JPH06114391A - Treatment of waste water - Google Patents

Treatment of waste water

Info

Publication number
JPH06114391A
JPH06114391A JP4290845A JP29084592A JPH06114391A JP H06114391 A JPH06114391 A JP H06114391A JP 4290845 A JP4290845 A JP 4290845A JP 29084592 A JP29084592 A JP 29084592A JP H06114391 A JPH06114391 A JP H06114391A
Authority
JP
Japan
Prior art keywords
bacteria
activated sludge
filamentous
image processing
agglutinative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4290845A
Other languages
Japanese (ja)
Inventor
Masaaki Yamamoto
雅章 山本
Minoru Miyake
実 三宅
Akira Maki
章 牧
Yoshitomo Yamate
義友 山手
Kazuhide Koyama
和英 小山
Kozo Maeda
孝三 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP4290845A priority Critical patent/JPH06114391A/en
Publication of JPH06114391A publication Critical patent/JPH06114391A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE:To stabilize activated sludge in waste water by quantitatively measuring the states of filamentous bacteria and agglutinative bacteria contained in activated sludge in waste water by an image processor and controlling the characteristics of both bacteria on the basis of the measured result. CONSTITUTION:The image of activated sludge is automatically measured at every 10min to 1hr by the submerged microscope 4b arranged in an aeration tank 1 and image processing and operation are executed by an image processor 5 and an operation device 6. By the image processing, the predetermined items related to filamentous bacteria and agglutinative bacteria in the bacteria constituting activated sludge, that is, the length of filamentous bacteria and the area, brightness, area distribution and brightness distribution of agglutinative bacteria are measured and the measured data are introduced into the operation device 6 and operation judgment is performed on the basis of the knowledge base of the device 6. From the judge results, the characteristics of filamentous and agglutinative bacteria are controlled by the alteration of the setting of an inflow water flow rate and an aeration air amt. and the activated sludge in waste water can be stabilized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、コークス製造時に発
生するガス液(安水)を処理するための活性汚泥設備に
おける排水処理方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wastewater treatment method in an activated sludge facility for treating a gas liquid (ammonium) generated during coke production.

【0002】[0002]

【従来の技術】コークス製造時、石炭を乾留することに
よって発生するガス液(安水)の排水処理は、主として
以下の工程で行なわれる。即ち、排水に対して活性汚泥
によって生物化学的に無害化処理を施こした後、次工程
の高次処理(凝集沈澱、砂濾過、活性炭処理等)を施こ
し、そして、系外へ放流する。
2. Description of the Related Art Wastewater treatment of gas liquid (ammonium) generated by carbonization of coal during coke production is mainly performed in the following steps. That is, the wastewater is biochemically detoxified with activated sludge, and then subjected to the higher-level treatment (coagulation sedimentation, sand filtration, activated carbon treatment, etc.) in the next step, and then discharged to the outside of the system. .

【0003】この活性汚泥設備の排水処理においては、
安水中のCN- 、 NH4 + 等が活性汚泥微生物に対して生息
の阻害成分として働くため、操業が安定せず、高次処理
でのコストアップ(薬品、濾過剤等)や、放流水性状の
悪化等の問題がある。
In the wastewater treatment of this activated sludge equipment,
From underwater CN -, since the NH 4 + or the like acts as an inhibitory component of habitat for the active sludge microorganisms, operation is not stable, cost (chemicals, filtration, etc.) in order processing and discharged aqueous form There is a problem such as deterioration of.

【0004】上記の問題を解決するために、従来から下
記〜の排水処理が行なわれている。 オペレーターが、曝気槽内の汚泥の色、泡の状態お
よび沈澱槽での汚泥と処理水との分離状況等を目視で判
断し、流入水の流量、曝気風量等を設定、変更して運転
する。
In order to solve the above problems, the following wastewater treatments have been conventionally performed. The operator visually judges the color of sludge in the aeration tank, the state of bubbles, and the separation status of sludge and treated water in the sedimentation tank, and sets and changes the flow rate of inflow water, the amount of aeration air, etc. to operate. .

【0005】 上記の情報に加え、活性汚泥を顕微
鏡で観察し、その出現微生物の状況で流入水量、曝気風
量等を設定、変更して運転する。
In addition to the above information, the activated sludge is observed with a microscope, and the amount of inflowing water, the amount of aeration air, etc. are set and changed depending on the state of the microorganisms appearing in the operation.

【0006】 曝気槽流入水の性状(COD 、pH等)、
処理水の性状(COD 、SS等)を分析し、もしくは、セン
サーによって測定し、その情報より、活性汚泥を運転す
る。
Properties of aeration tank inflow water (COD, pH, etc.),
The properties of treated water (COD, SS, etc.) are analyzed or measured by a sensor, and the activated sludge is operated based on that information.

【0007】 また、特開平1-315393号公報には、上
記、およびの情報を知識情報として、コンピュー
ター内に入力し、その知識ベースより、操業状況を判定
し、最良の操業アクションを指示する運転方法が提案さ
れている。(以上を「先行技術」という。)
Further, in Japanese Laid-Open Patent Publication No. 1-315393, the above information and the above information are input as knowledge information into a computer, an operation situation is determined from the knowledge base, and an operation for giving the best operation action is instructed. A method has been proposed. (The above is called "prior art".)

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上述し
た先行技術は、下記に示す問題点を有している。即ち、
上記の方法においては、オペレーターの経験に全面的
に依存した操業となり、操業を安定化するためには、オ
ペレーターの熟練が必要である。また、判断基準があい
まいなため、最良の操業アクションが取れず、操業が不
安定化することが多い。
However, the above-mentioned prior art has the following problems. That is,
In the above method, the operation depends entirely on the experience of the operator, and the skill of the operator is required to stabilize the operation. In addition, since the judgment criteria are ambiguous, the best operation action cannot be taken and the operation often becomes unstable.

【0009】上記の方法においては、微生物の活性度
を顕微鏡観察により判断する必要があり、その顕微鏡観
察に熟練が必要である。また、糸状性細菌、凝集性細菌
(フロック)を定量的に測定できないため、操業判断に
ミスが発生し、操業が不安定化する。
In the above method, it is necessary to judge the activity of the microorganism by microscopic observation, and skill in microscopic observation is required. In addition, since filamentous bacteria and flocculating bacteria (flocs) cannot be quantitatively measured, the operation judgment becomes erroneous and the operation becomes unstable.

【0010】上記の方法においては、センサーの汚れ
が多く、測定誤差が大きいため、センサーのみによる操
業アクションでは、操業を安定化することは難しく、活
性汚泥の微生物相を定量的に測定する装置が必要であ
る。
In the above method, since the sensor is heavily contaminated and the measurement error is large, it is difficult to stabilize the operation by the operation action using only the sensor, and an apparatus for quantitatively measuring the microflora of the activated sludge is required. is necessary.

【0011】上記の方法においては、知識ベースによ
り、微生物相からの浄化機能判断基準が適性化できるた
め、操業は上記、およびに比較して安定化する。
しかしながら、微生物相のデータに誤差等があるため、
操業アクションに遅れおよび誤り等が発生し、操業が不
安定化する場合がある。また、操業アクションを完全に
するため、流入水の有機物濃度計(COD 計)、汚泥濃度
計およびシックナー界面計等、多くのセンサーを必要と
する。
In the above method, the knowledge base can optimize the purification function judgment criteria from the microflora, so that the operation is stabilized as compared with the above and.
However, because there are errors in the microbiota data,
There may be a delay or error in the operation action, and the operation may become unstable. In addition, many sensors such as organic matter concentration meter (COD meter), sludge concentration meter and thickener interface meter are required to complete the operation action.

【0012】従って、この発明の目的は、活性汚泥微生
物の活性度を定量的に判断でき、これにより的確なアク
ションを迅速にとることができ、操業の安定化、高次処
理でのコストアップおよび放流水性状の悪化を防止する
ことができる排水処理方法を提供することにある。
[0012] Therefore, the object of the present invention is to quantitatively judge the activity of the activated sludge microorganisms, which allows quick and accurate action, stabilization of the operation, and cost increase in high-order treatment. An object of the present invention is to provide a wastewater treatment method capable of preventing deterioration of discharged water quality.

【0013】[0013]

【課題を解決するための手段】この発明は、排水中の活
性汚泥中の微生物の状況を定量的に測定するための画像
処理装置を使用し、前記画像処理装置によって、前記排
水中の活性汚泥中の糸状性細菌および凝集性細菌の状
況、具体的には、前記糸状性細菌の長さならびに前記凝
集性細菌の面積、輝度、面積分布および輝度分布を定量
的に測定し、その測定結果に基づいて前記糸状性細菌お
よび凝集性細菌の特性を制御して前記排水中の前記活性
汚泥を安定化することに特徴を有するものである。
The present invention uses an image processing apparatus for quantitatively measuring the state of microorganisms in activated sludge in wastewater, and the image processing apparatus enables the activated sludge in the wastewater to be measured. The situation of filamentous bacteria and aggregating bacteria in, specifically, the length of the filamentous bacteria and the area, brightness, area distribution and brightness distribution of the aggregating bacteria are quantitatively measured, and Based on this, the characteristics of the filamentous bacteria and the flocculating bacteria are controlled to stabilize the activated sludge in the wastewater.

【0014】[0014]

【作用】活性汚泥微生物相の定量的測定方法として、顕
微鏡画像の画像処理装置を使用する。該装置による画像
処理により、活性汚泥を構成する微生物中の、糸状性細
菌および凝集性細菌に関する所定項目、即ち、糸状性細
菌の長さならびに凝集性細菌の面積、輝度、面積分布お
よび輝度分布の測定を実施する。この測定データを演算
装置に導入し、保有する知識ベースにより操業判断を行
なう。操業判断結果から、前処理設備およびコークス炉
操業条件の変更、ならびに、流入水流量および曝気風量
の設定変更等により糸状性細菌および凝集性細菌の特性
を制御し、活性汚泥の安定化を実施する。
[Function] As a method for quantitatively measuring the microflora of activated sludge, an image processing device for microscopic images is used. By the image processing by the apparatus, predetermined items concerning filamentous bacteria and aggregating bacteria in the microorganisms composing the activated sludge, namely, the length of filamentous bacteria and the area, brightness, area distribution and brightness distribution of the aggregating bacteria. Perform the measurement. This measurement data is introduced into the arithmetic unit, and the operation judgment is made based on the knowledge base possessed. Stabilize activated sludge by controlling the characteristics of filamentous bacteria and flocculating bacteria by changing the operating conditions of pretreatment equipment and coke oven, and changing the settings of inflow water flow rate and aeration air volume based on the operation judgment results. .

【0015】次に、この発明を図面を参照しながら説明
する。この発明においては、活性汚泥を構成する微生物
中の糸状性細菌および凝集性細菌(以下、「フロック」
という)の状況を、画像処理装置によって定量的に測定
し、操業アクションの判断基準として用いる。図1はこ
の発明に使用される画像処理装置の機器構成を示す図で
ある。図1に示すように、活性汚泥のサンプル23を自動
X-Y ステージ22を備えた光学顕微鏡4aによって測定し、
CCD カメラ20、コンピューター21を使用して処理する。
24はプリンター、25はモニター、26はビデオプリンター
を示す。図1はライン外に光学顕微鏡4aを配置したオフ
ラインの装置を示すが、後述する図4に示すように、曝
気槽1内に水中顕微鏡4bを配置したオンラインの機器構
成としてもよい。
Next, the present invention will be described with reference to the drawings. In the present invention, filamentous bacteria and aggregating bacteria (hereinafter referred to as “floc”) in the microorganisms that make up the activated sludge.
The situation) is quantitatively measured by the image processing device and used as a criterion for the operation action. FIG. 1 is a diagram showing a device configuration of an image processing apparatus used in the present invention. As shown in Fig. 1, the activated sludge sample 23 was automatically
Measured with an optical microscope 4a equipped with an XY stage 22,
Processing is performed using CCD camera 20 and computer 21.
24 is a printer, 25 is a monitor, and 26 is a video printer. Although FIG. 1 shows an off-line apparatus in which the optical microscope 4a is arranged outside the line, an underwater microscope 4b may be arranged in the aeration tank 1 as shown in FIG.

【0016】画像処理装置による測定項目は、以下の通
りである。 (1) 糸状性細菌 長さ。 (2) フロック 面積(全体および平均) 輝度 面積・輝度分布。
The measurement items by the image processing apparatus are as follows. (1) Length of filamentous bacteria. (2) Flock area (whole and average) Luminance Area / luminance distribution.

【0017】図2は画像処理の工程を示すブロック図で
ある。先ず、活性汚泥のサンプル15μl (マイクロリッ
トル)をプレパラートにとり、10倍の対物レンズで拡大
し、活性汚泥の顕微鏡画像を画像処理装置に取り込む。
次いで、活性汚泥の拡大画像と背景(バック)を二値化
処理にて分離し、糸状性細菌については細線化処理を、
フロックについては縮退処理および膨脹処理を施こし、
それぞれの画像を抽出する。次いで、抽出した画像の画
素数を演算してそれぞれの測定項目、即ち、糸状性細菌
の長さ、フロックの面積等を算出する。
FIG. 2 is a block diagram showing the steps of image processing. First, 15 μl (microliter) of a sample of activated sludge is taken as a preparation, magnified with a 10 × objective lens, and a microscope image of activated sludge is taken into an image processing device.
Next, the enlarged image of activated sludge and the background (back) are separated by binarization processing, and filamentous bacteria are subjected to thinning processing.
For flocs, we performed degeneration and expansion,
Extract each image. Next, the number of pixels of the extracted image is calculated to calculate each measurement item, that is, the length of filamentous bacteria, the area of flocs, and the like.

【0018】図3は画像処理装置を使用したこの発明の
排水処理方法の1実施態様を示すグラフである。ここ
で、フロック輝度比とは背景の輝度に対するフロックの
輝度であり汚泥密度の指標となる。汚泥容量指数は、汚
泥の沈降性を表すもので数値は小さいほどよい。糸状性
細菌の増加により、フロックが小型化し、輝度低下に伴
う密度の低下が見られ、汚泥の沈降性が悪化し、操業の
不安定化が懸念されるが、返送汚泥の曝気処理(高DO
化)の実施により、糸状性細菌が減少し、活性汚泥の操
業は不安定化しない。
FIG. 3 is a graph showing one embodiment of the wastewater treatment method of the present invention using an image processing apparatus. Here, the flock brightness ratio is the brightness of the flock with respect to the background brightness and is an index of sludge density. The sludge volume index represents the sedimentation property of sludge, and the smaller the value, the better. Due to the increase in filamentous bacteria, flocs become smaller, the density decreases with the decrease in brightness, sludge settability deteriorates, and there is concern that operation may become unstable.However, aeration treatment of returned sludge (high DO
Fermentation reduces the filamentous bacteria and does not destabilize the operation of activated sludge.

【0019】これ以外にも、活性汚泥においては、糸状
性細菌が増殖すると、フロックが小さくなり、汚泥密度
が低下するバルキングが発生し、沈澱槽から汚泥が流出
し、汚泥濃度低下による処理能力不足で処理水性状が悪
化する弊害がある。また、このことは、主製造設備であ
るコークス炉の操業へも悪影響を与えることがある。こ
の問題は、この画像処理装置による解析結果を用い、活
性汚泥の操業不調を未然に予知し、COD 負荷変動を少な
くし、曝気槽DOを高くすることにより糸状性細菌を抑制
させて活性汚泥を安定化させ、操業を安定化することに
より解決できる。
In addition to this, when filamentous bacteria grow in activated sludge, flocs become small, sludge density decreases, bulking occurs, sludge flows out from a settling tank, and sludge concentration decreases, resulting in insufficient treatment capacity. Therefore, there is an adverse effect that the treatment water quality deteriorates. This may also adversely affect the operation of the coke oven, which is the main production facility. The problem is to use the analysis results of this image processing device to predict the malfunction of activated sludge in advance, reduce COD load fluctuations, and raise the aeration tank DO to suppress filamentous bacteria and reduce activated sludge. It can be solved by stabilizing and stabilizing the operation.

【0020】このように、本発明によれば、画像処理装
置を使用することにより、これまで目視によって評価し
ていた活性汚泥の状況を定量的に把握できるようになる
とともに、糸状性細菌およびフロックの解析結果から、
汚泥の沈降性を評価し、バルキングを早期に予知するこ
とができる。
As described above, according to the present invention, by using the image processing apparatus, it becomes possible to quantitatively grasp the condition of the activated sludge, which has been visually evaluated until now, and at the same time, the filamentous bacteria and the flocs can be obtained. From the analysis result of
Bulking can be predicted early by evaluating the sludge's sedimentation property.

【0021】[0021]

【実施例】次に、この発明を実施例により説明する。図
4はこの発明に使用される装置の機器構成を示す系統工
程図である。図4において、1は曝気槽、2はシックナ
ー、3は前処理の薬留塔、4bは水中顕微鏡、5は画像処
理装置、6は演算装置、7はタンク、8はコアーブロア
ー、9はスチーム、10はエアー、11は返送汚泥、12は操
業指示値、13はベーパーを、それぞれ示す。曝気槽1内
に設置された水中顕微鏡4bで10分〜1時間毎に自動的に
活性汚泥の画像を測定し、画像処理装置5および演算装
置6によって、画像処理および演算を実施する。
Next, the present invention will be described with reference to examples. FIG. 4 is a systematic process diagram showing the equipment configuration of the apparatus used in the present invention. In FIG. 4, 1 is an aeration tank, 2 is a thickener, 3 is a pretreatment chemical distillation tower, 4b is an underwater microscope, 5 is an image processing device, 6 is an arithmetic unit, 7 is a tank, 8 is a core blower, and 9 is steam. , 10 is air, 11 is returned sludge, 12 is an operation instruction value, and 13 is vapor. An image of activated sludge is automatically measured every 10 minutes to 1 hour by the underwater microscope 4b installed in the aeration tank 1, and the image processing device 5 and the arithmetic device 6 perform image processing and arithmetic operations.

【0022】測定結果は演算装置6に蓄積され、1日平
均のデータを、後述する表1に示される診断ルールによ
る診断によって、オンラインでの操業変更が実施でき
る。また、オフラインでの操業状態の診断およびオペレ
ーターへの操業ガイダンスも可能である。
The measurement results are accumulated in the arithmetic unit 6, and the daily average data can be changed online by the diagnosis according to the diagnosis rule shown in Table 1 described later. In addition, offline operation status diagnosis and operation guidance to operators are possible.

【0023】[0023]

【表1】 [Table 1]

【0024】顕微鏡画像処理は、オンラインの水中顕微
鏡でもオフラインの光学顕微鏡でも行なわれる。オフラ
インの場合には、前述したように、図1に示す自動X-Y
ステージを備えた光学顕微鏡を備えた装置を使用する。
図5はオフラインにおいて光学顕微鏡によって測定する
場合のスキャン方法を示す図である。図5に示すよう
に、プレパラート14(15はカバーグラス)の全面におい
て、視野16を矢印に示すスキャン方向17で1プレパラー
ト当たり36画面以上、1サンプル当たり2プレパラート
の測定を行なってデータを得る。そのデータを演算装置
6に入力し、操業診断を行なう。図6は顕微鏡の視野を
示す図であり、糸状性細菌18およびフロック19は図示の
ように観察される。
Microscopic image processing can be performed with either an on-line underwater microscope or an off-line optical microscope. When offline, as described above, the automatic XY shown in Fig. 1 is used.
A device with an optical microscope with a stage is used.
FIG. 5 is a diagram showing a scanning method in the case of measuring with an optical microscope offline. As shown in FIG. 5, data is obtained on the entire surface of the slide 14 (15 is a cover glass) by measuring the field of view 16 in the scanning direction 17 indicated by an arrow for 36 screens or more per slide and for two slides per sample. The data is input to the arithmetic unit 6 to perform operation diagnosis. FIG. 6 shows the field of view of the microscope, filamentous bacteria 18 and flocs 19 are observed as shown.

【0025】図4に示す装置により実施例として本発明
方法によって処理を施こし、シックナー出口の処理水の
透明度およびCOD を測定した。また、比較のため、本発
明方法によって処理を施こす前に、比較例としてオペレ
ーターの目視による観察を主体とした先行技術の、
による従来方法によって処理を施こし、実施例と同様に
処理水の透明度およびCOD を測定した。その結果を図7
に示す。
As an example, the apparatus shown in FIG. 4 was applied with the method of the present invention, and the transparency and COD of the treated water at the exit of the thickener were measured. In addition, for comparison, prior to subjecting to treatment by the method of the present invention, as a comparative example, of the prior art mainly based on visual observation by an operator,
According to the conventional method, the transparency and COD of the treated water were measured in the same manner as in the example. The result is shown in Fig. 7.
Shown in.

【0026】図7に示すように、処理水の透明度は、比
較例よりも実施例のほうが安定して高く、また、COD は
比較例よりも実施例のほうが安定して低かった。この結
果、本発明によれば、活性汚泥中の糸状性細菌およびフ
ロックの特性制御を的確に行なえることがわかる。
As shown in FIG. 7, the transparency of treated water was more stable in the Examples than in the Comparative Examples, and the COD in the Examples was more stable than in the Comparative Examples. As a result, according to the present invention, it is understood that the characteristics of filamentous bacteria and flocs in the activated sludge can be accurately controlled.

【0027】[0027]

【発明の効果】以上説明したように、この発明によれ
ば、下記に示す工業上有用な効果がもたらされる。 活性汚泥の活性度(浄化能力)管理がきめ細かく実
施できるため、シックナーでの活性汚泥の沈降性が良好
となり、シックナー出口の処理水の透明度およびCOD が
低下し、放流水の性状も良化する。 活性汚泥の操業不調が1〜2か月/年発生していた
ものが、10日/年程度にに激減し、操業が安定化する。 後処理での薬剤(高分子凝集剤、塩鉄および苛性ソ
ーダ等)の使用量を50〜70%程度低減することができ、
それによって処理コストが5〜7%削減できる。 MLSS計、COD 計等のセンサー類の削減が可能であ
る。 運転管理に熟練が不要である。
As explained above, according to the present invention, the following industrially useful effects are brought about. Since the activity (cleaning capacity) of the activated sludge can be managed in detail, the sedimentation of the activated sludge at the thickener is improved, the transparency and COD of the treated water at the thickener outlet are reduced, and the quality of the discharged water is improved. Operation sluggishness of activated sludge that had occurred for 1-2 months / year is drastically reduced to about 10 days / year, stabilizing the operation. The amount of chemicals (polymer flocculant, salt iron, caustic soda, etc.) used in post-treatment can be reduced by 50 to 70%,
Thereby, the processing cost can be reduced by 5 to 7%. It is possible to reduce sensors such as MLSS meters and COD meters. No skill is required for operation management.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明に使用される画像処理装置の機器構成
を示す図
FIG. 1 is a diagram showing a device configuration of an image processing apparatus used in the present invention.

【図2】画像処理の工程を示すブロック図FIG. 2 is a block diagram showing steps of image processing.

【図3】この発明の排水処理方法の1実施態様を示すグ
ラフ
FIG. 3 is a graph showing one embodiment of the wastewater treatment method of the present invention.

【図4】この発明に使用される装置の機器構成を示す系
統工程図
FIG. 4 is a systematic process diagram showing the equipment configuration of the apparatus used in the present invention.

【図5】光学顕微鏡によって測定する場合のスキャン方
法を示す図
FIG. 5 is a diagram showing a scanning method when measuring with an optical microscope.

【図6】顕微鏡の視野を示す図FIG. 6 is a diagram showing a field of view of a microscope.

【図7】処理水の透明度およびCOD を示すグラフ。FIG. 7 is a graph showing the transparency and COD of treated water.

【符号の説明】[Explanation of symbols]

1 曝気槽 2 シックナー 3 薬留塔 4a 光学顕微鏡 4b 水中顕微鏡 5 画像処理装置 6 演算装置 7 タンク 8 コアーブロアー 9 スチーム 10 エアー 11 返送汚泥 12 操業指示値 13 ベーパー 14 プレパラート 15 カバーグラス 16 視野 17 スキャン方向 18 糸状性細菌 19 フロック 20 CCD カメラ 21 コンピューター 22 自動X-Y ステージ 23 サンプル 24 プリンター 25 モニター 26 ビデオプリンター。 1 Aeration tank 2 Thickener 3 Chemical distillation column 4a Optical microscope 4b Underwater microscope 5 Image processing device 6 Computing device 7 Tank 8 Core blower 9 Steam 10 Air 11 Returned sludge 12 Operating instruction value 13 Vapor 14 Preparation slide 15 Cover glass 16 Field of view 17 Scan direction 18 Filamentous bacteria 19 Flock 20 CCD camera 21 Computer 22 Auto XY stage 23 Sample 24 Printer 25 Monitor 26 Video printer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山手 義友 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 小山 和英 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 前田 孝三 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Yoshitomo Yamate 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Japan Steel Pipe Co., Ltd. (72) Inventor Kazuhide Koyama 1-2-1 Marunouchi, Chiyoda-ku, Tokyo Date (72) Inventor Kozo Maeda 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Steel Tube Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 排水中の活性汚泥中の微生物の状況を定
量的に測定するための画像処理装置を使用し、前記画像
処理装置によって、前記排水中の活性汚泥中の糸状性細
菌および凝集性細菌の状況を定量的に測定し、その測定
結果に基づいて前記糸状性細菌および凝集性細菌の特性
を制御して前記排水中の前記活性汚泥を安定化すること
を特徴とする排水処理方法。
1. An image processing device for quantitatively measuring the condition of microorganisms in activated sludge in wastewater is used, and by the image processing device, filamentous bacteria and coagulability in the activated sludge in the wastewater are used. A wastewater treatment method comprising quantitatively measuring the condition of bacteria and controlling the characteristics of the filamentous bacteria and aggregative bacteria based on the measurement results to stabilize the activated sludge in the wastewater.
【請求項2】 前記糸状性細菌の長さならびに前記凝集
性細菌の面積、輝度、面積分布および輝度分布を測定す
る請求項1記載の排水処理方法。
2. The wastewater treatment method according to claim 1, wherein the length of the filamentous bacteria and the area, brightness, area distribution and brightness distribution of the flocculating bacteria are measured.
JP4290845A 1992-10-05 1992-10-05 Treatment of waste water Pending JPH06114391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4290845A JPH06114391A (en) 1992-10-05 1992-10-05 Treatment of waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4290845A JPH06114391A (en) 1992-10-05 1992-10-05 Treatment of waste water

Publications (1)

Publication Number Publication Date
JPH06114391A true JPH06114391A (en) 1994-04-26

Family

ID=17761231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4290845A Pending JPH06114391A (en) 1992-10-05 1992-10-05 Treatment of waste water

Country Status (1)

Country Link
JP (1) JPH06114391A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1832556A1 (en) * 2006-03-07 2007-09-12 Aqua Service Schwerin Beratungs- und Betriebsführungsgesellschaft mbH Process for running a biological waste water treatment plant
KR100932710B1 (en) * 2008-12-19 2009-12-17 주식회사 탄천환경 Water treatment method by databased microorganism status
JP2015181374A (en) * 2014-03-24 2015-10-22 東レ株式会社 Filamentous bacteria detection device and filamentous bacteria detection method
WO2018181618A1 (en) * 2017-03-28 2018-10-04 東レ株式会社 Effluent treatment method for membrane separation activated sludge, effluent treatment apparatus, and effluent treatment system management program
CN114180733A (en) * 2021-11-02 2022-03-15 合肥中盛水务发展有限公司 Sewage aeration amount detection and aeration control system based on video analysis algorithm

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1832556A1 (en) * 2006-03-07 2007-09-12 Aqua Service Schwerin Beratungs- und Betriebsführungsgesellschaft mbH Process for running a biological waste water treatment plant
KR100932710B1 (en) * 2008-12-19 2009-12-17 주식회사 탄천환경 Water treatment method by databased microorganism status
JP2015181374A (en) * 2014-03-24 2015-10-22 東レ株式会社 Filamentous bacteria detection device and filamentous bacteria detection method
WO2018181618A1 (en) * 2017-03-28 2018-10-04 東レ株式会社 Effluent treatment method for membrane separation activated sludge, effluent treatment apparatus, and effluent treatment system management program
CN110494395A (en) * 2017-03-28 2019-11-22 东丽株式会社 Wastewater treatment method, wastewater treatment equipment and the waste water treatment system management program of film separated activated sludge
JPWO2018181618A1 (en) * 2017-03-28 2020-02-06 東レ株式会社 Wastewater treatment method, wastewater treatment apparatus and wastewater treatment system management program for membrane separation activated sludge
US11414331B2 (en) 2017-03-28 2022-08-16 Toray Industries, Inc. Effluent treatment method for membrane separation activated sludge, effluent treatment apparatus, and effluent treatment system management program
CN110494395B (en) * 2017-03-28 2023-08-15 东丽株式会社 Wastewater treatment method for membrane separation activated sludge, wastewater treatment apparatus, and wastewater treatment system management program
CN114180733A (en) * 2021-11-02 2022-03-15 合肥中盛水务发展有限公司 Sewage aeration amount detection and aeration control system based on video analysis algorithm

Similar Documents

Publication Publication Date Title
Khan et al. Digital image processing and analysis for activated sludge wastewater treatment
JP2019215743A (en) Method for manufacturing database, and water treatment or sludge treatment system
Koivuranta et al. On-line optical monitoring of activated sludge floc morphology
CN114663684A (en) Method, system and operation equipment for real-time intelligent analysis of flocculation reaction
JPH06114391A (en) Treatment of waste water
JPH0381645A (en) Method, device and facility for treating suspended material in liquid
Leal et al. Microbial-based evaluation of foaming events in full-scale wastewater treatment plants by microscopy survey and quantitative image analysis
JP2020187770A (en) Operation control method of water or sludge treatment system
Serra et al. Development of a real-time expert system for wastewater treatment plants control
JP2530866B2 (en) Controller for activated sludge process
Yong et al. An approach for the segmentation and quantification of activated sludge floc blobs
Arelli et al. Application of image analysis in activated sludge to evaluate correlations between settleability and features of flocs and filamentous species
DE202017102309U1 (en) Microflotation system with a variety of microflotation systems
Watanabe et al. Intelligent operation support system for activated sludge process
JPH06117886A (en) Plant supporting system
Dunkel et al. In situ microscopy as a tool for the monitoring of filamentous bacteria: a case study in an industrial activated sludge system dominated by M. parvicella
JPH0671599B2 (en) Image recognition method for activated sludge
JPH0462798B2 (en)
JPH0671598B2 (en) Image recognition method for activated sludge
JPH0938684A (en) Waste water treating device
Mesquita et al. Relationship between sludge volume index and biomass structure within activated sludge systems
KR20210026507A (en) System and method for wastewater treatment using machine learning model
Watanabe et al. Operating Condition Diagnosis System for Activated Sludge Processes Based on Microorganism Image Information
JPH0515518B2 (en)
Bakos et al. Reconsideration and upgrading of sampling and analysis methods for avoiding measurement-related design and operation failures in wastewater treatment