JPH0611643B2 - Boron Nitride Manufacturing Method - Google Patents

Boron Nitride Manufacturing Method

Info

Publication number
JPH0611643B2
JPH0611643B2 JP14493985A JP14493985A JPH0611643B2 JP H0611643 B2 JPH0611643 B2 JP H0611643B2 JP 14493985 A JP14493985 A JP 14493985A JP 14493985 A JP14493985 A JP 14493985A JP H0611643 B2 JPH0611643 B2 JP H0611643B2
Authority
JP
Japan
Prior art keywords
boron nitride
precursor
melamine
heated
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14493985A
Other languages
Japanese (ja)
Other versions
JPS627610A (en
Inventor
保夫 ▲吉▼田
和夫 青柳
清 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP14493985A priority Critical patent/JPH0611643B2/en
Publication of JPS627610A publication Critical patent/JPS627610A/en
Publication of JPH0611643B2 publication Critical patent/JPH0611643B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は窒化ホウ素の製造法に関し、さらに詳しくは、
加熱時間を短縮し、最高温度を低下させ、処理量を増加
し、大きな結晶が得られ、さらに操作し易い改良された
窒化ホウ素の製造法に関する。
TECHNICAL FIELD The present invention relates to a method for producing boron nitride, and more specifically,
The present invention relates to an improved method for producing boron nitride, which shortens the heating time, lowers the maximum temperature, increases the throughput, obtains large crystals, and is easy to operate.

〔従来の技術〕[Conventional technology]

従来、窒化ホウ素の工業的製造法としては、ホウ酸、無
水ホウ酸或いはホウ砂と、ジシアンジアミド、メラミ
ン、尿素等の熱分解によってアンモニアを発生する有機
化合物との混合物を加熱するか、またはホウ酸をリン酸
カルシウムのような比表面積の大きい充填剤と共に造粒
し、アンモニア気流中で加熱する方法が行なわれてい
る。この方法は、それぞれの融点以上の温度で窒化され
るホウ酸またはホウ砂の反応表面を保持することが難か
しく、反応率も低いため、製造バッチの大型化、および
急熱による反応時間の短縮を妨げている。さらに、この
方法はメラミン等の炭化により、得られる窒化ホウ素が
黒化したり、窒化が不均一となったりする問題もある。
Conventionally, as an industrial production method of boron nitride, boric acid, boric anhydride or borax, and a mixture of dicyandiamide, melamine, a mixture of organic compounds that generate ammonia by thermal decomposition of urea, or boric acid There is a method in which is granulated with a filler having a large specific surface area such as calcium phosphate and heated in an ammonia stream. With this method, it is difficult to retain the reaction surface of boric acid or borax that is nitrided at a temperature above its melting point, and the reaction rate is low, so the production batch becomes larger and the reaction time due to rapid heating is shortened. Is hindering Further, this method has a problem that carbonization of melamine or the like causes blackening of the obtained boron nitride and non-uniform nitriding.

これに対し、ホウ酸或いは無水ホウ酸とメラミン等を混
合しさらに水を加えて窒化ホウ素前躯体を生成させ、こ
れを不活性雰囲気中で加熱する方法は、前躯体生成中に
メラミンが常温で完全に反応するため、その後の加熱に
よるメラミン炭化がなく、さらに前躯体の加熱残分は窒
化ホウ素のみが残り、他の成分はすべて気散するので、
高収率で高純度の窒化ホウ素が容易に得られることを知
った。
On the other hand, boric acid or boric anhydride and melamine are mixed and water is further added to form a boron nitride precursor, which is heated in an inert atmosphere. Since it reacts completely, there is no melamine carbonization due to subsequent heating, and the heating residue of the precursor remains only boron nitride, and all other components are vaporized,
It has been found that high yield and high purity boron nitride can be easily obtained.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

そこで、上記方法について種々研究を行なったところ、
上記窒化ホウ素前躯体は、過剰の水分を存在させると、
加熱後窒化ホウ素として残る窒素とホウ素の外に、多量
の加熱揮発分を含んでおり、加熱時過剰水分を含めたこ
れら揮発分が蒸発するため、前躯体を加熱すると、前躯
体粉末の飛散があり、また熱が内部まで伝わりにくく、
大量の前躯体を均一、かつ急速に加熱することが困難で
あった。さらに揮発成分が除去された後、残留する無水
ホウ酸も低い温度で速やかに揮発するため、700℃以
上での窒化ホウ素の結晶成長がなく、結晶性のよい窒化
ホウ素が得にくい欠点があった。
Therefore, when various studies were conducted on the above method,
The boron nitride precursor, in the presence of excess water,
In addition to nitrogen and boron, which remain as boron nitride after heating, a large amount of heated volatile components are contained, and these volatile components including excess moisture evaporate during heating.Therefore, when the precursor is heated, the precursor powder is scattered. Yes, and it is difficult for heat to reach the inside,
It was difficult to heat a large amount of precursors uniformly and rapidly. Furthermore, after the volatile components are removed, the residual boric anhydride also volatilizes rapidly at a low temperature, so there is no crystal growth of boron nitride at 700 ° C. or higher, and it is difficult to obtain boron nitride with good crystallinity. .

そのため、先に本発明者らは、前躯体を成形体とし、嵩
密度を高くして熱伝導性をよくし、急速昇温を可能と
し、かつ揮発分の蒸発に伴なう、粉末の飛散を防止する
方法を提案した。この方法により熱伝導性がよくなり、
大幅な改良が認められたが、急速に均一加熱するには、
さらに成形体の熱伝導性をよくする必要があった。
Therefore, the present inventors previously made the precursor a molded body, increased the bulk density to improve the thermal conductivity, made it possible to rapidly raise the temperature, and caused the scattering of the powder along with the evaporation of volatile components. Proposed a method to prevent. This method improves thermal conductivity,
Although a great improvement was recognized, for rapid uniform heating,
Furthermore, it was necessary to improve the thermal conductivity of the molded body.

本発明は上記の事情に鑑み、成形した前躯体の熱伝導性
を大幅に高めて、これを均一、かつ急速に加熱可能とし
て、短時間に結晶性のよい窒化ホウ素を得る方法を提供
することを目的とする。
In view of the above circumstances, the present invention provides a method for obtaining a boron nitride having good crystallinity in a short time by significantly increasing the thermal conductivity of a molded precursor, allowing it to be uniformly and rapidly heated. With the goal.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記の目的を達成するためになされたもので、
その要旨は、ホウ酸、もしくは無水ホウ酸とNH基を
有する有機環状化合物との混合物に窒化ホウ素および水
を加え、次いで成形し、嵩密度を高めて加熱する窒化ホ
ウ素の製造法にある。
The present invention has been made to achieve the above object,
The gist thereof is a method for producing boron nitride in which boron nitride and water are added to a mixture of boric acid or boric anhydride and an organic cyclic compound having an NH 2 group, and the mixture is then molded to increase the bulk density and then heated.

〔発明の具体的構成および作用〕[Specific Structure and Action of Invention]

本発明に用いられるホウ酸、或いは無水ホウ酸(B
)のうちホウ酸としてはオルソホウ酸(H
)、メタホウ酸(HBO)、四ホウ酸(H
)がいずれも使用出来る。
Boric acid or boric anhydride (B 2 O used in the present invention
3 ) is orthoboric acid (H 3 B)
O 3 ), metaboric acid (HBO 2 ), tetraboric acid (H 2 B 4
Any of O 7 ) can be used.

また、NH基を有する有機環状化合物は、望ましくは
窒化ホウ素の加熱反応に際して溶融しないものである。
例えばメラミン、アンメリン、アンメリド、メラム、メ
レム、メロン、シアノメラミン、グアニルメラミン等で
ある。溶融しないことが望ましい理由は、加熱時発泡
し、分解ガスが逃散し難く、分解不十分により炭化し易
く黒化し、また窒化ホウ素純度が低下するためである。
尿素(HNCONH)は水と容易に溶け合い分解し
てNHを発生するので、ホウ酸との安定な前躯体を作
り難く好ましくない。
Moreover, the organic cyclic compound having an NH 2 group is preferably one that does not melt during the heating reaction of boron nitride.
For example, melamine, ammeline, ammelide, melam, melem, melon, cyanomelamine, guanylmelamine and the like. The reason why it is desirable not to melt is that foaming occurs when heated, the decomposed gas does not easily escape, carbonization easily occurs due to insufficient decomposition, and the purity of boron nitride decreases.
Urea (H 2 NCONH 2 ) easily dissolves in water and decomposes to generate NH 3 , which is not preferable because it is difficult to form a stable precursor with boric acid.

今、ホウ酸或いは無水ホウ酸とメラミンにさらに窒化ホ
ウ素と水を加えて、窒化ホウ素(以下BNという)を製
造する場合について説明する。先ず、ホウ酸或いは無水
ホウ酸、とをB/N原子比で1/3〜2/1の割合で混合した
ものにさらに水と全量に対して40重量%以下のBNを
加えると、ホウ酸或いは無水ホウ酸、メラミン、水は反
応してC(NH・HBOの分子式で示
される前躯体が得られ、BNは化学変化を受けずそのま
まの状態を保持する。これをタブレットマシン等の造粒
機によって成形し、この成形体を乾燥しさらに仮焼する
か、乾燥或いは仮焼した後、非酸化性雰囲気において焼
成することにより、上記前躯体は純度の高い結晶性のよ
い六方晶BNとなり、前躯体とともに成形されたBN
は、そのまま前躯体から生成したBN中に含まれる。
Now, a case will be described in which boron nitride and water are further added to boric acid or boric anhydride and melamine to produce boron nitride (hereinafter referred to as BN). First, when boric acid or boric anhydride is mixed at a B / N atomic ratio of 1/3 to 2/1, and 40% by weight or less of BN is added to the total amount of boric acid. Alternatively, boric anhydride, melamine, and water react to give a precursor represented by the molecular formula of C 3 N 3 (NH 2 · H 3 BO 3 ) 3 , and BN retains its state as it is without undergoing a chemical change. . This precursor is molded with a granulating machine such as a tablet machine, and the molded body is dried and further calcined, or by firing in a non-oxidizing atmosphere after drying or calcining, the precursor is a crystal with high purity. A hexagonal BN with good properties and formed with the precursor
Is contained in the BN produced from the precursor as it is.

上記混合物を成形して用いることにより、前躯体は嵩密
度が高くなり、前射体の熱伝導がよくなり、さらに、熱
伝導のよいBNが分散含有されているので、それが助長
される。したがって、大量の成形体を加熱する場合、中
心まで容易に熱が伝わり、急速な昇温が可能となり、均
一な加熱が短時間で行なわれる。また、個々の成形体粒
子間に隙間が生ずるため、加熱分解して発生するガスの
逃散が容易となり、成形せずに粉末の状態で加熱する場
合に発生する吹上げ、飛散が防止される。さらに、嵩密
度が高いことにより、初期の分解圧力の高い揮発成分の
揮発後も無水ホウ酸が高温になって長時間残留するの
で、窒化ホウ素の結晶成長が極めてよく行なわれる。
By molding and using the above mixture, the precursor has a high bulk density, the thermal conductivity of the precursor is good, and further BN having good thermal conductivity is dispersed and contained, which is promoted. Therefore, when a large amount of molded bodies are heated, heat is easily transmitted to the center, rapid temperature rise is possible, and uniform heating is performed in a short time. In addition, since a gap is formed between the individual molded particles, the gas generated by thermal decomposition can easily escape, and blow-up and scattering that occur when the powder is heated without being molded can be prevented. Further, since the bulk density is high, boric anhydride is heated to a high temperature and remains for a long time even after volatilization of a volatile component having a high initial decomposition pressure, so that boron nitride crystal growth is extremely well performed.

上記B/N原子比が1/3〜2/1の範囲である理由は、原子
比が1/3未満では、水の存在下で前躯体にならないメラ
ミンが残存して焼成中に炭化し窒化ホウ素を黒色或いは
褐色化する。結晶性のよいBNを得るにはB/N=1/
1以上であることが望ましく、約2/1までホウ酸の量に
応じて結晶性の改善が見られ、ホウ酸または無水ホウ酸
の量がB/N原子比2/1を越えても結晶性の改善は見ら
れず、製品中に無益に存在する。すなわち、上記範囲で
は、Bの割合が多いと結晶性のよいBNが得易い。
The reason that the B / N atomic ratio is in the range of 1/3 to 2/1 is that when the atomic ratio is less than 1/3, melamine that does not become a precursor in the presence of water remains and carbonizes and is nitrided during firing. Makes boron black or brown. To obtain BN with good crystallinity, B / N = 1 /
It is preferably 1 or more, and the crystallinity is improved up to about 2/1 depending on the amount of boric acid. Even if the amount of boric acid or boric anhydride exceeds the B / N atomic ratio of 2/1, the crystallinity is increased. There is no improvement in sex and it is ineffective in the product. That is, in the above range, if the proportion of B is large, it is easy to obtain BN having good crystallinity.

一方無定形窒化ホウ素を得るには、メラミン過剰、通
常、B/Nは1/2以下であることがよい。従って、好ま
しいB/Nの範囲は1/3〜2/1である。
On the other hand, in order to obtain amorphous boron nitride, melamine excess, usually B / N, is preferably 1/2 or less. Therefore, the preferable range of B / N is 1/3 to 2/1.

また、BNの添加は熱伝導性のよいBNを加えることに
より、成形体の熱伝導性を高めるためのもので、当然の
ことながら添加量の多い方が有効である。しかし、この
BNはそのまま、製品中に含まれるので、多過ぎると、
昇温時間は短縮されるが、前躯体の量が減少し経済的に
不利となる。したがって、成形体に含まれる量が40重
量%以下、特に10〜30重量%の範囲が好ましい。ま
た、急速昇温によって、均一な温度とするには、BNを
均一に成形体内に分散させる必要があり、粉体として添
加される。粉末は、分散を考慮した場合、細い方が有で
あるが、取扱上30〜325メッシュ、特に80〜20
0メッシュのものが好ましい。
Further, the addition of BN is to increase the thermal conductivity of the molded product by adding BN having good thermal conductivity. Naturally, the larger the amount of addition, the more effective. However, since this BN is included in the product as it is, if too much,
Although the temperature rise time is shortened, the amount of the precursor is reduced, which is economically disadvantageous. Therefore, the amount contained in the molded body is preferably 40% by weight or less, particularly preferably 10 to 30% by weight. Further, in order to obtain a uniform temperature by the rapid temperature rise, it is necessary to uniformly disperse BN in the molded body, which is added as a powder. In consideration of dispersion, the powder has a finer one, but in handling, it is 30 to 325 mesh, particularly 80 to 20 mesh.
0 mesh is preferable.

水の混合量は、原料としてHBO、HBO、H
、Bのうちいずれを用いるかによって多
少異なる。HBO、H、Bは水と反
応してHBOとなるので、それに消費される水の量
だけ多くする必要がある。
The amount of water mixed is H 3 BO 3 , HBO 2 and H 2 as raw materials.
It is slightly different depending on which one of B 4 O 7 and B 2 O 3 is used. HBO 2 , H 2 B 4 O 7 , and B 2 O 3 react with water to form H 3 BO 3 , so it is necessary to increase the amount of water consumed by it.

BOを使用した場合、粉状のメラミン、ホウ酸で
あれば、メラミン1g当り0.2〜0.3gの水を加え
て、スクリュー撹拌により混合および成形が可能であ
る。また、粒状メラミン、ホウ酸を混合粉管する場合、
メラミン1g当り1.5〜2.0gの水を加えると湖状
になり撹拌しにくいが、2gを越えると次第に流動性を
生じボールミルで撹拌することが出来る。しかし、水の
量が多すぎると、乾燥しなければ成形出来なくなる。従
って成形を前提とすると、メラミン1g当り、水は0.
2〜2g程度がよい。過剰の水は成形の前に脱水してこ
の範囲にしてもよい。BNの添加は、上記ホウ酸、メラ
ミンの混合の際、均一分散可能な時点で適宜行なえばよ
い。
When H 3 BO 3 is used, powdered melamine or boric acid can be mixed and molded by adding 0.2 to 0.3 g of water per 1 g of melamine and stirring with a screw. Also, in the case of mixing powder tube of granular melamine and boric acid,
If 1.5 to 2.0 g of water is added per 1 g of melamine, it becomes lake-like and difficult to stir, but if it exceeds 2 g, fluidity gradually occurs and stirring can be performed with a ball mill. However, if the amount of water is too large, it cannot be molded unless it is dried. Therefore, on the assumption of molding, water is 0.
About 2 to 2 g is preferable. Excess water may be dehydrated to this range prior to molding. The addition of BN may be appropriately performed when the boric acid and melamine are mixed, at the time when they can be uniformly dispersed.

成形はプレス成形、パンペレタイザー等によって行なう
ことが出来、塊状物、造粒物等にされる。
The molding can be performed by press molding, a pan pelletizer, etc., and is made into a lump, a granule, or the like.

BN生成の加熱温度は、300〜2300℃が適する。
その際の雰囲気は、N、Ar、NHである。
The heating temperature for BN generation is preferably 300 to 2300 ° C.
The atmosphere at that time is N 2 , Ar, and NH 3 .

また、生成したBNの結晶性を高めるために、さらに高
温に加熱することも出来る。加熱の前に成形物を乾燥し
てもよい。
Further, in order to enhance the crystallinity of the generated BN, it can be heated to a higher temperature. The molded product may be dried before heating.

次に実施例、比較例を示して本発明の方法を説明する。Next, the method of the present invention will be described with reference to Examples and Comparative Examples.

〔実施例1〕 無水ホウ酸粉末:30kg、メラミン粉末:40kg、を品
川式撹拌機を入れ、撹拌しながら水:30kgを徐々に加
え、さらにBNの100メッシュ下粉末をそれぞれ、
(イ)15kg、(ロ)25kg、(ハ)40kg、(ニ)55kgを加え、
前躯体とBNとの混合粉末、115kg、125kg、14
0kg、155kgを得た。この混合粉末を機械プレスによ
って造粒成形し、20mmφ×10mmtのタブレットした。
この成形体を80℃で乾燥し、次いでステンレス製容器
にそれぞれ装入し、窒素気流中で1000℃まで、それ
ぞれ最適な時間をかけて昇温した。得られた製品は、い
ずれも装入前と外形上の変化がなく、崩壊、粉化も認め
られなかった。更にこの製品をそれぞれBNで内張りし
た黒鉛容器に入れ、窒素ガス気流中で1400℃まで加
熱し最終製品とした。
[Example 1] Boric anhydride powder: 30 kg, Melamine powder: 40 kg were put in a Shinagawa stirrer, water: 30 kg was gradually added with stirring, and BN powder under 100 mesh was further added.
Add (a) 15kg, (b) 25kg, (c) 40kg, (d) 55kg,
Powder mixture of precursor and BN, 115kg, 125kg, 14
0 kg and 155 kg were obtained. This mixed powder was granulated and formed by a mechanical press into tablets of 20 mmφ × 10 mmt.
The molded body was dried at 80 ° C., then charged into a stainless steel container, and heated to 1000 ° C. in a nitrogen stream for each optimum time. None of the obtained products had the same external shape as before charging, and neither disintegration nor pulverization was observed. Further, each of these products was placed in a graphite container lined with BN and heated to 1400 ° C. in a nitrogen gas stream to obtain a final product.

最終製品はX線回析によりBNであることが確認され
た。
The final product was confirmed to be BN by X-ray diffraction.

〔比較例1〕 BNを添加せず、前躯体のみのタブレットとし、100
0℃までの昇温を4時間で行なった外は、実施例と同じ
にしてBNをつくった。
[Comparative Example 1] BN was not added, and a tablet containing only the precursor was prepared.
BN was prepared in the same manner as in Example except that the temperature was raised to 0 ° C. for 4 hours.

最終製品はX線回析によりBNであることが確認され
た。
The final product was confirmed to be BN by X-ray diffraction.

実施例1、比較例1の結果を第1表に示す。The results of Example 1 and Comparative Example 1 are shown in Table 1.

表より明かなように、BNの添加量が多くなる程、最適
処理時間は短縮され、製品の結晶性および収率が向上す
る。しかし同じ量の前躯体を処理する装置が大きくな
り、経済的には、BN添加量は約40%までと推定され
る。
As is clear from the table, the more the amount of BN added, the shorter the optimal treatment time and the better the crystallinity and yield of the product. However, the apparatus for treating the same amount of precursor becomes large, and it is estimated economically that the amount of BN added is up to about 40%.

〔実施例2、比較例2〕 実施例1、比較例1の成形体10を80℃で乾燥し、
それぞれステンレス製容器に入れ、窒素気流中で100
0℃まで150分かけて昇温し、さらにチタン内張りし
た黒鉛容器に入れて窒素気流中で1400℃に加熱して
製品とし、製品物性を比較した。結果を第2表に示す。
[Example 2, Comparative Example 2] The molded body 10 of Example 1, Comparative Example 1 was dried at 80 ° C,
Put each in a stainless steel container, 100 in a nitrogen stream
The temperature was raised to 0 ° C. over 150 minutes, and the product was placed in a graphite container lined with titanium and heated to 1400 ° C. in a nitrogen stream to obtain a product, and the product physical properties were compared. The results are shown in Table 2.

〔効 果〕 以上述べたように、本発明の方法は前躯体に熱伝導性の
よいBNを分散させて成形しているので、前躯体の嵩密
度の上昇およびBNの作用により、成形体の熱伝導性が
極めてよくなり、急速かつ均一に加熱することが可能と
なり、生産性、品質が共に高まり、また発生するガスは
成形体粒間を通って逃散するので粉体の吹上げなどの発
生がない等多くの長所を有する。
[Effects] As described above, in the method of the present invention, BN having good thermal conductivity is dispersed in the precursor and molded. Therefore, the increase in the bulk density of the precursor and the action of BN cause It has extremely good thermal conductivity, enables rapid and uniform heating, improves both productivity and quality, and the generated gas escapes between the granules of the compact, so that powder blowing up occurs. There are many advantages such as no.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ホウ酸、もしくは無水ホウ酸とNH基を
有する有機環状化合物との混合物に窒化ホウ素および水
を加え、次いで成形し、嵩密度を高めて加熱することを
特徴とする窒化ホウ素の製造法。
1. Boron nitride or a mixture of boric anhydride and an organic cyclic compound having an NH 2 group is added with boron nitride and water, which is then molded and heated to increase the bulk density. Manufacturing method.
JP14493985A 1985-07-02 1985-07-02 Boron Nitride Manufacturing Method Expired - Lifetime JPH0611643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14493985A JPH0611643B2 (en) 1985-07-02 1985-07-02 Boron Nitride Manufacturing Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14493985A JPH0611643B2 (en) 1985-07-02 1985-07-02 Boron Nitride Manufacturing Method

Publications (2)

Publication Number Publication Date
JPS627610A JPS627610A (en) 1987-01-14
JPH0611643B2 true JPH0611643B2 (en) 1994-02-16

Family

ID=15373700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14493985A Expired - Lifetime JPH0611643B2 (en) 1985-07-02 1985-07-02 Boron Nitride Manufacturing Method

Country Status (1)

Country Link
JP (1) JPH0611643B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3461651B2 (en) * 1996-01-24 2003-10-27 電気化学工業株式会社 Hexagonal boron nitride powder and its use

Also Published As

Publication number Publication date
JPS627610A (en) 1987-01-14

Similar Documents

Publication Publication Date Title
US3473894A (en) Preparation of hexagonal boron nitride
US4784978A (en) Hexagonal boron nitride powder having excellent sinterability and a method for the preparation thereof
US7341702B2 (en) Process for producing boron nitride
US4749556A (en) Process for producing boron nitride
US7297317B2 (en) Process for producing boron nitride
JPS61286207A (en) Production of boron nitride
JPS6111886B2 (en)
JPH0611643B2 (en) Boron Nitride Manufacturing Method
JPH08217424A (en) Hexagonal boron nitride powder and its production
JPH0647446B2 (en) Boron Nitride Manufacturing Method
US4770830A (en) Process for preparation of high α-type silicon nitride powder
JP3647079B2 (en) Method for producing hexagonal boron nitride powder
JPH0610105B2 (en) Method for manufacturing boron nitride sintered body
JPH01278404A (en) Method for manufacture of boron nitride
JPH09263402A (en) Production of hexagonal boron nitride powder
JPH021761B2 (en)
JP2009149469A (en) Method for producing hexagonal boron nitride
JPH01176208A (en) Production of fine powder of boron nitride of hexagonal system
WO2005070822A1 (en) Continuous pusher-type furnacing system for the production of high-quality uniform boron nitride
JPS58115016A (en) Preparation of fine powdery silicon carbide
JPS6111885B2 (en)
JPS6395113A (en) Production of fine powder comprising metallic boride as main component
JPS6172606A (en) Production of hexagonal boron nitride with good sintering properties
JPH03271108A (en) Production of aluminum nitride powder
JPS58151311A (en) Manufacture of silicon nitride

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term