JPH06116683A - High mn nonmagnetic steel excellent in machinability and corrosion resistance - Google Patents

High mn nonmagnetic steel excellent in machinability and corrosion resistance

Info

Publication number
JPH06116683A
JPH06116683A JP26383292A JP26383292A JPH06116683A JP H06116683 A JPH06116683 A JP H06116683A JP 26383292 A JP26383292 A JP 26383292A JP 26383292 A JP26383292 A JP 26383292A JP H06116683 A JPH06116683 A JP H06116683A
Authority
JP
Japan
Prior art keywords
corrosion resistance
machinability
equivalent
steel
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP26383292A
Other languages
Japanese (ja)
Inventor
Toshihiko Sasaki
敏彦 佐々木
Akito Shiina
章人 椎名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP26383292A priority Critical patent/JPH06116683A/en
Publication of JPH06116683A publication Critical patent/JPH06116683A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To produce high Mn nonmagnetic steel having excellent machinability and corrosion resistance as well as strength and magnetic properties by specifying its chemical compsn., Ni equivalent and Cr equivalent. CONSTITUTION:In the high Mn nonmagnetic steel, each element of C, Mn, Ni, Cr, Mo, N, S and Al is specified as well as the Ni equivalent [=Ni%+30X(C%+N%)+0.5XMn%] is regulated to <=16 and the Cr equivalent (=Cr%+Mo%+1-5XSi%) is regulated to <=24, and furthermore, 0.01 to 0.13% In is incorporated therein. In this way, while excellent strength properties and magnetic properties of the high Mn nonmagnetic steel are maintained and without exerting a bad influence upon its corrosion resistance, its machinability is improved. Thus, the high Mn nonmagnetic steel excellent in all of strength, magnetic properties, corrosion resistance and machinability can be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ステンレス鋼並の耐食
性を有し且つステンレス鋼以上の強度と安定した磁気特
性を有すると共に、加工性、殊に被削性の改善された高
Mn非磁性鋼に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has a high Mn non-magnetic property which has corrosion resistance comparable to that of stainless steel, has strength and stable magnetic properties superior to those of stainless steel, and has improved workability, especially machinability. It is about steel.

【0002】[0002]

【従来の技術】近年、磁気利用技術の発達に伴なって非
磁性鋼の応用範囲はますます増大する傾向が見うけられ
る。特に最近発展の著しい弱電技術分野におけるVT
R、オーディオ機器、事務機器、その他の電子機器の如
く、磁気を回避する必要のある精密機械部品において
は、非磁性鋼の使用が急増してきている。
2. Description of the Related Art In recent years, along with the development of magnetic utilization technology, the range of application of non-magnetic steel has been increasing. In particular, VT in the field of light electrical technology, which has developed significantly in recent years
The use of non-magnetic steel is rapidly increasing in precision machine parts such as R, audio equipment, office equipment, and other electronic equipment that need to avoid magnetism.

【0003】この様な非磁性鋼としては、従来よりSU
S304や316等のオーステナイト系ステンレス鋼が
使用されてきたが、これらのステンレス鋼は冷間加工に
より透磁率が1.5倍以上に増大するという欠点に加え
て、強度的にも不十分であるという問題があるため、最
近ではオーステナイト系ステンレス鋼と同程度の耐食性
を有し、且つ高強度で安定した非磁性を示す高Mn非磁
性鋼の使用比率が増大している。
As such a non-magnetic steel, SU has been conventionally used.
Austenitic stainless steels such as S304 and 316 have been used, but these stainless steels are insufficient in strength in addition to the drawback that the magnetic permeability increases to 1.5 times or more by cold working. Therefore, the use ratio of high-Mn non-magnetic steel, which has corrosion resistance comparable to that of austenitic stainless steel and has high strength and stable non-magnetism, has recently been increasing.

【0004】[0004]

【発明が解決しようとする課題】ところが高Mn非磁性
鋼には、通常の炭素鋼やステンレス鋼に比べ被削性が非
常に悪く、また被削性改善のためSやPb等を添加する
方法も提案されているがこの方法では耐食性が極端に悪
くなるという難点がある。
However, the high Mn non-magnetic steel has very poor machinability as compared with ordinary carbon steel and stainless steel, and a method of adding S, Pb or the like to improve the machinability. However, this method has a drawback that the corrosion resistance becomes extremely poor.

【0005】本発明は上記の様な事情に着目してなされ
たものであって、その目的は、オーステナイト系ステン
レス鋼以上の強度と安定した磁気特性を備え、且つ耐食
性および被削性においても優れた性能を示す高Mn非磁
性鋼を提供しようとするものである。
The present invention has been made in view of the above circumstances, and its purpose is to provide strength and stable magnetic characteristics higher than those of austenitic stainless steel, and also excellent in corrosion resistance and machinability. It is intended to provide a high Mn non-magnetic steel exhibiting excellent performance.

【0006】[0006]

【課題を解決するための手段】上記課題を解決すること
のできた本発明に係る高Mn非磁性鋼とは、C:0.0
5〜0.2%(重量%:以下同じ)、Mn:5〜23
%、Ni:15%以下、Cr:13〜22%、Mo:5
%以下、In:0.01〜0.13%、N:0.15〜
0.6%、S:0.02%以下、Al:0.03%以
下、
The high Mn non-magnetic steel according to the present invention, which has been able to solve the above problems, has a C: 0.0.
5 to 0.2% (weight%: same below), Mn: 5 to 23
%, Ni: 15% or less, Cr: 13 to 22%, Mo: 5
% Or less, In: 0.01 to 0.13%, N: 0.15 to
0.6%, S: 0.02% or less, Al: 0.03% or less,

【0007】残部Feおよび不可避不純物からなり、且
つ下記式によって求められるNi当量が16以下、Cr
当量が24以下であるところに要旨を有するものであ
る。 Ni当量=Ni%+30×(C%+N%)+0.5×M
n% Cr当量=Cr%+Mo%+1.5×Si%
The balance is Fe and unavoidable impurities, and the Ni equivalent calculated by the following formula is 16 or less, Cr.
The gist is that the equivalent weight is 24 or less. Ni equivalent = Ni% + 30 × (C% + N%) + 0.5 × M
n% Cr equivalent = Cr% + Mo% + 1.5 × Si%

【0008】[0008]

【作用】被削性改善元素としては古くよりS,Pb,B
i等が優れた効果を有することが確認されている。とこ
ろがこれらの被削性改善元素はいずれも鋼中に介在物と
して存在するため、これらを高Mn非磁性鋼に添加する
と耐食性や熱間加工性が著しく害される。
[Operation] S, Pb, B has long been used as a machinability improving element.
It has been confirmed that i and the like have excellent effects. However, since all of these machinability improving elements are present as inclusions in the steel, adding them to the high Mn nonmagnetic steel significantly impairs corrosion resistance and hot workability.

【0009】ところが本発明者らが種々研究を重ねた結
果、以下に詳述する如く高Mn非磁性鋼の成分組成やN
i当量、Cr当量を定めると共に、殊に該鋼中へ少量の
Inを含有させてやれば、高Mn非磁性鋼の被削性が
著しく改善されること、しかもInはその大部分がオ
ーステナイト中に固溶し介在物として析出することがな
いため耐食性に悪影響を及ぼすことがないこと、更に
一定限度内のIn含有量であれば、S,Pb,Bi等の
被削性改善元素を添加した場合に見られる熱間加工性の
低下も起こらないこと、という新たな知見を得、本発明
の完成をみた。以下、本発明における成分組成を定めた
理由を詳述する。
However, as a result of various researches conducted by the present inventors, as will be described in detail below, the composition of the high Mn non-magnetic steel and the N content of N are shown.
The machinability of a high Mn non-magnetic steel is remarkably improved by determining the i equivalent and Cr equivalent, and especially by including a small amount of In in the steel, and most of In is in austenite. Since it does not form a solid solution and precipitates as inclusions, it does not adversely affect the corrosion resistance. Furthermore, if the In content is within a certain limit, machinability improving elements such as S, Pb and Bi were added. The present invention has been completed based on the new finding that hot workability, which is sometimes observed, does not deteriorate. Hereinafter, the reasons for defining the component composition in the present invention will be described in detail.

【0010】C :0.05%〜0.2% Cは非磁性特性と強度を確保するのに欠くことのできな
い元素であり、目的達成のためには0.05%以上含有
させなければならない。しかし多くなり過ぎると被削性
が悪くなるので0.2%以下に抑える必要がある。 Mn:5〜23% Mnはオーステナイト生成元素であり、5%未満ではそ
の効果が有効に発揮されない。しかし23%を超えて含
有させると熱間加工性が著しく悪くなる。
C: 0.05% to 0.2% C is an element that is indispensable for ensuring non-magnetic properties and strength, and must be contained in an amount of 0.05% or more to achieve the purpose. . However, if too large, the machinability deteriorates, so it is necessary to suppress it to 0.2% or less. Mn: 5 to 23% Mn is an austenite forming element, and if it is less than 5%, its effect is not effectively exhibited. However, if the content exceeds 23%, the hot workability is significantly deteriorated.

【0011】Ni:15%以下 Niはオーステナイト生成元素として作用するほか、耐
食性を高める作用もあるので、その含有量は多い方がよ
いが、その効果は約15%で飽和するので、15%を超
えて多量添加することは経済的に無駄である。尚、該N
i含有量の下限は、Niと同効作用を有するC,Nおよ
びMnの含有量も加味し、下記式で表わされるNi当量
として定めるのが実用に最も即しており、該Ni当量を
16以上とすることによって上記の効果が有効に発揮さ
れる。 Ni当量=Ni%+30×(C%+N%)+0.5×M
n%
Ni: 15% or less Ni not only acts as an austenite-forming element, but also acts to enhance corrosion resistance, so it is better to have a large content, but the effect saturates at about 15%, so 15% is added. It is economically useless to add a large amount beyond. The N
The lower limit of the i content is most practically determined by considering the contents of C, N and Mn, which have the same effect as Ni, in consideration of the contents of C, N and Mn. With the above, the above effects are effectively exhibited. Ni equivalent = Ni% + 30 × (C% + N%) + 0.5 × M
n%

【0012】Cr:13〜22% Crは耐食性を向上させるうえで重要な元素であり、1
3%未満ではその効果が十分に発揮されない。しかし2
2%を超えると非磁性が不安定になるばかりでなく、熱
間加工性も悪くなる。尚、該Cr含有量の上限は、Cr
と同様に熱間加工性に悪影響を及ぼすMoおよびSiの
含有量も加味し、次式で表わされるCr当量として定め
るのがよく、熱間加工性の低下を阻止するには該Cr当
量を24以下に抑えることが必要となる。 Cr当量=Cr%+Mo%+1.5×Si%
Cr: 13-22% Cr is an important element for improving the corrosion resistance, and 1
If it is less than 3%, the effect is not sufficiently exhibited. But 2
If it exceeds 2%, not only the non-magnetism becomes unstable, but also the hot workability becomes poor. The upper limit of the Cr content is Cr
Similarly, the contents of Mo and Si, which adversely affect the hot workability, are also taken into consideration, and it is preferable to determine the Cr equivalent represented by the following equation. To prevent the deterioration of the hot workability, the Cr equivalent is 24 It is necessary to keep below. Cr equivalent = Cr% + Mo% + 1.5 × Si%

【0013】N :0.15〜0.6% Nはオーステナイトを生成すると共に強度および耐食性
を向上させるための必須元素であり、含有量が0.15
%未満ではこれらの効果が有効に発揮されない。しかし
多過ぎると鋼塊中に気泡を生じて熱間加工性が劣化する
ので、0.6%以下に抑えなければならない。 Mo:5%以下 Moは耐食性および強度を向上させる元素であり、多い
ほど好ましいが、その効果は約5%で飽和し、それ以上
の効果は得られないので経済的に無駄である。
N: 0.15 to 0.6% N is an essential element for forming austenite and improving strength and corrosion resistance, and its content is 0.15.
If it is less than%, these effects cannot be effectively exhibited. However, if it is too large, bubbles will be generated in the steel ingot and the hot workability will be deteriorated, so it must be suppressed to 0.6% or less. Mo: 5% or less Mo is an element that improves the corrosion resistance and strength, and the larger the amount, the more preferable. However, the effect is saturated at about 5%, and no further effect is obtained, which is economically wasteful.

【0014】S :0.02%以下 Sは鋼中でMnS介在物として存在し、被削性の向上に
寄与するが、0.02%を超えると耐食性を著しく劣化
させる。 Al:0.03%以下 Alは脱酸剤として必要な元素であるが、0.03%を
超えて含有させるとC系介在物を生成して耐食性を悪化
させる。そのためAl含有量は0.03%以下とする。
S: 0.02% or less S exists as MnS inclusions in steel and contributes to improvement of machinability, but if it exceeds 0.02%, corrosion resistance is significantly deteriorated. Al: 0.03% or less Al is an element necessary as a deoxidizing agent, but if it is contained in excess of 0.03%, a C-based inclusion is generated to deteriorate the corrosion resistance. Therefore, the Al content is 0.03% or less.

【0015】In:0.01〜0.13% Inは、前述の如く耐食性に悪影響を及ぼすことなく被
削性を高めるという特異な作用効果を有しており、こう
した作用を有効に発揮させるには0.01%以上含有さ
せなければならない。しかし含有量が多くなり過ぎると
熱間加工性が著しく悪くなる傾向があるので、こうした
悪影響が実質的に表われない0.13%を上限と定め
た。
In: 0.01 to 0.13% In has a peculiar function and effect of increasing machinability without adversely affecting the corrosion resistance as described above, and in order to effectively exhibit such a function. Must be contained in an amount of 0.01% or more. However, if the content is too large, the hot workability tends to be remarkably deteriorated, so 0.13% is set as the upper limit at which such adverse effects are not substantially manifested.

【0016】本発明は以上の様に構成されており、高M
n非磁性鋼の成分組成、殊にC,Mn,N,Mo,S,
Al等の含有量を特定すると共に、Ni当量およびCr
当量を規定し、且つ少量のInを含有させることによっ
て、高Mn非磁性鋼が有している本来の特性である安定
した非磁性と高強度を確保しつつ被削性および耐食性を
著しく高めることができ、耐食性、強度、非磁性および
被削性の全ての要求特性を満たす理想的な高Mn非磁性
鋼を提供し得ることになった。
The present invention is constructed as described above and has a high M
n Non-magnetic steel composition, especially C, Mn, N, Mo, S,
While specifying the content of Al, etc., Ni equivalent and Cr
By specifying the equivalent weight and containing a small amount of In, the machinability and corrosion resistance can be remarkably enhanced while maintaining the stable non-magnetic property and high strength which are the original properties of high Mn non-magnetic steel. Therefore, it is possible to provide an ideal high Mn non-magnetic steel satisfying all the required properties of corrosion resistance, strength, non-magnetic property and machinability.

【0017】次に本発明の実施例を示すが、本発明はも
とより下記実施例によって制約を受けるものではなく、
前後記の趣旨に適合し得る範囲で適当に変更して実施す
ることはいずれも本発明の技術的範囲に含まれる。
Next, examples of the present invention will be shown. However, the present invention is not limited by the following examples, and
Any appropriate modification and implementation within a range that is compatible with the spirit of the preceding and following statements is included in the technical scope of the present invention.

【0018】[0018]

【実施例】表1に示す成分組成の高Mn非磁性鋼を15
0kgの高周波炉で溶製し、鋳造後直径25mmまたは
直径80mmに鍛伸した後溶体化処理を施し、直径25
mmの鍛伸材は試験片加工の後耐食試験、常温引張試験
および高温引張試験に供し、直径80mmの鍛伸材は切
断試験に供した。試験結果を表2に示す。尚各試験条件
は下記の通りである。
EXAMPLES 15 high Mn non-magnetic steels having the composition shown in Table 1 were used.
It is melted in a 0 kg high frequency furnace, cast and then forged to a diameter of 25 mm or a diameter of 80 mm and then subjected to a solution treatment to give a diameter of 25 mm.
The forged material having a diameter of 80 mm was subjected to a corrosion resistance test, a room temperature tensile test and a high temperature tensile test after processing the test piece, and the forged material having a diameter of 80 mm was subjected to a cutting test. The test results are shown in Table 2. The test conditions are as follows.

【0019】 (引張試験):JIS4号試験片、試験温度25℃ (耐食性試験):5%塩水噴霧2000時間後の赤錆発
生率(%) (被削性試験): 超硬寿命:工具;P10、V=150m/min、f=
0.2mm/rev、d=1.0mm、乾式切削、寿命
基準;VB=0.2mm ドリル寿命:工具;直径10mmドリル(SHK51+
TiN)、V=20m/min、f=1.0mm/re
v、乾式切削、寿命基準;溶損 (高温絞り試験):試験温度1100℃、引張速度2m
m/sec、試験雰囲気(真空→Ar置換)
(Tensile test): JIS No. 4 test piece, test temperature 25 ° C. (corrosion resistance test): 5% salt spray after 2000 hours, red rust occurrence rate (%) (Machinability test): Carbide life: Tool; P10 , V = 150 m / min, f =
0.2 mm / rev, d = 1.0 mm, dry cutting, life standard; VB = 0.2 mm Drill life: Tool; 10 mm diameter drill (SHK51 +
TiN), V = 20 m / min, f = 1.0 mm / re
v, dry cutting, life standard; melting loss (high temperature drawing test): test temperature 1100 ° C, pulling speed 2m
m / sec, test atmosphere (vacuum → Ar substitution)

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【表2】 [Table 2]

【0022】表1,2より次の様に考えることができ
る。符号Aは基本組成となる従来の高Mn非磁性鋼(P
CD18)を示すものであり、常温および高温下の引張
特性並びに耐食性は良好であるが、被削性が極端に悪
い。また符号B,C,Dは被削性改善元素としてS,P
bまたはBiを適量含有させたものであり、符号Aに比
べて被削性は著しく改善されている。ところが符号Bの
S添加鋼では耐食性の劣化が著しく、符号CのPb添加
鋼および符号DのBi添加鋼では耐食性が悪くなるほ
か、特に高温条件下での引張特性が著しく低下してい
る。
From Tables 1 and 2, the following can be considered. The symbol A is the conventional high Mn non-magnetic steel (P
CD18), the tensile properties and corrosion resistance at room temperature and high temperature are good, but the machinability is extremely poor. The symbols B, C and D are S and P as machinability improving elements.
It contains b or Bi in an appropriate amount, and has a significantly improved machinability compared to the code A. However, the S-added steel with the code B is significantly deteriorated in corrosion resistance, and the Pb-added steel with the code C and the Bi-added steel with the code D are poor in corrosion resistance, and particularly the tensile properties are significantly deteriorated under high temperature conditions.

【0023】これに対し被削性改善元素として適量のI
nを添加した本発明の高Mn非磁性鋼(符号E〜I)
は、常温および高温の引張特性、耐食性、被削性のいず
れにおいても優れた性能が得られている。尚、符号Jは
In添加量が多過ぎる比較例であり、被削性は高められ
るものの、常温および高温下の引張特性が悪化すると共
に耐食性も劣化している。
On the other hand, an appropriate amount of I as a machinability improving element is used.
The high Mn non-magnetic steel of the present invention containing n (reference numerals E to I)
Has excellent properties in tensile properties at room temperature and high temperature, corrosion resistance, and machinability. Incidentally, the symbol J is a comparative example in which the added amount of In is too large, and although the machinability is enhanced, the tensile properties at room temperature and high temperature are deteriorated and the corrosion resistance is also deteriorated.

【0024】また図1は、前記表1に示した供試材のう
ち符号A,B,C,D,Iの耐食性試験結果をグラフ化
して示したものであり、適量のInを添加した本発明鋼
(符号I)は、被削性改善元素としてS,Pb,Biを
添加した比較鋼(符号B,C,D)の様な耐食性の劣化
が全く認められず、ベース鋼(符号A)と同等の優れた
耐食性を有していることが分かる。
Further, FIG. 1 is a graph showing the results of the corrosion resistance test of the reference materials A, B, C, D and I among the test materials shown in Table 1 above, in which an appropriate amount of In is added. The invention steel (symbol I) does not show any deterioration in corrosion resistance like the comparative steels (symbols B, C, D) to which S, Pb and Bi are added as machinability improving elements, and is the base steel (symbol A). It can be seen that it has excellent corrosion resistance equivalent to.

【0025】また図2は、In含有量と高温下の絞り値
の関係を示したグラフであり、In含有量が0.13%
程度までは極端な低下は認められないが、0.13%を
超えると高温絞り値が極端な低下傾向を示す様になる。
FIG. 2 is a graph showing the relationship between the In content and the aperture value at high temperature. The In content is 0.13%.
Although no extreme decrease is observed to some extent, if it exceeds 0.13%, the high temperature reduction value tends to decrease extremely.

【0026】更に図3,4はIn含有量が超硬工具寿命
およびドリル寿命に与える影響を示すグラフであり、こ
れらの寿命はIn量が0.13%程度までは略一次直線
的に向上するが、In量が0.13%で寿命延長効果は
飽和状態に達し、それ以上の顕著な向上は期待できない
ことが分かる。
Further, FIGS. 3 and 4 are graphs showing the influence of the In content on the life of the cemented carbide tool and the life of the drill, and the lifespan of these increases substantially linearly until the In content reaches about 0.13%. However, it can be seen that when the In content is 0.13%, the life extension effect reaches a saturated state, and no further significant improvement can be expected.

【0027】[0027]

【発明の効果】本発明は以上の様に構成されており、鋼
材の成分組成がNi当量やCr当量を規定すると共に、
特に適量のInを含有させることによって、耐食性や引
張特性に悪影響を及ぼすことなく被削性を著しく改善す
ることができ、それにより優れた耐食性、強度特性およ
び非磁性を有し且つ被削性の良好な高Mn非磁性鋼を提
供し得ることになった。
The present invention is constituted as described above, and the composition of the steel material defines the Ni equivalent and Cr equivalent, and
In particular, by containing an appropriate amount of In, the machinability can be remarkably improved without adversely affecting the corrosion resistance and the tensile properties, which results in excellent corrosion resistance, strength properties and non-magnetism and machinability. It has become possible to provide a good high Mn non-magnetic steel.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例で用いた供試鋼の塩水噴霧時間と錆発生
率の関係を示すグラフである。
FIG. 1 is a graph showing a relationship between a salt water spraying time and a rust occurrence rate of a test steel used in Examples.

【図2】In含有量が高温絞り値に与える影響を示すグ
ラフである。
FIG. 2 is a graph showing the influence of the In content on the high-temperature drawing value.

【図3】In含有量が超硬工具寿命に与える影響を示す
グラフである。
FIG. 3 is a graph showing the effect of In content on the life of cemented carbide tools.

【図4】In含有量がドリル寿命に与える影響を示すグ
ラフである。
FIG. 4 is a graph showing the effect of In content on drill life.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 C:0.05〜0.2%(重量%:以下
同じ)、 Mn:5〜23%、 Ni:15%以下、 Cr:13〜22%、 Mo:5%以下、 In:0.01〜0.13%、 N:0.15〜0.6%、 S:0.02%以下、 Al:0.03%以下、 残部Feおよび不可避不純物からなり、且つ下記式によ
って求められるNi当量が16以下、Cr当量が24以
下であることを特徴とする被削性および耐食性に優れた
高Mn非磁性鋼。 Ni当量=Ni%+30×(C%+N%)+0.5×M
n% Cr当量=Cr%+Mo%+1.5×Si%
1. C: 0.05 to 0.2% (weight%: the same applies hereinafter), Mn: 5 to 23%, Ni: 15% or less, Cr: 13 to 22%, Mo: 5% or less, In : 0.01 to 0.13%, N: 0.15 to 0.6%, S: 0.02% or less, Al: 0.03% or less, balance Fe and unavoidable impurities, and calculated by the following formula. A high Mn nonmagnetic steel excellent in machinability and corrosion resistance, characterized in that the Ni equivalent is 16 or less and the Cr equivalent is 24 or less. Ni equivalent = Ni% + 30 × (C% + N%) + 0.5 × M
n% Cr equivalent = Cr% + Mo% + 1.5 × Si%
JP26383292A 1992-10-01 1992-10-01 High mn nonmagnetic steel excellent in machinability and corrosion resistance Withdrawn JPH06116683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26383292A JPH06116683A (en) 1992-10-01 1992-10-01 High mn nonmagnetic steel excellent in machinability and corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26383292A JPH06116683A (en) 1992-10-01 1992-10-01 High mn nonmagnetic steel excellent in machinability and corrosion resistance

Publications (1)

Publication Number Publication Date
JPH06116683A true JPH06116683A (en) 1994-04-26

Family

ID=17394848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26383292A Withdrawn JPH06116683A (en) 1992-10-01 1992-10-01 High mn nonmagnetic steel excellent in machinability and corrosion resistance

Country Status (1)

Country Link
JP (1) JPH06116683A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1538232A1 (en) * 2003-12-03 2005-06-08 BÖHLER Edelstahl GmbH Corrosion resistant austenitic steel.

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1538232A1 (en) * 2003-12-03 2005-06-08 BÖHLER Edelstahl GmbH Corrosion resistant austenitic steel.
US7708841B2 (en) 2003-12-03 2010-05-04 Boehler Edelstahl Gmbh & Co Kg Component for use in oil field technology made of a material which comprises a corrosion-resistant austenitic steel alloy
US7947136B2 (en) 2003-12-03 2011-05-24 Boehler Edelstahl Gmbh & Co Kg Process for producing a corrosion-resistant austenitic alloy component
US8454765B2 (en) 2003-12-03 2013-06-04 Boehler Edelstahl Gmbh & Co. Kg Corrosion-resistant austenitic steel alloy

Similar Documents

Publication Publication Date Title
JP2004083924A (en) Sulfur-containing free-machining steel for machine structure
JPH06228717A (en) Silicon stainless steel
JPH0542493B2 (en)
JP2015196894A (en) Two-phase stainless steel
JP5035831B2 (en) High nitrogen austenitic stainless steel
JPH04272158A (en) Nonmagnetic stainless steel having low work hardenability
JPH06116683A (en) High mn nonmagnetic steel excellent in machinability and corrosion resistance
JP3791664B2 (en) Austenitic Ca-added free-cutting stainless steel
JP4018021B2 (en) Nonmagnetic sulfur free-cutting stainless steel wire with excellent cold-drawing workability and corrosion resistance
JPH07138708A (en) Austenitic steel good in high temperature strength and hot workability
JP4250305B2 (en) BN free cutting steel with excellent soft magnetism
JPH01159353A (en) Age hardening austenitic tool steel
JPH0215148A (en) High mn nonmagnetic steel having excellent corrosion resistance
JP2009256765A (en) Nonmagnetic austenitic stainless steel, shaft or motor, and motor
JPS62136557A (en) High strength nonmagnetic steel having rust resistance
JPH06145906A (en) Ferritic stainless steel excellent in resistance to corrosion by water condensation
JP3603461B2 (en) High hardness non-magnetic stainless steel and high hardness non-magnetic stainless steel wire
JPS62156257A (en) High strength, nonmagnetic cold rolled steel sheet
JP2001164340A (en) High corrosion resistant free cutting stainless steel excellent in hot workability
JPS5925002B2 (en) free cutting stainless steel powder
JPS63169362A (en) Nonmagnetic tool steel
JP2001152280A (en) Free cutting steel
JPH0441651A (en) Corrosion resisting austenitic stainless steel excellent in machinability
JP2000063982A (en) Free cutting steel excellent in rust resistance and atmosphere corrosion resistance
JP2001192778A (en) High corrosion resistance free cutting stainless steel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000104