JPH06117415A - Variable regeneration circuit - Google Patents

Variable regeneration circuit

Info

Publication number
JPH06117415A
JPH06117415A JP3108983A JP10898391A JPH06117415A JP H06117415 A JPH06117415 A JP H06117415A JP 3108983 A JP3108983 A JP 3108983A JP 10898391 A JP10898391 A JP 10898391A JP H06117415 A JPH06117415 A JP H06117415A
Authority
JP
Japan
Prior art keywords
oil
passage
valve
pressure
regeneration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3108983A
Other languages
Japanese (ja)
Other versions
JPH0784882B2 (en
Inventor
Wataru Kubomoto
亘 久保本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobelco Construction Machinery Co Ltd
Original Assignee
Yutani Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yutani Heavy Industries Ltd filed Critical Yutani Heavy Industries Ltd
Priority to JP3108983A priority Critical patent/JPH0784882B2/en
Publication of JPH06117415A publication Critical patent/JPH06117415A/en
Publication of JPH0784882B2 publication Critical patent/JPH0784882B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/021Valves for interconnecting the fluid chambers of an actuator

Abstract

PURPOSE:To simplify construction of a regeneration valve, which supplies pressure oil to the actuator of a hydraulic cylinder and the like and makes selective regeneration of the return oil, and to lessen passing resistance of a regeneration pressure oil passage while in process of regeneration and in operation. CONSTITUTION:A regeneration functional valve 27, which is provided with a directional control valve 24, which has its internal passage 34 usually closed and closes its internal oil passage by linking with a command signal operating an oil pressure switching valve 3 to the direction where pressure oil is supplied to a head side oil sac C of a hydraulic cylinder 2, in the midway of line pipes 35, 36 connecting the hydraulic directional control valve 3 and the hydraulic cylinder 2 together, a check valve 10, which forms a free passage only towards the line pipe 33 lead to a head side oil sac C of the hydraulic cylinder 2 from a delivery port of the directional control valve 24, and an inlet port lead to a line pipe 34 connecting a rod side oil sac D of the hydraulic cylinder 2 and the oil pressure switching valve 3 together, is provided independently of the oil pressure switching valve 3. Thus the construction of the valve itself can be simplified and the passing resistance of the regeneration oil pressure circuit in the course of regeneration can be kept to the least.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は油圧シリンダなどのアクチュエータに圧油を
供給し、その戻り油を選択再生する再生回路弁の構造を
簡略化し、かつ再生中および作動中の管路抵抗を減少せ
しめる油圧再生回路に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention simplifies the structure of a regeneration circuit valve that supplies pressure oil to an actuator such as a hydraulic cylinder, and selectively regenerates the return oil. The present invention relates to a hydraulic pressure regenerating circuit that reduces pipe resistance.

従来の技術 従来から、油圧シリンダのロッド側油室からの戻り油を
ヘッド側油室へ再生合流させる可変式再生回路弁では、
戻り油を小径スプールなどで閉塞して再生回路を形成
し、作動圧が一定値を越えると解除し、また、外部から
の信号圧力などにより、再生解除圧力を可変にさせてい
た。例えば、第6図は可変再生回路弁の一例を示す断面
図であるが、この図において、可変再生回路弁53のス
プール55における、油圧シリンダ2のロッド側油室D
に通ずる油路を開閉する側に中空穴を設け、スプリング
63により付勢され、軸線方向に移動自在に中心穴を有
する小径スプール62を嵌挿し、外周から中空穴に通ず
るノッチ穴70,68,71を設け、スプール55が中
立時においては、上記ノッチ穴70は弁本体54内のブ
リッジ通路67に通じ、ノッチ穴68はブリツジ通路6
7と高圧通路15´との中間に開口し、弁本体54によ
り閉塞され、ノッチ穴71はタンク連通路16´に連通
し、更に、スプール55を右方に移動させるとノッチ穴
70は引続きブリッジ通路67に連通し、同時に油路6
5によりピストン油室59に通じ、ノッチ穴68は高圧
通路15´に連通し、ノッチ穴71は引続きタンク連通
路16´に通じる位置にある。また、小径スプール62
の中心穴には、チェック弁60を介し隣接して、ピスト
ン61を端部に嵌挿したピストン油室59と、小径スプ
ール油室69とを設け、外周から該小径スプール油室6
9に連通するノッチ穴72,56,57を設け、該小径
スプール62がスプリング63の付勢力により左方にあ
るときは、ノッチ穴72はノッチ穴70とノッチ穴56
はノッチ穴68と連通し、ノッチ穴57はスプール55
の内壁で閉塞され、また、小径スプール62がスプリン
グ63の付勢力に抗して右方に移動すると、ノッチ穴7
2,56は、それぞれ、ノッチ穴70,68に連通した
ままの状態で、ノッチ穴57はタンク連通路51に通じ
ているノッチ穴71に連通する位置に設けてある。更に
スプリング63はスプール55の中空穴に設けてあり、
小径スプール62をスプール55との間で付勢してお
り、このスプリング室は小径スプール62の端面とプラ
グ66とにより油室58を形成し、該油室58にはスプ
ール55が右方に移動するとパイロット油口52から外
部圧力信号を導入するノッチ穴25を設けてある。上記
構成の可変再生回路弁53において、スプール55を右
方に切換えて油圧シリンダ2を伸長させ、その負荷が少
ないときにはロッド側油室Dからの戻り油は、高圧通路
15´、ノッチ穴68,56、小径スプール油室69、
チェック弁60、ノッチ穴72,70を通りブリッジ通
路67に合流する再生回路を形成する。次に油圧シリン
ダ2への負荷が増大し、ヘッド側油室Cの圧力、従って
ブリッジ通路67の圧力が上昇すると、その圧油は同時
に油路65を通りピストン油室59にも流入するので、
ピストン61は外方に抜け出そうとし、その反力がスプ
リング63の付勢力よりも大きくなると小径スプール6
2はスプール55の内部を右方に移動していき、閉塞さ
れていたノッチ穴71,57が開口して小径スプール油
室69とタンク連通路16´は連通するので、ロッド側
油室Dの戻り油の再生は解除される。また、パイロット
油口52からの信号圧力がノッチ穴25を通って油室5
8に達すると、その圧力に比例した力が小径スプール6
2に、スプリング63の付勢力に付加して作用し小径ス
プール62の右方への移動条件を加減することとなるの
で、再生解除時期を外部からの信号圧力の大小に応じ
て、自由に指令することができる。なお、第6図におけ
る6,6´はスプール55を切換えるためのパイロット
油室、7,7´は高圧通路15,15´の最高圧力を規
整するリリーフ弁、16,16´はタンク連通路、39
は可変再生回路弁53の切換過渡期において圧油が逆流
をすることを防止するロードチェック弁であり、一般に
使用されるパイロット操作式の油圧切換弁の構成と同様
である。また、22はスプール55の内部に設けられた
油路であり、小径スプール62の外周あるいはピストン
油室59から漏れた高圧油をノッチ穴23を経由してタ
ンク連通路16へ流出させ、閉じ込み圧油による作動不
良を起させないようにしてある。
2. Description of the Related Art Conventionally, in the variable regenerative circuit valve that regenerates the return oil from the rod side oil chamber of the hydraulic cylinder into the head side oil chamber,
The return oil was blocked by a small-diameter spool to form a regeneration circuit, which was released when the operating pressure exceeded a certain value, and the regeneration release pressure was made variable by external signal pressure. For example, FIG. 6 is a sectional view showing an example of the variable regeneration circuit valve. In this figure, the rod side oil chamber D of the hydraulic cylinder 2 in the spool 55 of the variable regeneration circuit valve 53 is shown.
A hollow hole is provided on the side that opens and closes an oil passage that communicates with, and a small-diameter spool 62 that is urged by a spring 63 and has a central hole that is movable in the axial direction is inserted, and notch holes 70, 68 that communicate with the hollow hole from the outer periphery are provided. When the spool 55 is in the neutral position, the notch hole 70 communicates with the bridge passage 67 in the valve body 54, and the notch hole 68 forms the bridge passage 6.
7 and the high pressure passage 15 'are opened and closed by the valve body 54, the notch hole 71 communicates with the tank communication passage 16', and when the spool 55 is further moved to the right, the notch hole 70 continues to bridge. Communicating with the passage 67, and at the same time the oil passage 6
5, the notch hole 68 communicates with the piston oil chamber 59, the notch hole 68 communicates with the high pressure passage 15 ', and the notch hole 71 continues to communicate with the tank communication passage 16'. Also, the small spool 62
A piston oil chamber 59 having a piston 61 fitted at an end thereof and a small diameter spool oil chamber 69 are provided in the center hole of the small diameter spool oil chamber 6 adjacent to each other through a check valve 60.
9 are provided with notch holes 72, 56, 57, and when the small-diameter spool 62 is on the left side by the urging force of the spring 63, the notch hole 72 is formed by the notch hole 70 and the notch hole 56.
Communicates with the notch hole 68, and the notch hole 57 has the spool 55.
When the small-diameter spool 62 moves to the right against the biasing force of the spring 63, it is blocked by the inner wall of the notch hole 7.
Reference numerals 2 and 56 are provided in positions where they communicate with the notch holes 70 and 68, respectively, and the notch hole 57 communicates with the notch hole 71 that communicates with the tank communication passage 51. Further, the spring 63 is provided in the hollow hole of the spool 55,
The small-diameter spool 62 is biased between the spool 55 and the spring chamber. The spring chamber forms an oil chamber 58 by the end surface of the small-diameter spool 62 and the plug 66, and the spool 55 moves to the right in the oil chamber 58. Then, a notch hole 25 for introducing an external pressure signal from the pilot oil port 52 is provided. In the variable regeneration circuit valve 53 having the above-mentioned configuration, the spool 55 is switched to the right to extend the hydraulic cylinder 2, and when the load is small, the return oil from the rod side oil chamber D receives the high pressure passage 15 ′, the notch hole 68, 56, small diameter spool oil chamber 69,
A regeneration circuit is formed which joins the bridge passage 67 through the check valve 60 and the notch holes 72 and 70. Next, when the load on the hydraulic cylinder 2 increases and the pressure in the head-side oil chamber C, and thus the pressure in the bridge passage 67, rises, the pressure oil simultaneously flows into the piston oil chamber 59 through the oil passage 65.
When the piston 61 tries to slip out and its reaction force becomes larger than the biasing force of the spring 63, the small diameter spool 6
2 moves to the right inside the spool 55, the notched holes 71 and 57 that have been closed are opened, and the small diameter spool oil chamber 69 and the tank communication passage 16 ′ are in communication, so that the rod side oil chamber D The regeneration of return oil is canceled. Further, the signal pressure from the pilot oil port 52 passes through the notch hole 25 and the oil chamber 5
When reaching 8, the force proportional to the pressure is applied to the small diameter spool 6
In addition, since it acts in addition to the urging force of the spring 63 to adjust the rightward movement condition of the small diameter spool 62, the regeneration cancellation timing can be freely commanded according to the magnitude of the signal pressure from the outside. can do. 6, 6'is a pilot oil chamber for switching the spool 55, 7, 7'is a relief valve for regulating the maximum pressure of the high-pressure passages 15, 15 ', 16 and 16' are tank communication passages, 39
Is a load check valve for preventing pressure oil from flowing back during the transitional period of switching of the variable regeneration circuit valve 53, and has the same structure as a commonly used pilot operated hydraulic switching valve. Further, 22 is an oil passage provided inside the spool 55, and the high pressure oil leaked from the outer circumference of the small diameter spool 62 or the piston oil chamber 59 is caused to flow out to the tank communication passage 16 via the notch hole 23 and is closed. It is designed to prevent malfunction due to pressure oil.

発明が解決しようとする課題 ところで、このような従来の可変再生回路弁にあって
は、再生機能を付与する装置がすべて該弁のスプール内
に収納されているため、スプールの構造は複雑であるば
かりではなく、再生回路における通路抵抗を最小限にし
ようとすると、再生回路弁自体が大形となったり、さも
なくばスプールの肉厚が少なくなり、強度上から好まし
くないという欠点と、通路の有効面積が確保できず、再
生油量に限界を生ずる。ここにおいて、従来技術による
実施例である第6図の可変再生回路弁における具備すべ
き機能構成を大別すると、第1要件は、再生中、油圧シ
リンダ2のロッド側油室Dからヘッド側油室Cに圧油を
流入させる通路となるノッチ穴68,56、小径スプー
ル油室69、チェック弁60、ノッチ穴70などを有
し、ヘッド側油室Cの圧力が一定値以内においては、ロ
ッド側油室Dからの戻り油をヘッド側油室Cに再生させ
る機能、第2要件は、ヘッド側油室Cの圧力がロッド側
油室Dのそれに比して高くなったときにヘッド側油室C
の回路からロッド側油室の回路へ圧油が流入することを
防止するチェック弁60を小径スプール62の内部中空
穴の中に設けること、第3要件は、ヘッド側油室Cの圧
力が更に上昇し、油圧シリンダ2が最大の能力を発揮す
べきときには、ロッド側油室Dからの戻り油を小径スプ
ール62に設けたノッチ穴57、スプール55に設けた
ノッチ穴71を経てタンク連通路16´に通じさせる機
能、および第4要件として、パイロット油口52から外
部の圧力信号を、スプール55、小径スプール62、プ
ラグ66で形成する油室58に導き、その圧力信号の大
小により上記ノッチ穴57,71が連通する条件を調整
する機能である。上述のように、従来の可変再生回路弁
には前記4つの機能をすべてスプール55に具備させる
ために非常に複雑な形状となり、また圧油通路となる開
閉口部断面積を大きくするため、どうしても肉薄となり
強度も低下すると共に、内蔵される関連部品も複雑とな
る。ここにおいて、本発明は、前記4つの機能のうち、
第1、第2の機能をスプール以外の作動回路において行
わしめ、第3、第4の機能はそのまま再生回路弁におい
て果たすことにより、可変再生回路弁の構造を簡略化し
て、スプール強度を強化すると共に、再生中における再
生圧油通路の通過抵抗を最小にとどめるような再生油圧
回路を実現しようとするものである。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention However, in such a conventional variable regenerative circuit valve, the structure of the spool is complicated because all the devices for imparting the regenerating function are housed in the spool of the valve. Not only that, when trying to minimize the passage resistance in the regeneration circuit, the regeneration circuit valve itself becomes large, or the thickness of the spool is reduced, which is not preferable from the viewpoint of strength and the passage. The effective area cannot be secured, and the amount of reclaimed oil is limited. Here, roughly dividing the functional configuration to be provided in the variable regeneration circuit valve of FIG. 6 which is an embodiment according to the prior art, the first requirement is that during regeneration, from the rod side oil chamber D of the hydraulic cylinder 2 to the head side oil. It has notch holes 68, 56, which are passages through which pressure oil flows into the chamber C, a small-diameter spool oil chamber 69, a check valve 60, a notch hole 70, and the like. The function of regenerating the return oil from the side oil chamber D into the head side oil chamber C, and the second requirement is that the head side oil is generated when the pressure in the head side oil chamber C becomes higher than that in the rod side oil chamber D. Room C
The check valve 60 for preventing the pressure oil from flowing into the circuit of the rod side oil chamber from the circuit of No. 2 is provided in the inner hollow hole of the small diameter spool 62. The third requirement is that the pressure of the head side oil chamber C is further increased. When the hydraulic cylinder 2 is to be raised and exerts its maximum capacity, the return oil from the rod side oil chamber D is passed through the notch hole 57 provided in the small diameter spool 62 and the notch hole 71 provided in the spool 55 to the tank communication passage 16 ′, And the fourth requirement is that an external pressure signal is introduced from the pilot oil port 52 to the oil chamber 58 formed by the spool 55, the small-diameter spool 62, and the plug 66, and the notch hole depends on the magnitude of the pressure signal. This is a function of adjusting the conditions under which 57 and 71 communicate with each other. As described above, the conventional variable regeneration circuit valve has a very complicated shape because the spool 55 is provided with all of the above four functions, and the opening / closing cross section of the pressure oil passage is increased. It becomes thinner and the strength is reduced, and the related parts to be built in are complicated. Here, the present invention provides, among the four functions described above,
By performing the first and second functions in the operating circuit other than the spool and performing the third and fourth functions as they are in the regeneration circuit valve, the structure of the variable regeneration circuit valve is simplified and the spool strength is enhanced. At the same time, it is intended to realize a regeneration hydraulic circuit that minimizes the passage resistance of the regeneration pressure oil passage during regeneration.

課題を解決するための手段 この発明は前記課題を解決するものであって、以下にそ
の内容を実施例に対応する第1図および第2図を用いて
説明する。第2図の油圧回路図に示す如く、パイロット
弁24の圧力信号により切換えられる油圧切換弁3と常
時は内部通路を閉路し、圧力信号が加わると内部通路を
開路する切換弁24、および該切換弁24の出口ポート
に連なる油路に流入を阻止する方向にチェック弁10を
内蔵し、その出口ポートは油路33により、油圧シリン
ダ2のヘッド側油室Cに連通するようにした再生機能弁
27とを設け、該再生機能弁27の流入側ポートと油圧
シリンダ2のロッド側油室Dとを油路34により連通
し、更に前記油圧切換弁3の一方の出口ポートAに通ず
る油路35は油路33の中間点に、他方の出口ポートB
に通ずる油路36は油路34の中間点に合流しており、
前記再生回路弁27に内蔵された切換弁24のスプール
切換用パイロット油室には、油圧切換弁3のスプールを
油圧シリンダ2のヘッド側油室Cに圧油を供給する側に
切換えるパイロット油室へのパイロット油路30から分
岐したパイロット油路32を導く。また、油圧切換弁3
は第1図に示す如く、スプール5の油圧シリンダ2のロ
ッド側油室Dに通ずる油路を開閉する側に中空穴を設
け、スプリング13により付勢され軸線方向に移動自在
の、中間が細径となり、スプール5の中心穴の内面との
間で小径スプール油室19を形成する小径スプール12
を嵌挿し、外周から中心穴に通じるノッチ穴18,21
を設け、スプール5が中立時においては、上記ノッチ穴
18はブリッジ通路17と高圧通路15´との中間に開
口し、弁本体4により閉塞され、ノッチ穴21はタンク
連通路16´2連通しており、スプール5を右方に移動
させるとノッチ穴18は高圧通路15´に連通し、ノッ
チ穴21は引続きタンク連通路16´に通じる位置にあ
る。また、小径スプール12がスプリング13の付勢力
により左方にある限り、図示の小径スプール右端大径部
の外周はノッチ穴21を閉塞しているが、スプリング1
3の付勢力に抗し、ストッパ26に当接するまで右方に
移動するとノッチ穴21を開口する形状にしてある。更
に、スプール5は、小径スプール12をスプリング13
の付勢力に抗する方向に作用するピストン11、ピスト
ン油室9とを内蔵しており、該ビストン油室9にはAポ
ートに連通する高圧通路15から油路28が通じてい
る。なお、スプリング13はスプール5の中空穴に遊挿
してあり、小径スプール12をスプール5に対して付勢
しており、このスプリング室は小径スプール12の端面
とプラグ40とにより油室8を形成しており、該油室8
にはスプール5が右方に移動するとパイロット油口14
から外部圧力信号を導入するノッチ穴5が設けられてあ
り、また油路22はノッチ穴23によりスプール5が中
立および右方に移動しているときは常時タンク連通路1
6に通じ、小径スプール12、ピストン11の外周から
漏出するドレンをタンクに戻す役目を果たす。
Means for Solving the Problems This invention solves the above problems, and the contents thereof will be described below with reference to FIGS. 1 and 2 corresponding to the embodiments. As shown in the hydraulic circuit diagram of FIG. 2, the hydraulic switching valve 3 that is switched by the pressure signal of the pilot valve 24 and the switching valve 24 that normally closes the internal passage and opens the internal passage when a pressure signal is applied, and the switching valve. A check valve 10 is built in the oil passage connected to the outlet port of the valve 24 in a direction to prevent the inflow, and the outlet port is connected to the head side oil chamber C of the hydraulic cylinder 2 by the oil passage 33. 27, the inflow side port of the regeneration function valve 27 and the rod side oil chamber D of the hydraulic cylinder 2 are connected by an oil passage 34, and further connected to one outlet port A of the hydraulic pressure switching valve 3 with an oil passage 35. Is at the midpoint of the oil passage 33 and the other outlet port B
The oil passage 36 leading to the is joined to the intermediate point of the oil passage 34,
In the spool switching pilot oil chamber of the switching valve 24 built in the regeneration circuit valve 27, the pilot oil chamber for switching the spool of the hydraulic switching valve 3 to the side that supplies pressure oil to the head side oil chamber C of the hydraulic cylinder 2. A pilot oil passage 32 branched from the pilot oil passage 30 is introduced. Also, the hydraulic pressure switching valve 3
As shown in FIG. 1, a hollow hole is provided on the side of the spool 5 that opens and closes an oil passage communicating with the rod-side oil chamber D of the hydraulic cylinder 2 and is urged by a spring 13 to move in the axial direction. The small diameter spool 12 that forms a small diameter spool oil chamber 19 with the inner surface of the center hole of the spool 5.
Notch holes 18 and 21 that are inserted from the outer circumference to the center hole
When the spool 5 is in the neutral position, the notch hole 18 is opened in the middle of the bridge passage 17 and the high pressure passage 15 'and is closed by the valve body 4, and the notch hole 21 communicates with the tank communication passage 16'2. When the spool 5 is moved rightward, the notch hole 18 communicates with the high pressure passage 15 ', and the notch hole 21 continues to communicate with the tank communication passage 16'. As long as the small-diameter spool 12 is on the left side by the biasing force of the spring 13, the notch hole 21 is closed on the outer periphery of the large-diameter portion on the right end of the small-diameter spool shown in FIG.
The notch hole 21 is opened when it moves to the right until it contacts the stopper 26 against the biasing force of No. 3. Further, the spool 5 includes a small-diameter spool 12 and a spring 13
The piston 11 and the piston oil chamber 9 which act in the direction against the urging force of the piston 11 and the piston oil chamber 9 are built in, and an oil passage 28 is communicated from the high pressure passage 15 communicating with the A port to the piston oil chamber 9. The spring 13 is loosely inserted in the hollow hole of the spool 5 to bias the small-diameter spool 12 against the spool 5, and the spring chamber forms an oil chamber 8 by the end surface of the small-diameter spool 12 and the plug 40. The oil chamber 8
When the spool 5 moves to the right, the pilot oil port 14
Is provided with a notch hole 5 for introducing an external pressure signal from the tank, and the oil passage 22 is always provided with the notch hole 23 when the spool 5 is moving to the neutral and rightward.
6 and plays a role of returning drain leaking from the outer circumference of the small diameter spool 12 and the piston 11 to the tank.

作 用 第1図および第2図において、パイロット弁29の操作
レバをJ方向に引き、パイロッ卜油路30に信号圧力が
発生すると油圧切換弁3はG位置に切換えられ、同時に
パイロット油路32を経て再生機能弁27の切換弁24
もE位置からF位置に切換えられる。従って、油圧切換
弁3に供給された圧油はAポート、油路35,33を通
り油圧シリンダ2のヘッド側油室Cに流入するが、油圧
シリンダ2の伸長時負荷が少ないときは、その作動圧力
も低く、ピストン11に作用する力はスプリング13の
付勢力よりも小さく、小径スプール12は右方に移動せ
ずノッチ穴21を閉塞しているので、ロッド側油室Dか
らの戻り油は圧力が上昇し、油路34、切換弁24のF
位置通路を通り、チェック弁10を押し開いて油路33
に合流する再生回路を形成する。油圧シリンダ2の負荷
が増大し高圧通路15の圧力が上昇し、その圧油が油路
28を通ってピストン油室9に流入してピストン11の
作用力がスプリング13の付勢力よりも大きくなると、
小径スプール12はピストン5の内部を右方に移動して
いき、閉塞されていたノッチ穴21を開口させる結果、
高圧通路15´はノッチ穴18、小径スプール油室1
9、ノッチ穴21によりタンク連通路16´と連通する
のでロッド側油室Dからの戻り油は油路34,36、油
圧切換弁3のBポートを経てタンク連通路に導かれ再生
は解除される。また、パイロット油口14から信号圧力
を油室8に送油すると、その圧力に比例した力が小径ス
プール12に、スプリング13の付勢力に付加して作用
するので再生回路の解除条件を可変にすることができ
る。
Operation In FIGS. 1 and 2, when the operating lever of the pilot valve 29 is pulled in the J direction and a signal pressure is generated in the pilot oil passage 30, the hydraulic switching valve 3 is switched to the G position, and at the same time the pilot oil passage 32 Through the switching valve 24 of the regeneration function valve 27
Is also switched from the E position to the F position. Therefore, the pressure oil supplied to the hydraulic pressure switching valve 3 flows into the head side oil chamber C of the hydraulic cylinder 2 through the A port and the oil passages 35 and 33. The operating pressure is low, the force acting on the piston 11 is smaller than the biasing force of the spring 13, and the small diameter spool 12 does not move to the right and closes the notch hole 21, so that the return oil from the rod side oil chamber D The pressure rises, and the F of the oil passage 34 and the switching valve 24
Pass the position passage and push open the check valve 10 to open the oil passage 33.
Form a reproducing circuit that merges with. When the load of the hydraulic cylinder 2 increases and the pressure of the high pressure passage 15 rises, the pressure oil flows into the piston oil chamber 9 through the oil passage 28 and the acting force of the piston 11 becomes larger than the urging force of the spring 13. ,
The small-diameter spool 12 moves to the right inside the piston 5 to open the notch hole 21 that has been closed,
The high pressure passage 15 'has a notch hole 18 and a small diameter spool oil chamber 1
9. Since the notch hole 21 communicates with the tank communication passage 16 ', the return oil from the rod side oil chamber D is guided to the tank communication passage through the oil passages 34 and 36 and the B port of the hydraulic pressure switching valve 3, and the regeneration is canceled. It Further, when the signal pressure is sent from the pilot oil port 14 to the oil chamber 8, a force proportional to the pressure acts on the small-diameter spool 12 in addition to the urging force of the spring 13, so that the release condition of the regeneration circuit can be changed. can do.

実 施 例 以下、本発明の一実施例を説明する。第1図は本発明油
圧回路に使用する油圧切換弁3のスプール5が中立位置
にあるときの縦断面図、第2図は本発明の可変再生回路
を示す油圧回路図、第3図は油圧切換弁3のスプール5
を右方に切換えたときAポートの負荷圧力が比較的低い
ときの、第4図は第3図と同様の状態からAポートの負
荷圧力が増大したとき、それぞれについての油圧切換弁
3の縦断面図を示す。第2図において1は作動回路の高
圧油を発生させる油圧ポンプで、その高圧油を油圧切換
弁3に供給し、2はヘッド側油室C、ロッド側油室Dを
有する油圧シリンダで、これに加わる負荷により発生す
る油圧は主としてヘッド側油室Cであり、作動を終了し
て復帰を主目的とする動作時にはロッド側油室Dに圧油
を供給する。3はパイロット圧切換式の油圧切換弁で、
該油圧切換弁3のAポートは油路35、再生機能弁2
7、油路33を経てヘッド側油室Cへ、またBポートは
油路36、再生機能弁27、油路34を経てロッド側油
室Dに通じている。上記の再主機能弁27はパイロット
油路32の圧力信号により内部通路を開路し、圧力信号
が消滅すると内部通路を閉路する切換弁24と該切換弁
24の下流側には油路33の接合ポート方向に自由油路
を形成するチェック弁10とを内蔵し、上流側油路は油
圧切換弁3のBポートに通ずる油路36との接合ポート
および油圧シリンダ2のロッド側油室Dに通ずる油路3
4との接合ポートとに分岐し、また、チェック弁10か
ら油路33との接合ポートに至る内部油路は分岐して油
路35との接合ポートに通じている。29は油圧切換弁
3を切換える圧力信号を発生させるパイロット弁であり
パイロット油路30,31はそれぞれ、上記油圧切換弁
3のパイロット油室6,6´に連通しており、同時に油
圧シリンダ2を伸長させる側のパイロット油路30は分
岐してパイロツト油路32となり、切換弁24のパイロ
ット油室に通じている。なお、41はパイロット弁29
などの油圧源となるパイロットポンプであり、その吐出
油は油路37によりパイロット弁29などに接続されて
いる。また、油圧切換弁3は、その縦断面を示す第1図
において、4はその弁本体であり、パイロット油室6ま
たは6´に作用する圧力信号により左右に移動するスプ
ール5を内装し、ポートAに連通する高圧通路15、ポ
ートBに連通する高圧通路15´、ポートAまたはBか
らの戻り油並びにリリーフ弁7,7´のリリーフ油、そ
の他のドレン油などをも集合させ、タンクに導くタンク
連通路16,16´、油圧ポンプ1からロードチェック
弁39を経て流入する高圧油を高圧通路15または15
´の何れかへ選択的に供給するブリッジ通路17があ
り、また該弁本体4に付属して、スプール5を中立位置
に、一定の強制力で保持するスプリングセンタ装置を有
しているなどは、既知の油圧切換弁と全く同様である
が、本油圧再生回路に使用する油圧切換弁では、内装さ
れるスプール5が異なり、弁本体4には、外部から再生
条件を変更する指令用パイロット圧導入口が追加して設
けてある。すなわち、切換用スプール5は、前項におい
て詳述した如く、Bポート側に中空穴を設け、内部にス
プリング13により付勢された小径スプール12、ピス
トン11を内蔵しており、スプール5が右方に切換えら
れブリッジ通路17と高圧通路15とが連通し、高圧通
路15の圧力が低い間、すなわち、油圧シリンダ2の伸
長時の負荷が比較的少ないときは、高圧通路15´は低
圧通路16´に連通せず、反面、高圧通路15の圧力が
上昇し、その圧油の一部が油路28を通ってピストン油
室9に流入し、ピストン11の発生する押力がスプリン
グ13の付勢力に打勝つと小径スプール12はスプール
5の中空穴の中でストッパ26に当接するまで右方に移
動し、高圧通路15´をノッチ穴18、小径スプール油
室19、ノッチ穴21を経てタンク連通路16´に連通
させるようにしてある。また、スプリング13を収納し
ているスプリング室は、小径スプール12、プラグ40
の端面およびスプール5の中空穴内周面とにより密室状
態の油室8を形成しており、油路20から送られる設定
自由な指令圧力は弁本体4に設けられたパイロット油口
14および油路から、スプール5が右方に移動したと
き、該スプール5の外周に設けたノッチ穴25を経て上
記油室8に導いている。なお、スプール5の中空穴を設
けた側の反対にある実体軸部分には油路22が設けてあ
り、小径スプール12、ピストン11の外周から漏出す
るドレンをノッチ穴23を経てタンク連通路16に導く
ようになっている。以上の形状のほかは、例えば高圧通
路15、タンク連通路16に対応するスプール5の細径
部で形成する油路は公知の油圧切換弁と同じである。以
上の油圧回路構成からなる可変再生回路の作動について
説明する。第2図におけるパイロット弁29の操作レバ
をJ方向に傾倒させると、パイロットポンプ41の圧油
は調圧されてパイロット圧となり、パイロット油路30
を通り油圧切換弁3のパイロット油室に入り、スプール
をG位置に切換え、同時にパイロット油路32のパイロ
ット圧は再生機能弁27の切換弁24のパイロット油室
に入りスプールをE位置からF位置に切換える。この状
態では、油圧ポンプ1の圧油は油圧切換弁3のG位置通
路、油路35,33を通り油圧シリンダ2のヘッド側油
室Cに流入し、該シリンダ2を伸長させ、ロッド側油室
Dの戻り油は油路34に流出するが、油圧切換弁3がG
位置であって、しかも油圧シリンダ2の伸長時の負荷抵
抗が小さいときはヘッド側油室Cの圧力もさほど上昇し
ていないので、第3図に示す如く、ノッチ穴21は小径
スプール12の外周部で閉止されているのでBポートか
ら高圧通路15´、ノッチ穴18、小径スプール油室1
9ノッチ穴21、タンク連通路16´に至る油路は遮断
され、従って、上記油路34からの戻り油は油路36へ
流入することはなく、切換弁24のF位置通路を経てチ
ェック弁10を押し開き、油路33へ再生合流しヘッド
側油室Cへと流入し、油圧シリンダ2の伸長速度を早め
る。上記状態から、油圧シリンダ2の伸長時の負荷が増
大すると、ヘッド側油室Cの作動圧力は上昇し、これに
ともない高圧通路15の圧力も当然高くなり、第4図に
示すとおり高圧油は、高圧通路15、油路28を通って
ピストン油室9に流入し、ピストン11、これに当接す
る小径スプール12を右方に押し、その作動力がスプリ
ング13の付勢力よりも大きくなると小径スプール12
は、頂部がストッパ26に当接するまで移動し、その結
果小径スプール12の外周部で閉止されていたノッチ穴
21は開口し、油路34からの戻り油は油路36、Bポ
ート、高圧通路15´、ノッチ穴18、小径スプール油
室19、ノッチ穴21を通りタンク連通路16´を経て
タンクに開放され、油路34の圧力は降下するので切換
弁24がF位置に切換わっていても油路33側が高圧と
なっており、チェック弁10を押し開くこともなく、ま
た、油路33側の高圧油は、チェック弁10により逆流
することもない。また、再生機能を解除する条件は、上
述の如く、ヘッド側油室Cの圧油により発生するピスト
ン11の押力がスプリング13の付勢力より大きくなっ
たときであるか、外部の調整可能のパイロット圧油をパ
イロット油路20、パイロット油口14、ノッチ穴25
を経て油室8に導入すると、そのパイロット圧に比例し
た力がスプリング13の付勢力の方向に付加され、ピス
トン11の押力に対抗することとなるので、外部からの
パイロット圧油の圧力を加減して供給することにより自
由に再生機能の解除時期を選択、決定することのできる
可変再生回路の形成が可能である。また、パイロット弁
29の操作レバをI方向に傾倒すると、パイロット油路
31のパイロット圧のみが上昇するので、切換弁24は
E位置に復帰し、油路34とチェック弁10の間の通路
は遮断され、一方、油圧切換弁3はH位置となり、油圧
シリンダ2は通常の縮小作動を行う。第5図は本発明の
第2実施例を示す油圧・電気回路図である。第1実施例
においては、油圧切換弁3がパイロット圧により切換え
られる方式についてであるのに対して、第2実施例は、
手動式の場合に関する。すなわち、第5図において3´
は手動操作式の油圧切換弁、42はその操作レバで、該
操作レバ42に連動して、油圧シリング2を伸長させる
方向に操作レバ42を操作したときにのみ閉路するリミ
ットスイッチ43を設け、再生機能弁27´には電磁切
換弁24´を内蔵させ、前記リミットスイッチ43が閉
路して電気信号が電線44を経て送られると電磁切換弁
24´が励磁され、内部通路を開路するようにしてある
他は第1実施例と同様の構成であり、作動についても同
じである。
Example An example of the present invention will be described below. FIG. 1 is a vertical cross-sectional view when a spool 5 of a hydraulic pressure switching valve 3 used in the hydraulic circuit of the present invention is in a neutral position, FIG. 2 is a hydraulic circuit diagram showing a variable regeneration circuit of the present invention, and FIG. Spool 5 of switching valve 3
Is switched to the right when the load pressure of the A port is relatively low, and in FIG. 4, when the load pressure of the A port increases from the state similar to that of FIG. 3, the longitudinal switching of the hydraulic switching valve 3 for each is performed. The side view is shown. In FIG. 2, 1 is a hydraulic pump for generating high-pressure oil in the operating circuit, which supplies the high-pressure oil to the hydraulic switching valve 3, and 2 is a hydraulic cylinder having a head-side oil chamber C and a rod-side oil chamber D. The hydraulic pressure generated by the load applied to the head-side oil chamber C is mainly supplied to the rod-side oil chamber D when the operation is completed mainly after returning from the operation. 3 is a pilot pressure switching type hydraulic switching valve,
The A port of the hydraulic pressure switching valve 3 has an oil passage 35 and a regeneration function valve 2
7 through the oil passage 33 to the head side oil chamber C, and the B port communicates with the rod side oil chamber D through the oil passage 36, the regeneration function valve 27 and the oil passage 34. The remain function valve 27 opens the internal passage by the pressure signal of the pilot oil passage 32 and closes the internal passage when the pressure signal disappears, and the oil passage 33 is connected to the downstream side of the switching valve 24. The check valve 10 that forms a free oil passage in the port direction is built in, and the upstream oil passage communicates with the joint port with the oil passage 36 that communicates with the B port of the hydraulic switching valve 3 and the rod side oil chamber D of the hydraulic cylinder 2. Oil passage 3
4, and the internal oil passage extending from the check valve 10 to the joint port with the oil passage 33 is branched and communicates with the joint port with the oil passage 35. Reference numeral 29 is a pilot valve for generating a pressure signal for switching the hydraulic pressure switching valve 3, and the pilot oil passages 30 and 31 are respectively in communication with the pilot oil chambers 6 and 6'of the hydraulic pressure switching valve 3, and at the same time, the hydraulic cylinder 2 is connected. The pilot oil passage 30 on the extending side is branched into a pilot oil passage 32, which communicates with the pilot oil chamber of the switching valve 24. 41 is a pilot valve 29
Is a pilot pump that serves as a hydraulic pressure source, and its discharge oil is connected to a pilot valve 29 and the like by an oil passage 37. Further, in the hydraulic switching valve 3 shown in FIG. 1 showing its longitudinal section, 4 is its valve body, which is internally provided with a spool 5 which moves left and right according to a pressure signal acting on a pilot oil chamber 6 or 6 ', The high-pressure passage 15 communicating with A, the high-pressure passage 15 'communicating with port B, the return oil from the port A or B, the relief oil of the relief valves 7 and 7', and other drain oil are also collected and guided to the tank. The high pressure oil flowing from the tank communication passages 16 and 16 'and the hydraulic pump 1 via the load check valve 39 is supplied to the high pressure passage 15 or 15
There is a bridge passage 17 for selectively supplying to any one of ‘′, and a spring center device attached to the valve body 4 for holding the spool 5 in a neutral position with a constant forcing force. Although it is exactly the same as the known hydraulic switching valve, the hydraulic switching valve used in the present hydraulic regeneration circuit has a different spool 5 installed therein, and the valve body 4 has a command pilot pressure for changing the regeneration condition from the outside. An additional inlet is provided. That is, as described in detail in the previous section, the switching spool 5 has a hollow hole on the B port side, and internally has a small diameter spool 12 and a piston 11 biased by a spring 13, and the spool 5 is located on the right side. When the pressure in the high pressure passage 15 is low, that is, when the load when the hydraulic cylinder 2 extends is relatively small, the high pressure passage 15 ′ is changed to the low pressure passage 16 ′. However, the pressure in the high-pressure passage 15 rises, a part of the pressure oil flows into the piston oil chamber 9 through the oil passage 28, and the pressing force generated by the piston 11 is the urging force of the spring 13. When the small-diameter spool 12 is overcome, the small-diameter spool 12 moves to the right in the hollow hole of the spool 5 until it comes into contact with the stopper 26, and the high-pressure passage 15 'is passed through the notch hole 18, the small-diameter spool oil chamber 19, and the notch hole 21. Click communication passage 16 'it is so as to communicate with the. Further, the spring chamber accommodating the spring 13 includes a small diameter spool 12 and a plug 40.
And the inner peripheral surface of the hollow hole of the spool 5 form an oil chamber 8 in a closed chamber, and the freely settable command pressure sent from the oil passage 20 is the pilot oil port 14 provided in the valve body 4 and the oil passage. Therefore, when the spool 5 moves to the right, the spool 5 is guided to the oil chamber 8 through the notch hole 25 provided in the outer periphery of the spool 5. An oil passage 22 is provided in the body shaft portion opposite to the side where the hollow hole of the spool 5 is provided, and drain leaking from the outer circumference of the small diameter spool 12 and the piston 11 is passed through the notch hole 23 to the tank communication passage 16 It is supposed to lead to. Other than the above shape, for example, the oil passage formed by the small diameter portion of the spool 5 corresponding to the high pressure passage 15 and the tank communication passage 16 is the same as a known hydraulic switching valve. The operation of the variable regeneration circuit having the above hydraulic circuit configuration will be described. When the operating lever of the pilot valve 29 in FIG. 2 is tilted in the J direction, the pressure oil of the pilot pump 41 is adjusted to the pilot pressure, and the pilot oil passage 30
Through the pilot oil chamber of the hydraulic switching valve 3 to switch the spool to the G position. At the same time, the pilot pressure in the pilot oil passage 32 enters the pilot oil chamber of the switching valve 24 of the regeneration function valve 27 to shift the spool from the E position to the F position. Switch to. In this state, the pressure oil of the hydraulic pump 1 flows into the head-side oil chamber C of the hydraulic cylinder 2 through the G position passage of the hydraulic switching valve 3 and the oil passages 35 and 33, and the cylinder 2 is extended to extend the rod-side oil. The return oil in the chamber D flows out to the oil passage 34, but the hydraulic pressure switching valve 3 is set to G
At the position, and when the load resistance when the hydraulic cylinder 2 is extended is small, the pressure in the head side oil chamber C does not rise so much either. Therefore, as shown in FIG. Since it is closed at the section, from the B port to the high pressure passage 15 ', the notch hole 18, the small diameter spool oil chamber 1
The oil passage leading to the 9 notch hole 21 and the tank communication passage 16 ′ is blocked, so that the return oil from the oil passage 34 does not flow into the oil passage 36, and the check valve passes through the F position passage of the switching valve 24. 10 is pushed open, regenerated and merged into the oil passage 33 and flows into the head side oil chamber C, and the extension speed of the hydraulic cylinder 2 is accelerated. From the above state, when the load at the time of extension of the hydraulic cylinder 2 increases, the operating pressure of the head side oil chamber C rises, the pressure of the high pressure passage 15 naturally increases accordingly, and as shown in FIG. , The high-pressure passage 15 and the oil passage 28 to flow into the piston oil chamber 9, push the piston 11 and the small-diameter spool 12 in contact with the piston to the right, and when the operating force becomes larger than the biasing force of the spring 13, the small-diameter spool. 12
Moves until the top comes into contact with the stopper 26, and as a result, the notch hole 21 that has been closed at the outer peripheral portion of the small diameter spool 12 opens, and the return oil from the oil passage 34 receives the oil passage 36, the B port, and the high pressure passage. 15 ', the notch hole 18, the small-diameter spool oil chamber 19, the notch hole 21, and the tank communication passage 16' to open to the tank, and the pressure in the oil passage 34 drops, so that the switching valve 24 is switched to the F position. Since the oil passage 33 side has a high pressure, the check valve 10 is not pushed open, and the high pressure oil on the oil passage 33 side does not flow back by the check valve 10. As described above, the condition for canceling the regeneration function is when the pressing force of the piston 11 generated by the pressure oil in the head side oil chamber C becomes larger than the biasing force of the spring 13 or an external adjustment is possible. Use pilot pressure oil as pilot oil passage 20, pilot oil port 14, notch hole 25
When the oil is introduced into the oil chamber 8 via, the force proportional to the pilot pressure is added in the direction of the urging force of the spring 13 and opposes the pushing force of the piston 11. It is possible to form a variable reproduction circuit which can freely select and determine the release time of the reproduction function by adjusting and supplying. When the operating lever of the pilot valve 29 is tilted in the I direction, only the pilot pressure in the pilot oil passage 31 rises, so the switching valve 24 returns to the E position, and the passage between the oil passage 34 and the check valve 10 is closed. On the other hand, the hydraulic switching valve 3 is switched to the H position, and the hydraulic cylinder 2 is normally reduced. FIG. 5 is a hydraulic / electrical circuit diagram showing a second embodiment of the present invention. In the first embodiment, the hydraulic pressure switching valve 3 is switched by pilot pressure, whereas in the second embodiment,
Regarding the manual case. That is, 3'in FIG.
Is a manually operated hydraulic switching valve, 42 is an operating lever thereof, and a limit switch 43 is provided which closes only when the operating lever 42 is operated in the direction of extending the hydraulic silling 2 in conjunction with the operating lever 42. An electromagnetic switching valve 24 'is built in the regeneration function valve 27' so that when the limit switch 43 is closed and an electric signal is sent through the electric wire 44, the electromagnetic switching valve 24 'is excited to open the internal passage. Other than that, the configuration is the same as that of the first embodiment, and the operation is also the same.

発 明 の 効 果 以上説明したように、この発明の回路は、油圧シリンダ
作動用油圧再生回路弁における再生機能部のみを油圧切
換弁から独立して設けたので、従来の可変再生回路弁の
スプールに比し、簡単な形状のスプールを備えた油圧切
換弁を使用することができ、従って、内部通路断面積を
大きくとり流体の通過抵抗を少なくし、かつ、スプール
の強度を十分に保つことができる。また、独立した単体
の再生機能弁は油圧切換弁の設置位置に関係なく設ける
ことができるので、機器、配管の構成上有利であるばか
りではなく、上記再生機能弁を油圧シリンダ直近の位置
に設けることにより再生中の圧油経路は最短となり配管
中の圧力損失も少なくなる。
Effects of the Invention As described above, in the circuit of the present invention, since only the regeneration function section of the hydraulic regeneration circuit valve for operating the hydraulic cylinder is provided independently of the hydraulic switching valve, the spool of the conventional variable regeneration circuit valve is provided. In comparison with the above, it is possible to use a hydraulic switching valve equipped with a spool having a simple shape. Therefore, it is possible to increase the internal passage cross-sectional area, reduce fluid passage resistance, and maintain sufficient spool strength. it can. Further, since an independent single regeneration function valve can be provided regardless of the installation position of the hydraulic pressure switching valve, it is not only advantageous in the configuration of equipment and piping, but also the regeneration function valve is provided in a position near the hydraulic cylinder. As a result, the pressure oil path during regeneration will be the shortest and the pressure loss in the piping will be small.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の回路に使用する油圧切換弁が中立状態
にあるときの縦断面図、第2図は本発明の油圧回路図、
第3図は第1図に示す油圧切換弁を、図の右方へ切換え
たときの縦断面図、第4図は第3図の状態から小径スプ
ールが右方に移動したときの縦断面図、第5図は本発明
の第2実施例を示す油圧・電気回路図、第6図は従来の
可変再生回路弁の縦断面図である。 3 ........ 油圧切換弁 8 ........ 油室 9 ........ ピストン油室 10 ........ チェック弁 11 ........ ピストン 12 ........ 小径スプール 19 ........ 小径スプール油室 24 ........ 切換弁 27 ........ 再生機能弁
FIG. 1 is a vertical sectional view of a hydraulic switching valve used in the circuit of the present invention in a neutral state, and FIG. 2 is a hydraulic circuit diagram of the present invention.
FIG. 3 is a vertical sectional view when the hydraulic switching valve shown in FIG. 1 is switched to the right in the drawing, and FIG. 4 is a vertical sectional view when the small diameter spool is moved to the right from the state of FIG. 5 is a hydraulic / electrical circuit diagram showing a second embodiment of the present invention, and FIG. 6 is a longitudinal sectional view of a conventional variable regeneration circuit valve. 3. . . . . . . . Hydraulic pressure switching valve 8. . . . . . . . Oil chamber 9. . . . . . . . Piston oil chamber 10. . . . . . . . Check valve 11. . . . . . . . Piston 12. . . . . . . . Small diameter spool 19. . . . . . . . Small spool oil chamber 24. . . . . . . . Switching valve 27. . . . . . . . Regeneration function valve

Claims (1)

【特許請求の範囲】[Claims] 油圧切換弁を切換えて油圧シリンダを伸縮させる作動シ
ステムにおいて、該油圧切換弁と油圧シリンダとを接続
する管路の途中に、油圧シリンダのヘッド側油室に圧油
が供給される方向へ油圧切換弁を作動させる指令信号に
連動して内部油路を開路し、常時は、該内部通路が閉路
している切換弁と、該切換弁の出口ポートから前記油圧
シリンダのヘッド側油室に通じる管路に向けてのみ自由
通路を形成するチェック弁と、該油圧シリンダのロッド
側油室と前記油圧切換弁とを接続する管路に通じる入口
ポートとを備えた再生機能弁を設けたことを特徴とする
可変再生回路。
In an operating system for expanding and contracting a hydraulic cylinder by switching a hydraulic switching valve, the hydraulic switching is performed in a direction in which pressure oil is supplied to a head-side oil chamber of the hydraulic cylinder in the middle of a pipeline connecting the hydraulic switching valve and the hydraulic cylinder. A switching valve in which the internal oil passage is opened in synchronization with a command signal for operating the valve and the internal passage is normally closed, and a pipe communicating from the outlet port of the switching valve to the head-side oil chamber of the hydraulic cylinder. A regenerative function valve provided with a check valve forming a free passage only toward the passage and an inlet port communicating with a pipe connecting the rod-side oil chamber of the hydraulic cylinder and the hydraulic switching valve. Variable playback circuit.
JP3108983A 1991-02-15 1991-02-15 Variable playback circuit Expired - Fee Related JPH0784882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3108983A JPH0784882B2 (en) 1991-02-15 1991-02-15 Variable playback circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3108983A JPH0784882B2 (en) 1991-02-15 1991-02-15 Variable playback circuit

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP61122493A Division JPS62278301A (en) 1986-05-27 1986-05-27 Variably regenerating circuit

Publications (2)

Publication Number Publication Date
JPH06117415A true JPH06117415A (en) 1994-04-26
JPH0784882B2 JPH0784882B2 (en) 1995-09-13

Family

ID=14498612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3108983A Expired - Fee Related JPH0784882B2 (en) 1991-02-15 1991-02-15 Variable playback circuit

Country Status (1)

Country Link
JP (1) JPH0784882B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102705289A (en) * 2012-06-21 2012-10-03 唐香平 Energy recovery balance valve
JP2015048858A (en) * 2013-08-29 2015-03-16 住友建機株式会社 Hydraulic circuit of construction machine, and construction machine
KR20200005646A (en) * 2017-11-06 2020-01-15 다이-이치 세이코 가부시키가이샤 Electrical connector device
CN114198357A (en) * 2021-12-10 2022-03-18 湖北超星液压自动化有限公司 Bridge type manual hydraulic pump, hydraulic system and control method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103089739B (en) * 2013-02-06 2015-04-15 冯广建 Linkage telescopic valve applied to rebar forming machine bending mechanism

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58118303A (en) * 1981-12-29 1983-07-14 Ishikawajima Harima Heavy Ind Co Ltd Regenerative circuit in fluid pressure circuit
JPS59194102A (en) * 1983-04-18 1984-11-02 Hitachi Constr Mach Co Ltd Breathing preventing device for hydraulic cylinder
JPS61204006U (en) * 1985-06-13 1986-12-22

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58118303A (en) * 1981-12-29 1983-07-14 Ishikawajima Harima Heavy Ind Co Ltd Regenerative circuit in fluid pressure circuit
JPS59194102A (en) * 1983-04-18 1984-11-02 Hitachi Constr Mach Co Ltd Breathing preventing device for hydraulic cylinder
JPS61204006U (en) * 1985-06-13 1986-12-22

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102705289A (en) * 2012-06-21 2012-10-03 唐香平 Energy recovery balance valve
JP2015048858A (en) * 2013-08-29 2015-03-16 住友建機株式会社 Hydraulic circuit of construction machine, and construction machine
KR20200005646A (en) * 2017-11-06 2020-01-15 다이-이치 세이코 가부시키가이샤 Electrical connector device
CN114198357A (en) * 2021-12-10 2022-03-18 湖北超星液压自动化有限公司 Bridge type manual hydraulic pump, hydraulic system and control method

Also Published As

Publication number Publication date
JPH0784882B2 (en) 1995-09-13

Similar Documents

Publication Publication Date Title
JPH06117415A (en) Variable regeneration circuit
JPH0550601B2 (en)
JP2008534887A (en) Directional control valve and control device with directional control valve
US5253672A (en) Hydraulic pressure control system
JPS62278302A (en) Variably regenerating circuit
EP0231876B1 (en) Hydraulic pressure control system
JPH08121407A (en) Control valve for heavy equipment having reproducing function
JP4371540B2 (en) Spool valve structure
JP3534324B2 (en) Pressure compensating valve
JP2581853Y2 (en) Pressure compensation valve
JPH02134401A (en) Hydraulic control unit
JPH0371586B2 (en)
JPS5824642Y2 (en) Switching valve device that controls flow rate and back pressure
JPH0740083Y2 (en) Control device for hydraulic drive
JPH0112961B2 (en)
JPS6128529Y2 (en)
JPS6212884Y2 (en)
JPH0625682Y2 (en) Poppet type fluid control valve
JP3727737B2 (en) Shock absorber for hydraulic circuit
JPS6151192B2 (en)
JPH09217847A (en) Flow control spool valve
JPS5818556B2 (en) Double pilot check valve
JP4009402B2 (en) Hydraulic control device
JP2942570B2 (en) Counter balance valve
JPS5828472B2 (en) directional valve

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees