high in order to obtain sufficient heating capacity, and as shown in FIG. This is because the pressure on the high pressure side of the second decompression device 22 is 15 kg /
cm 2 or more is desirable.

【0013】レシーバ12と第1の減圧装置13との間
の配管16には逆止弁24が設けられている。逆止弁2
4は冷媒がコンデンサ11に逆流し冷媒不足となるのを
防止する。またアキュームレータ15は、冷媒が過剰に
なった場合の冷媒を溜め圧縮機10への液戻りを防止
し、冷媒回路内に常に熱ガス冷媒が循環するようにして
いる。
A check valve 24 is provided in the pipe 16 between the receiver 12 and the first pressure reducing device 13. Check valve 2
Reference numeral 4 prevents the refrigerant from flowing back into the condenser 11 and becoming insufficient. Further, the accumulator 15 collects the refrigerant when the refrigerant becomes excessive and prevents the liquid from returning to the compressor 10, so that the hot gas refrigerant always circulates in the refrigerant circuit.

【0014】そして、熱交換器14の空気出口近傍には
空気温度を検出するサーミスタ103が設けられ、圧縮
機10とバイパス管20の一端20aとの間の配管には
配管中の冷媒圧力を検出する圧力センサ104が取り付
けられる。入力装置101は冷房の駆動及び停止、暖房
の駆動及び停止を入力する装置である。水温センサ10
2とサーミスタ103と圧力センサ104と入力装置1
01の出力は制御装置100に受けられており、制御装
置100の出力は、圧縮機10、第1の開閉弁18a、
第2の開閉弁18bおよび送風ファン28、35を制御
する。
A thermistor 103 for detecting the air temperature is provided near the air outlet of the heat exchanger 14, and the pressure of the refrigerant in the pipe is detected in the pipe between the compressor 10 and the one end 20a of the bypass pipe 20. The pressure sensor 104 is attached. The input device 101 is a device for inputting driving and stopping of cooling and driving and stopping of heating. Water temperature sensor 10
2, the thermistor 103, the pressure sensor 104, and the input device 1
The output of 01 is received by the control device 100, and the output of the control device 100 is the compressor 10, the first on-off valve 18a,
The second on-off valve 18b and the blower fans 28 and 35 are controlled.

【0015】ここに、サーミスタ103は、冷房時、熱
交換器14後の空気温度を検知する。制御装置100
は、サーミスタ103が検知した空気温度により熱交換
器14の凍結を判定し、凍結と判定した場合、圧縮機1
0を停止させる。その後、サーミスタ103が検知する
空気温度が上昇し、凍結の心配がなくなると、圧縮機1
0の運転を再開する。暖房時は圧縮機10の運転を停止
しない。
Here, the thermistor 103 detects the air temperature after the heat exchanger 14 during cooling. Control device 100
Determines whether the heat exchanger 14 is frozen based on the air temperature detected by the thermistor 103. When it is determined that the heat exchanger 14 is frozen, the compressor 1
Stop 0. After that, when the air temperature detected by the thermistor 103 rises and there is no fear of freezing, the compressor 1
Restart 0 operation. The compressor 10 is not stopped during heating.

【0016】圧力センサ104は、冷媒サイクルの冷媒
圧力を検出する。冷房時、制御装置100は、圧力セン
サ104が検知した圧力が機器の保護上所定の圧力範囲
以上でも以下でも異常と判定し、圧縮機10を停止させ
る。その後、圧力センサ104が検知する圧力が所定の
範囲になれば圧縮機10の運転を再開する。暖房時は、
所定の圧力範囲以下でも異常と判定しない。
The pressure sensor 104 detects the refrigerant pressure in the refrigerant cycle. During cooling, the control device 100 determines that the pressure detected by the pressure sensor 104 is abnormal even when the pressure is above or below a predetermined pressure range in order to protect the equipment, and stops the compressor 10. After that, when the pressure detected by the pressure sensor 104 falls within a predetermined range, the operation of the compressor 10 is restarted. When heating
It is not judged to be abnormal even within the specified pressure range.

【0017】水温センサ102は、内燃機関1の冷却水
温を検知する。冷却水を流す図示しないラジエ−タが放
熱しているか否かは、ラジエータに温水が流れている
か、あるいはラジエータをバイパスするバイパス管に温
水が流れてラジエータに流れていないかによって判定す
る。制御装置100がラジエータの状態が放熱であると
判定した場合、圧縮機10を停止させる。その後、水温
センサ102が検知した冷却水温が低下し、放熱しなく
なったら圧縮機10の運転を再開する。水温センサ10
2による制御は暖房時のみ行なう。
The water temperature sensor 102 detects the cooling water temperature of the internal combustion engine 1. Whether or not a radiator (not shown) through which the cooling water flows is radiating heat is determined by whether hot water is flowing through the radiator or whether hot water is flowing through a bypass pipe that bypasses the radiator and is not flowing through the radiator. When the control device 100 determines that the radiator state is heat dissipation, the compressor 10 is stopped. After that, when the cooling water temperature detected by the water temperature sensor 102 decreases and heat is no longer released, the operation of the compressor 10 is restarted. Water temperature sensor 10
The control by 2 is performed only during heating.

【0018】そして主暖房装置を構成するヒータコア3
aと暖房時に補助暖房装置として機能する熱交換器14
とは通風ダクト26内に直列に配置され、送風ファン2
8により通風ダクト26内に取り入れた空気を熱交換器
14およびヒータコア3aを経由して図示しない吹出口
から車室内に送風する。冷房時、第1の開閉弁18aは
開、第2の開閉弁18bは閉となり、圧縮機10からの
冷媒をコンデンサ11側にのみ流し、圧縮機10からの
冷媒を、コンデンサ11、レシーバ12、第1の減圧装
置13、熱交換器14、アキュームレータ15、圧縮機
10の順に循環する。熱交換器14では、送風ファン2
8から熱交換器14内に送られた空気が冷媒に熱を奪わ
れて冷風となり通風ダクト26から図示矢印方向に流
れ、ヒータコア3aを通過し車室内に吹き出される。
The heater core 3 which constitutes the main heating device
a and a heat exchanger 14 that functions as an auxiliary heating device during heating
Are arranged in series in the ventilation duct 26, and the blower fan 2
The air taken into the ventilation duct 26 by the air blower 8 is blown into the passenger compartment from a blow-out port (not shown) via the heat exchanger 14 and the heater core 3a. During cooling, the first opening / closing valve 18a is opened and the second opening / closing valve 18b is closed, so that the refrigerant from the compressor 10 flows only to the condenser 11 side, and the refrigerant from the compressor 10 is fed to the condenser 11, the receiver 12, and the receiver 11. The first pressure reducing device 13, the heat exchanger 14, the accumulator 15, and the compressor 10 circulate in this order. In the heat exchanger 14, the blower fan 2
The air sent from the heat exchanger 8 into the heat exchanger 14 is deprived of heat by the refrigerant, becomes cold air, flows from the ventilation duct 26 in the direction of the arrow in the drawing, passes through the heater core 3a, and is blown out into the vehicle interior.

【0019】暖房時、第1の開閉弁18aは閉、第2の
開閉弁18bは開となり、圧縮機10からの冷媒をバイ
パス管20側にのみ流し、圧縮機10からの冷媒を第2
の減圧装置22、熱交換器14、アキュームレータ1
5、圧縮機10の順に循環する。圧縮機10により吹出
される高温高圧の冷媒ガスは、第2の減圧装置22によ
り減圧され、高温低圧のガス冷媒に状態変化する。
During heating, the first on-off valve 18a is closed and the second on-off valve 18b is opened, so that the refrigerant from the compressor 10 flows only to the bypass pipe 20 side, and the refrigerant from the compressor 10 flows to the second side.
Decompression device 22, heat exchanger 14, accumulator 1
5, the compressor 10 is circulated in this order. The high-temperature and high-pressure refrigerant gas blown out by the compressor 10 is decompressed by the second decompression device 22 and changes into a high-temperature and low-pressure gas refrigerant.

【0020】第2の減圧装置22を通る高温低圧の熱ガ
ス冷媒が熱交換器14に導入されると、この高温ガスか
ら熱を奪った空気が加熱され、さらに図示矢印方向の下
流側の温水ヒータ3のヒータコア3a中の温水から熱を
奪ってさらに空気が加熱され、この加熱された温風が図
示しない吹出口から車室内に吹き出される。冷媒の変化
をモリエル線図上に示すと図2に示すようになる。すな
わち、第1の開閉弁18aが閉、第2の開閉弁18bが
開になっているとき、圧縮機10で圧縮された高温高圧
のガス冷媒は、低圧PL から高圧PH になり、第2の減
圧装置22を通ると、そのガス圧が高圧PH から低圧P
L に降下し、熱交換器14に入り次いでアキュームレー
タ15を経て圧縮機10の入口側に導入される。
When the high-temperature low-pressure hot gas refrigerant passing through the second pressure reducing device 22 is introduced into the heat exchanger 14, the air that has taken heat from the high temperature gas is heated, and the hot water on the downstream side in the direction of the arrow in the drawing is further heated. Heat is taken from the warm water in the heater core 3a of the heater 3 to further heat the air, and the heated warm air is blown into the vehicle compartment through a blow-out port (not shown). The change of the refrigerant is shown on the Mollier diagram as shown in FIG. That is, when the first on-off valve 18a is closed and the second on-off valve 18b is open, the high-temperature high-pressure gas refrigerant compressed by the compressor 10 changes from the low-pressure P L to the high-pressure P H. When passing through the decompression device 22 of No. 2, the gas pressure changes from high pressure P H to low pressure P H.
It goes down to L , enters the heat exchanger 14, and then is introduced to the inlet side of the compressor 10 via the accumulator 15.

【0021】圧縮機10による圧縮仕事は、図3に示す
ように、圧縮機10の出口側の圧力が高圧PH となり、
この高圧PH が15kg/cm2 以上になるのが望まし
い。圧縮機10の吸入圧力が1〜5kg/cm2 の範囲
で圧縮機出口側の吹出圧力(高圧PH )が15kg/c
2 以上であると圧縮動力がより大きくなるからであ
る。
As shown in FIG. 3, the compression work by the compressor 10 is such that the pressure on the outlet side of the compressor 10 becomes a high pressure P H ,
It is desirable that the high pressure P H be 15 kg / cm 2 or more. When the suction pressure of the compressor 10 is in the range of 1 to 5 kg / cm 2 , the blowout pressure (high pressure P H ) on the compressor outlet side is 15 kg / c.
This is because the compression power becomes larger when it is m 2 or more.

【0022】本実施例によると、圧縮機10を内燃機関
1により駆動するため、内燃機関1の負荷が増大し、内
燃機関で発生する熱が冷却温水に伝達され、この冷却温
水のもつ熱がヒータコア3aで送風温度を上昇させ、ヒ
ータコア3aの暖房能力も増大する。従って、熱交換器
14での高温低圧の熱ガス冷媒により空気が加熱され、
この加熱された空気はさらにヒータコア3aで内燃機関
冷却温水から熱を奪ってさらに高温に加熱される。従っ
て、車両用空調装置6による暖房能力はかなり増大し、
暖房能力の増大および急速暖房が可能となる。
According to this embodiment, since the compressor 10 is driven by the internal combustion engine 1, the load on the internal combustion engine 1 increases, the heat generated in the internal combustion engine is transferred to the cooling hot water, and the heat of this cooling hot water is transferred. The heater core 3a raises the temperature of the blown air, and the heating capacity of the heater core 3a also increases. Therefore, the air is heated by the high temperature and low pressure hot gas refrigerant in the heat exchanger 14,
The heated air further draws heat from the internal combustion engine cooling hot water by the heater core 3a and is heated to a higher temperature. Therefore, the heating capacity of the vehicle air conditioner 6 is considerably increased,
Increased heating capacity and rapid heating are possible.

【0023】停止時、開閉弁18a、開閉弁18bは、
冷房及び暖房時ともに暖房側にバイパス管20が開くよ
うに切替えて停止する。その理由は、暖房時、コンデン
サ11とレシーバ12は密閉された状態になるため、こ
の部分に大量に冷媒が存在すると暖房時にサイクルが冷
媒不足になる可能性があるためである。停止時、第1の
開閉弁18a、第2の開閉弁18bを暖房側に切替えて
コンデンサ11とレシーバ12を密閉しておけば、他の
部分からコンデンサ11、レシーバ12に冷媒が流入す
ることなく、暖房時に必要な冷媒を確保できるからであ
る。
When stopped, the on-off valves 18a and 18b are
During both cooling and heating, the bypass pipe 20 is switched to open on the heating side and stopped. The reason is that the condenser 11 and the receiver 12 are in a sealed state during heating, so that if a large amount of refrigerant exists in this portion, the cycle may run short of refrigerant during heating. When stopped, if the first opening / closing valve 18a and the second opening / closing valve 18b are switched to the heating side and the condenser 11 and the receiver 12 are sealed, the refrigerant does not flow into the condenser 11 and the receiver 12 from other portions. This is because the required refrigerant can be secured during heating.

【0024】また本実施例では、補助暖房であるホット
ガスサイクルを停止する場合、圧縮機を直ちにオフに切
替えない。この理由は、ホットガスサイクルを停止する
要求信号が制御装置に入力された場合、圧縮機を直ちに
オフに切替える比較例と、圧縮機を直ちにオフに切替え
ない本実施例についてトルク変動を対比すると明らかで
ある。
Further, in this embodiment, when the hot gas cycle which is the auxiliary heating is stopped, the compressor is not switched off immediately. The reason for this is clear that the torque fluctuation is compared between the comparative example in which the compressor is immediately turned off when the request signal for stopping the hot gas cycle is input to the control device and the present example in which the compressor is not immediately turned off. Is.

【0025】例えば図4に示すように、比較例では、圧
縮機のオンからオフへの切替直後トルクが急減する。こ
の結果、車両駆動系のトルク変動が大になり、その時車
両が雪道を走行していれば、車輪が路面とスリップを起
こしやすい。これに対し、本実施例では、制御装置に圧
縮機のオフ要求信号が入力されたとき第1の開閉弁18
aを開にし、圧縮機10から圧送される冷媒をコンデン
サ11側にも流すことでトルクを緩やかに低下させ、圧
縮機10の吸込側の冷媒圧力が所定値以下になったとき
第1の開閉弁18aを閉にする。これにより、圧縮機1
0の吸込側の冷媒圧力が十分に低い値になったとき圧縮
機10をオフにするので、トルクの急変動がなくなり、
走行駆動系のスリップが防止されるとともに運転性を阻
害しない。
For example, as shown in FIG. 4, in the comparative example, the torque sharply decreases immediately after the compressor is switched from ON to OFF. As a result, the torque fluctuation of the vehicle drive system becomes large, and if the vehicle is traveling on a snowy road at that time, the wheels are likely to slip with the road surface. On the other hand, in the present embodiment, the first opening / closing valve 18 is operated when the compressor off request signal is input to the control device.
When a is opened and the refrigerant pressure-fed from the compressor 10 is also made to flow to the condenser 11 side, the torque is gently reduced, and when the refrigerant pressure on the suction side of the compressor 10 becomes a predetermined value or less, the first opening / closing The valve 18a is closed. As a result, the compressor 1
When the refrigerant pressure on the suction side of 0 becomes a sufficiently low value, the compressor 10 is turned off, so there is no sudden change in torque,
The drive system is prevented from slipping and the drivability is not impaired.

【0026】本発明の暖房時の制御は図5に示す制御フ
ローの通りである。ステップ201において送風ファン
28、35がオンかを判定し、送風ファン28、35が
オンのとき、ステップ202にてエアコンスイッチがオ
ンかを判定し、エアコンスイッチがオンのとき、ステッ
プ203にて暖房スイッチがオンかを判定する。暖房ス
イッチがオンのとき、ステップ204にて冷媒圧力が所
定圧力以下かを判定する。これは、冷媒圧力が所定圧力
より高いときは圧縮機10に負荷がかかり過ぎるので、
圧縮機10の作動を停止するためである。冷媒圧力が所
定値以下のとき、ステップ205に進み、内燃機関の水
温が所定温度以上か以下かを判定する。水温が所定温度
以上であれば、主暖房装置のヒータコア3aでの熱交換
により暖房能力が充分に高いので、補助暖房装置の作動
を停止する。これは、水温が所定温度を超えていれば補
助暖房装置は作動させる必要はないからである。水温が
所定温度以下であれば、ステップ206にて室外の暖房
スイッチの温度設定が最大温度であるか否かを判定す
る。これは、最大温度設定時には暖房能力アップの要求
が特に大きいため補助暖房装置を作動するのが良く、ま
た温度設定が最大でなければ補助暖房装置を停止するの
が省エネルギーの観点から望ましいからである。そして
前記ステップ201〜206での条件が満足されたと
き、ステップ207にて圧縮機10をオンにする。
The control during heating according to the present invention is as shown in the control flow of FIG. In step 201, it is determined whether the blower fans 28, 35 are on. When the blower fans 28, 35 are on, it is determined in step 202 whether the air conditioner switch is on. When the air conditioner switch is on, heating is performed in step 203. Determine if the switch is on. When the heating switch is on, it is determined in step 204 whether the refrigerant pressure is below a predetermined pressure. This is because the compressor 10 is overloaded when the refrigerant pressure is higher than the predetermined pressure,
This is to stop the operation of the compressor 10. When the refrigerant pressure is below the predetermined value, the routine proceeds to step 205, where it is determined whether the water temperature of the internal combustion engine is above or below the predetermined temperature. If the water temperature is equal to or higher than the predetermined temperature, the heating capacity is sufficiently high due to the heat exchange in the heater core 3a of the main heating device, so the operation of the auxiliary heating device is stopped. This is because it is not necessary to operate the auxiliary heating device if the water temperature exceeds the predetermined temperature. If the water temperature is equal to or lower than the predetermined temperature, it is determined in step 206 whether the temperature setting of the outdoor heating switch is the maximum temperature. This is because it is preferable to operate the auxiliary heating device at the time of setting the maximum temperature because the demand for increasing the heating capacity is particularly large, and it is desirable to stop the auxiliary heating device if the temperature setting is not maximum from the viewpoint of energy saving. . When the conditions in steps 201 to 206 are satisfied, the compressor 10 is turned on in step 207.

【0027】それ以外の時はステップ209にて第1の
開閉弁18aを開にし、次にステップ210にて冷媒圧
力が所定値以下に低下しているかを判定し、冷媒圧力が
所定値以下であれば圧縮機10をオフにする。このとき
冷媒圧力が所定値を超えている期間中圧縮機10の作動
を継続する。これは、圧縮機10の負荷トルクの急減に
より車両走行駆動系のトルク変動を抑制し、車輪のスリ
ップを防止するためである。
In other cases, the first opening / closing valve 18a is opened in step 209, and then it is determined in step 210 whether the refrigerant pressure has dropped below a predetermined value. If there is, the compressor 10 is turned off. At this time, the operation of the compressor 10 is continued while the refrigerant pressure exceeds the predetermined value. This is to suppress the torque fluctuation of the vehicle drive system by the sudden decrease of the load torque of the compressor 10 and prevent the wheel slip.

【0028】なお、冷房時、ステップ208にて冷房ス
イッチをオンしているときは、通常の冷房動作を行う。
従って、前記補助暖房の条件下では、圧力センサ104
による検出冷媒圧力が低圧のときでも補助暖房装置の作
動を可能とし、また熱交換器14の凍結が判定されても
補助暖房装置の動作を行なえるような状態にする。暖房
制御時、圧縮機10の運転を停止後、冷媒圧力および冷
却水温の異常が解消されると圧縮機10の運転を再開し
ているが、暖房の立ち上がり性能の向上にのみ用いる場
合は圧縮機10の運転を再開しなくても良い。
During cooling, when the cooling switch is turned on in step 208, normal cooling operation is performed.
Therefore, under the condition of the auxiliary heating, the pressure sensor 104
The auxiliary heating device can be operated even when the detected refrigerant pressure is low, and the auxiliary heating device can be operated even if the heat exchanger 14 is determined to be frozen. During heating control, after the operation of the compressor 10 is stopped, the operation of the compressor 10 is restarted when the abnormality of the refrigerant pressure and the cooling water temperature is resolved. However, when it is used only for improving the heating start-up performance, the compressor is It is not necessary to restart the operation of 10.

【0029】ステップ201から203までで、ホット
ガスヒータが作動しているかの判定を行い、ステップ2
04から206までで、ホットガスヒータの停止要求が
あるかの判定を行う。ホットガスヒータの停止要求があ
ると判定した場合、ステップ209に移り、第1の開閉
弁18aを開とする。この状態では、開閉弁18a、1
8bともに開となっているため冷媒はコンデンサ11側
にも移動し、圧縮機10の吐出、吸入圧力はともに低下
するためトルクは図4に示すように徐々に減少する。次
にステップ210に移り、トルクが十分に低下したこと
を圧縮機吸込側の冷媒圧力により判定し、冷媒圧力が所
定圧力以下であれば、次のステップである211に移
り、圧縮機をオフする。このようなステップ209、2
10の制御を加えることで、圧縮機が停止する際のトル
ク変動を少なくすることができ、安全面での問題が解消
できる。
In steps 201 to 203, it is determined whether the hot gas heater is operating, and step 2
From 04 to 206, it is determined whether there is a request to stop the hot gas heater. When it is determined that there is a request to stop the hot gas heater, the process proceeds to step 209, and the first opening / closing valve 18a is opened. In this state, the on-off valves 18a, 1
Since both 8b are open, the refrigerant also moves to the condenser 11 side, and the discharge and suction pressures of the compressor 10 both decrease, so the torque gradually decreases as shown in FIG. Next, the routine proceeds to step 210, where it is determined by the refrigerant pressure on the compressor suction side that the torque has sufficiently decreased. If the refrigerant pressure is below a predetermined pressure, the routine proceeds to the next step, 211, where the compressor is turned off. . Such steps 209, 2
By adding the control of 10, the torque fluctuation when the compressor stops can be reduced, and the problem in safety can be solved.

【0030】前記実施例では、空気の流れに対し熱交換
器14が温水ヒータ3の上流に設けられているが、温水
ヒータ3の下流に設けてもよい。また、逆止弁24は開
閉弁でも良いし、第1の減圧装置13と兼用にしてもよ
い。また、サーミスタ103の代わりにサーモスタット
等の他の温度センサを用いても良い。サーミスタの信号
に代えて熱交換器14の表面温度を検知しても良い。さ
らに圧力センサ104の取付位置は、前記第1実施例の
位置に代えて、バイパス配管20の高圧部分に設けても
良い。この場合、暖房時の専用の圧力センサとすること
も出来る。さらに圧縮機10の停止を制御装置100に
よらずスイッチとして直接用いても良い。暖房時、冷房
時のエアコンの低圧カットおよびフロストカットを行な
わず新たに水温カットを行なうこともできる。
In the above embodiment, the heat exchanger 14 is provided upstream of the hot water heater 3 with respect to the air flow, but it may be provided downstream of the hot water heater 3. Further, the check valve 24 may be an open / close valve, or may also be used as the first pressure reducing device 13. Further, instead of the thermistor 103, another temperature sensor such as a thermostat may be used. Instead of the thermistor signal, the surface temperature of the heat exchanger 14 may be detected. Further, the mounting position of the pressure sensor 104 may be provided in the high pressure portion of the bypass pipe 20 instead of the position of the first embodiment. In this case, a dedicated pressure sensor for heating can be used. Further, the stop of the compressor 10 may be directly used as a switch without depending on the control device 100. It is also possible to newly perform the water temperature cut without performing the low pressure cut and the frost cut of the air conditioner during heating and cooling.

【0031】なお、前記実施例は、本発明を車両用車両
用空調装置のカークーラに適用した例であるが、前記実
施例におけるコンデンサ11、レシーバ12等の冷房時
にのみ使用する部品を除き、ホットガスサイクルのみと
して補助暖房専用としても良い。また、前記実施例のレ
シーバ12とアキュームレータ15は共に冷媒量を調整
する装置であるが、レシーバ12とアキュームレータ1
5のいずれか一方で冷媒量を調節してもよいし、冷媒充
填量を別途管理可能であればレシーバ12とアキューム
レータ15を省略してもよい。さらには、本発明の前記
実施例では、主暖房装置の熱源を内燃機関の冷却温水と
し、補助暖房装置の熱源を冷媒回路に循環される冷媒
(ホットガス)としているが、前記主暖房装置の熱源は
内燃機関の冷却温水に限られず、その他の熱源であって
も良い。また圧縮機の駆動源は内燃機関としたが、これ
に代えて、電圧源を用いてもよい。更に、開閉弁18
a、18bの代わりに、バイパス管の分岐点に配した三
方弁等の他の切替手段を用いても良い。さらには、ホッ
トガスサイクルの停止要求時、第1の開閉弁18aを開
状態にする期間を一定時間で定めてもよい。
The above embodiment is an example in which the present invention is applied to a car cooler of a vehicle air conditioner for a vehicle. However, except for the parts such as the condenser 11 and the receiver 12 used in the embodiment, which are used only for cooling, the hot Only the gas cycle may be used exclusively for auxiliary heating. Further, both the receiver 12 and the accumulator 15 of the above-mentioned embodiment are devices for adjusting the amount of refrigerant, but the receiver 12 and the accumulator 1 are
5, the amount of the refrigerant may be adjusted, or the receiver 12 and the accumulator 15 may be omitted if the amount of the charged refrigerant can be managed separately. Further, in the embodiment of the present invention, the heat source of the main heating device is the hot water for cooling the internal combustion engine, and the heat source of the auxiliary heating device is the refrigerant circulated in the refrigerant circuit (hot gas). The heat source is not limited to the cooling hot water of the internal combustion engine, and may be another heat source. The drive source of the compressor is the internal combustion engine, but a voltage source may be used instead. Furthermore, the on-off valve 18
Instead of a and 18b, other switching means such as a three-way valve arranged at the branch point of the bypass pipe may be used. Furthermore, when the stop request of the hot gas cycle is requested, the period in which the first on-off valve 18a is opened may be set to a fixed time.

【0032】[0032]

【発明の効果】以上説明したように、本発明の車両用空
調装置によれば、冷媒回路の高温高圧のガス冷媒を用い
た簡易な暖房装置が構成されるから、この暖房装置を主
暖房装置に加えると暖房能力がアップされるので、急速
暖房が可能になるという効果がある。
As described above, according to the vehicle air conditioner of the present invention, a simple heating device using the high-temperature and high-pressure gas refrigerant in the refrigerant circuit is constructed. Therefore, this heating device is used as the main heating device. In addition to the above, the heating capacity is improved, which has the effect of enabling rapid heating.

【0033】また、雪道等のスリップしやすい路面を車
両が走行するとき、本発明の車両用空調装置を駆動して
いると、補助暖房の停止の信号が制御装置に入力された
とき、圧縮機の運転をしばらくの期間継続し、かつ、冷
媒回路中の冷媒をコンデンサ側に流すことで、補助暖房
用のバイパス管への冷媒流れを低減し、トルクを緩やか
に低下させる。したがって、内燃機関の駆動系に伝達さ
れるトルク変動が低減し、スリップ等の発生を防止する
ので、車両走行中の安全性が高められるという効果があ
る。
When the vehicle travels on a slippery road surface such as a snowy road, if the vehicle air conditioner of the present invention is driven, when a signal for stopping auxiliary heating is input to the control device, compression is performed. By continuing the operation of the machine for a while and flowing the refrigerant in the refrigerant circuit to the condenser side, the refrigerant flow to the bypass pipe for auxiliary heating is reduced and the torque is gently reduced. Therefore, the fluctuation of the torque transmitted to the drive system of the internal combustion engine is reduced, and the occurrence of slip and the like is prevented, so that there is an effect that the safety while the vehicle is traveling is enhanced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例による車両用空調装置の冷媒回
路を示す回路図である。
FIG. 1 is a circuit diagram showing a refrigerant circuit of a vehicle air conditioner according to an embodiment of the present invention.

【図2】本発明の実施例による冷凍サイクルを示す部分
モリエル線図である。
FIG. 2 is a partial Mollier diagram showing a refrigeration cycle according to an example of the present invention.

【図3】本発明の実施例で用いた圧縮機の吸入圧力と圧
縮動力の関係を示す特性図である。
FIG. 3 is a characteristic diagram showing the relationship between the suction pressure and the compression power of the compressor used in the example of the present invention.

【図4】本発明の実施例と比較例の圧縮機オフ切替時の
トルク変化を対比した比較図である。
FIG. 4 is a comparative diagram comparing the torque change when the compressor is switched off between the example of the present invention and the comparative example.

【図5】本発明の実施例による制御フローを示すフロー
チャート図である。
FIG. 5 is a flowchart showing a control flow according to an embodiment of the present invention.

【図6】従来の車両用空調装置の冷媒回路を示す回路図
である。
FIG. 6 is a circuit diagram showing a refrigerant circuit of a conventional vehicle air conditioner.

【符号の説明】[Explanation of symbols]

1 内燃機関 3 温水ヒータ(主暖房装置) 10 圧縮機(冷媒圧縮機) 11 コンデンサ 13 第1の減圧装置 14 エバポレータ(熱交換器) 18a 第1の開閉弁 18b 第2の開閉弁 20 バイパス管 22 第2の減圧装置 1 Internal Combustion Engine 3 Hot Water Heater (Main Heating Device) 10 Compressor (Refrigerant Compressor) 11 Condenser 13 First Pressure Reduction Device 14 Evaporator (Heat Exchanger) 18a First Open / Close Valve 18b Second Open / Close Valve 20 Bypass Pipe 22 Second decompression device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 主暖房装置を備えた車両用空調装置であ
って、 冷媒を圧送する圧縮機と、 この圧縮機の吐出側に接続されるコンデンサと、 前記圧縮機の吸入側に接続される熱交換器であって、こ
の熱交換器を流通する空気流路と前記主暖房装置で加熱
される空気流路とが少なくとも一部一致するように前記
主暖房装置に対し直列に設けられる熱交換器と、 前記圧縮機と前記コンデンサとを結ぶ経路に設けられる
開閉弁と、 前記コンデンサを迂回して前記開閉弁の入口側から前記
コンデンサと前記熱交換器とを結ぶ経路に接続されるバ
イパス管と、 前記バイパス管に設けられる減圧装置と、 前記バイパス管に冷媒を流す場合前記圧縮機の停止する
とき圧縮機の停止直前に前記開閉弁を開き圧縮機の吸込
圧力を低下した後圧縮機を停止させる圧縮機停止制御手
段とを備えたことを特徴とする車両用空調装置。
1. A vehicle air conditioner including a main heating device, comprising a compressor for pumping a refrigerant, a condenser connected to a discharge side of the compressor, and a suction side of the compressor. A heat exchanger, which is provided in series with the main heating device such that an air flow passage flowing through the heat exchanger and an air flow passage heated by the main heating device at least partially coincide with each other. And an on-off valve provided in a path connecting the compressor and the condenser, and a bypass pipe bypassing the condenser and connected to a path connecting the condenser and the heat exchanger from the inlet side of the on-off valve. A decompression device provided in the bypass pipe, and when a refrigerant flows through the bypass pipe, when the compressor is stopped, the on-off valve is opened immediately before the compressor is stopped and the compressor after the suction pressure of the compressor is lowered is reduced. Stop Air conditioning system characterized by comprising a compressor stop control means.
JP26121992A 1992-09-30 1992-09-30 Vehicle air conditioner Expired - Fee Related JP3339040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26121992A JP3339040B2 (en) 1992-09-30 1992-09-30 Vehicle air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26121992A JP3339040B2 (en) 1992-09-30 1992-09-30 Vehicle air conditioner

Publications (2)

Publication Number Publication Date
JPH06117707A true JPH06117707A (en) 1994-04-28
JP3339040B2 JP3339040B2 (en) 2002-10-28

Family

ID=17358800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26121992A Expired - Fee Related JP3339040B2 (en) 1992-09-30 1992-09-30 Vehicle air conditioner

Country Status (1)

Country Link
JP (1) JP3339040B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5822999A (en) * 1996-05-03 1998-10-20 Electrolux Espana, S.A. Refrigeration system
JP2006125789A (en) * 2004-11-01 2006-05-18 Fuji Electric Holdings Co Ltd Cooling device and automatic vending machine therewith
WO2017085886A1 (en) * 2015-11-20 2017-05-26 三菱電機株式会社 Refrigeration cycle device and refrigeration cycle device control method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5822999A (en) * 1996-05-03 1998-10-20 Electrolux Espana, S.A. Refrigeration system
JP2006125789A (en) * 2004-11-01 2006-05-18 Fuji Electric Holdings Co Ltd Cooling device and automatic vending machine therewith
WO2017085886A1 (en) * 2015-11-20 2017-05-26 三菱電機株式会社 Refrigeration cycle device and refrigeration cycle device control method
JPWO2017085886A1 (en) * 2015-11-20 2018-08-02 三菱電機株式会社 Refrigeration cycle equipment

Also Published As

Publication number Publication date
JP3339040B2 (en) 2002-10-28

Similar Documents

Publication Publication Date Title
JP3237187B2 (en) Air conditioner
EP0913282B1 (en) Heat pump type air conditioning system for automotive vehicle
US20190023100A1 (en) Vehicle Air Conditioner
JP3356142B2 (en) Refrigeration cycle device
JPH07294071A (en) Air conditioner for automobile
US11203251B2 (en) Vehicle air conditioning device
US20210387506A1 (en) In-vehicle temperature control system
US6105666A (en) Vehicular air conditioning apparatus
US10926609B2 (en) Vehicle air conditioning device
JP3189255B2 (en) Air conditioner
JP2010159006A (en) Air conditioner for vehicle
KR20220122391A (en) Method for controlling heating of a vehicle thermal management system
JPH1142933A (en) Air conditioner
US11780293B2 (en) In-vehicle temperature control system
US20120247137A1 (en) Air conditioner for vehicle
JP3339040B2 (en) Vehicle air conditioner
JPH0952508A (en) Vehicular air conditioner
JP3060444B2 (en) Air conditioner
JP2000280733A (en) Automobile air conditioner
JP2002234335A (en) Vehicular air conditioner
JP3983901B2 (en) Heat pump type automotive air conditioner
JP3824824B2 (en) Air conditioner for vehicles
JP4014760B2 (en) Air conditioner for vehicles
WO2022064946A1 (en) Air conditioning device for vehicle
KR102615343B1 (en) Electric vehicle air conditioning system and its control method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080816

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110816

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees