JPH0611438B2 - Biological reaction method - Google Patents
Biological reaction methodInfo
- Publication number
- JPH0611438B2 JPH0611438B2 JP21377383A JP21377383A JPH0611438B2 JP H0611438 B2 JPH0611438 B2 JP H0611438B2 JP 21377383 A JP21377383 A JP 21377383A JP 21377383 A JP21377383 A JP 21377383A JP H0611438 B2 JPH0611438 B2 JP H0611438B2
- Authority
- JP
- Japan
- Prior art keywords
- reaction
- maximum
- rate
- biological
- substrate decomposition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Treatment Of Biological Wastes In General (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Description
【発明の詳細な説明】 〔発明の技術分野〕 この発明は水処理、発酵などの微生物利用分野におい
て、微生物の異化代謝により基質を分解する生物反応方
法に関するものである。Description: TECHNICAL FIELD OF THE INVENTION The present invention relates to a biological reaction method for degrading a substrate by catabolic metabolism of a microorganism in the field of utilizing a microorganism such as water treatment and fermentation.
微生物を利用した廃水、廃棄物の処理や発酵生産等にお
いて、微生物の異化代謝により基質を分解する生物反応
が行われている。このような生物反応は好気性微生物ま
たは嫌気性微生物により、好気性または嫌気性下に行わ
れる。従来の生物反応方法としては、反応系の温度の制
御を行うことなく、成行にまかせて反応を行う方法、お
よび微生物の生育に適した温度すなわち最大増殖速度付
近の温度に制御して反応を行う方法などがあるが、いず
れの場合も基質分解速度は小さく、基質の微生物体への
転換率が高くなるという問題がある。微生物体への転換
率が高くなるということは、反応系の微生物体量が増加
することを意味し、廃水、廃棄物処理分野においては、
微生物体量の増加分は余剰汚泥として排出され、その処
理、処分において二次公害の問題が生じている。また発
酵分野においては最終的な産物と微生物体の分離工程が
煩雑になるとともに、余剰微生物体が廃棄物として産出
され、その処理が問題となる。BACKGROUND ART In wastewater and waste treatment and fermentation production using microorganisms, a bioreaction that decomposes a substrate by catabolism of microorganisms is performed. Such biological reaction is carried out by aerobic or anaerobic microorganisms under aerobic or anaerobic conditions. As a conventional biological reaction method, a method of allowing the reaction to proceed without controlling the temperature of the reaction system, and a method of controlling the temperature suitable for the growth of microorganisms, that is, a temperature near the maximum growth rate, are carried out. Although there are methods, in any case, there is a problem that the rate of substrate decomposition is low and the conversion rate of the substrate into microbial cells becomes high. The higher conversion rate to microbial cells means that the amount of microbial cells in the reaction system increases, and in the field of wastewater and waste treatment,
The increased amount of microbial mass is discharged as excess sludge, which causes a problem of secondary pollution in its treatment and disposal. In addition, in the fermentation field, the process of separating the final product from the microbial cells becomes complicated, and the surplus microbial cells are produced as a waste, which causes a problem in the treatment.
一方、最大増殖速度の温度領域とは異なる温度領域にお
いて最大基質分解速度を示す温度条件があることが知ら
れており、このような温度領域(クリテイカルポイン
ト)において生物反応を行う試みがなされている(Bact
eriological Review,Vol26,P95〜107)。し
かしながら、このような生物反応方法における最大基質
分解速度は休眠微生物について求められたもので、上記
温度領域で生物反応を継続していると、微生物の異化代
謝活性が低下して、基質分解能力が低下するとともに、
場合によつては微生物体量が減少して効率が低下するた
め、最大基質分解速度の温度条件で生物反応を継続して
基質を分解することは実用上困難であるという問題があ
つた。On the other hand, it is known that there are temperature conditions that show the maximum substrate decomposition rate in a temperature region different from the temperature region of the maximum growth rate, and attempts have been made to carry out biological reactions in such a temperature region (critical point). (Bact
eriological Review, Vol 26, P95-107). However, the maximum substrate decomposition rate in such a biological reaction method was obtained for dormant microorganisms, and if the biological reaction is continued in the above temperature range, the catabolic activity of the microorganisms will decrease and the substrate decomposition ability will decrease. As it drops
In some cases, since the amount of microorganisms decreases and the efficiency decreases, it is practically difficult to continue the biological reaction under the temperature condition of the maximum substrate decomposition rate to decompose the substrate.
この発明は、以上の問題点を解決するためのもので、微
生物を最大基質分解速度付近の温度条件および最大増殖
速度付近の温度条件の繰返えし環境において反応を行う
ことにより、基質分解効率が高く、かつ微生物体量の増
加が少ない生物反応方法を提供することを目的としてい
る。The present invention is to solve the above problems, and the substrate decomposition efficiency can be improved by repeating the reaction in an environment in which the temperature conditions near the maximum substrate decomposition rate and the temperature conditions near the maximum growth rate of the microorganism are repeated. It is an object of the present invention to provide a biological reaction method which has a high biodegradation and a small increase in the amount of microorganisms.
この発明は、微生物の異化代謝により基質を分解する生
物反応方法において、微生物を最大基質分解速度付近の
温度条件および最大増殖速度付近の温度条件の繰返えし
環境において反応を行うことを特徴とする生物反応方法
である。The present invention is a biological reaction method for degrading a substrate by catabolic metabolism of a microorganism, characterized in that the microorganism is reacted in an environment in which temperature conditions near the maximum substrate decomposition rate and temperature conditions near the maximum growth rate are repeated. It is a biological reaction method.
この発明において生物反応とは、水処理、廃棄物処理、
発酵など、微生物の異化代謝により、廃水、原料等の被
処理物中の基質を分解して、処理水、産物等の処理物を
生成する生物反応であり、好気性生物反応および嫌気性
生物反応の両者を含む。このような生物反応に利用する
微生物としては、細菌、糸状菌、酵母、その他の従来よ
り生物反応に利用されている微生物、およびこれらの生
物群からなるバイオマス、活性汚泥等がある。In the present invention, biological reaction means water treatment, waste treatment,
This is a biological reaction that decomposes the substrates in the wastewater, raw materials, and other substances to be treated by the catabolic metabolism of microorganisms such as fermentation to produce treated products such as treated water and products.Aerobic and anaerobic biological reactions Including both. Examples of microorganisms used for such biological reactions include bacteria, filamentous fungi, yeasts, other microorganisms conventionally used for biological reactions, biomass composed of these organisms, activated sludge and the like.
これらの微生物をそれぞれの固有の生物反応条件、例え
ば好気性または嫌気性条件下に、反応系の温度を変えて
生物反応を行わせると、微生物の異化代謝活性が最大と
なる最大基質分解速度を示す温度条件と、微生物体の増
加が最大となる最大増殖速度を示す温度条件とが、異な
る温度領域に表われる。基質分解速度は同じ温度条件に
おいて生物反応を継続している間に変化するので、休眠
微生物を使つて生物反応を行い、その基質分解速度が最
大となる温度を最大基質分解速度を示す温度条件とす
る。When these microorganisms are allowed to carry out biological reactions under their own unique biological reaction conditions, for example, aerobic or anaerobic conditions, by changing the temperature of the reaction system, the maximum substrate decomposition rate at which the catabolic activity of the microorganism is maximized is obtained. The temperature condition shown and the temperature condition showing the maximum growth rate at which the increase of the microorganisms is maximum appear in different temperature regions. Since the substrate decomposition rate changes while continuing the biological reaction under the same temperature condition, the biological reaction is performed using dormant microorganisms, and the temperature at which the substrate decomposition rate becomes maximum is the temperature condition that shows the maximum substrate decomposition rate. To do.
最大基質分解速度および最大増殖速度を示す温度条件
は、それぞれの微生物によつて異なる。例えば絶対嫌気
性細菌である中温メタン生成菌は最大基質分解速度が4
5℃、最大増殖速度が35℃、通性嫌気性細菌であるク
レブシエラ・ニユーモニエは最大基質分解速度が41.
8℃、最大増殖速度が27℃、好気性細菌であるアエロ
バクター・アエロゲネスは最大基質分解速度が41.8
℃、最大増殖速度が37℃の温度である。The temperature conditions showing the maximum substrate decomposition rate and the maximum growth rate differ depending on each microorganism. For example, a mesophilic methanogen that is an absolutely anaerobic bacterium has a maximum substrate decomposition rate of 4
Klebsiella neumonie, which is a facultative anaerobic bacterium, has a maximum substrate decomposition rate of 41.
Aerobic aerobic bacteria Aerobic aerogenes has a maximum substrate decomposition rate of 41.8 at 8 ° C and a maximum growth rate of 27 ° C.
C., the maximum growth rate is 37.degree.
基質分解速度および増殖速度は上記最大基質分解速度お
よび最大増殖速度の温度条件を中心として、その付近の
温度条件、通常は±2〜3℃の範囲において実質的に大
きくなるので、本発明では最大基質分解速度付近の温度
条件および最大増殖速度付近の温度条件を採用する。The substrate decomposition rate and the growth rate are substantially large in the temperature conditions of the maximum substrate decomposition rate and the maximum growth rate, and the temperature conditions in the vicinity thereof, usually within a range of ± 2 to 3 ° C. The temperature conditions near the substrate decomposition rate and the temperature conditions near the maximum growth rate are adopted.
最大基質分解速度は休眠微生物を使用して測定するもの
であるが、その微生物に備わつた固有の最大の異化代謝
活性である。しかしながら、この最大基質分解速度はそ
の微生物の固有のものとして、最高の条件が整つた時に
のみ現われるので、最大基質分解速度付近の温度条件で
生物反応を行つていると次第に活性が低下する。またこ
の温度条件では微生物体の増殖率はマイナスの値を示
し、微生物体は減少する傾向を示す。Maximum substrate degradation rate, measured using dormant microorganisms, is the maximum intrinsic catabolic activity of the microorganism. However, this maximum substrate decomposition rate, which is specific to the microorganism, appears only when the maximum conditions are set, and therefore the activity gradually decreases when a biological reaction is carried out under a temperature condition near the maximum substrate decomposition rate. Further, under this temperature condition, the growth rate of the microorganisms shows a negative value, and the microorganisms tend to decrease.
一方、最大増殖速度付近の温度条件で生物反応を行う
と、最大基質分解速度付近の温度条件よりも基質分解速
度は小さく、しかも微生物体への転換率が高く、微生物
体量の増加が著しい。On the other hand, when the biological reaction is carried out under the temperature condition near the maximum growth rate, the substrate decomposition rate is smaller than that under the temperature condition near the maximum substrate decomposition rate, the conversion rate to the microbial cells is high, and the amount of the microbial cells increases remarkably.
そこで、微生物をこれらの二つの異なつた温度条件の繰
返えし環境におくと、最大基質分解速度付近の温度条件
では生物反応における異化代謝活性が高くて、基質分解
速度の大きい生物反応を行うことができ、これにより活
性が低下した微生物を最大増殖速度付近の温度条件で同
様の生物反応を行うと、減少した微生物体が増殖により
増加するとともに、低下した活性が賦活され、再び最大
基質分解速度で生物反応を行えることがわかつた。この
ような傾向は、好気性および嫌気性微生物の差および、
細菌、糸状菌、酵母、その他の微生物およびこれらの集
合体の差に拘りなく、広く一般的に認められる。Therefore, when a microorganism is placed in an environment in which these two different temperature conditions are repeated, a catabolic activity in a biological reaction is high under a temperature condition near the maximum substrate decomposition rate, and a biological reaction with a large substrate decomposition rate is performed. When a similar biological reaction is performed on a microorganism whose activity has decreased due to temperature conditions near the maximum growth rate, the decreased activity of the microorganism increases due to growth, the decreased activity is activated, and maximum substrate decomposition occurs again. It was discovered that biological reactions could be performed at a speed. This tendency is due to the difference between aerobic and anaerobic microorganisms and
It is widely accepted regardless of differences in bacteria, filamentous fungi, yeasts, other microorganisms and their aggregates.
微生物を最大基質分解速度付近の温度条件で生物反応を
行う時間は、異化代謝活性が低下する以前の時間であ
り、生物反応を行う微生物によつて異なるが、一般的に
は数時間から数日、例えば5時間から5日間程度であ
る。また最大増殖速度付近の温度条件で生物反応を行う
時間は、低下した活性が賦活される時間および減少した
微生物体が一定となる時間が基準となり、双方が一致す
るのが望ましいが、一般的には活性が賦活される時間が
基準となり、このとき微生物体は幾分増加傾向を示す。
この時間も微生物により異なるが、一般的には10時間
から5日程度である。The time for performing a biological reaction in a temperature condition near the maximum substrate decomposition rate of a microorganism is the time before the catabolic activity decreases, and it varies depending on the microorganism that performs the biological reaction, but it is generally several hours to several days. For example, it is about 5 hours to 5 days. In addition, the time for carrying out the biological reaction under the temperature condition near the maximum growth rate is based on the time when the reduced activity is activated and the time when the decreased microbial body becomes constant, and it is desirable that both are the same, but in general, Is based on the time when the activity is activated, and at this time, the number of microbial cells tends to increase somewhat.
This time also varies depending on the microorganism, but it is generally about 10 hours to 5 days.
微生物をこのような二つの温度条件の繰返えし環境にお
く方法としては、最大基質分解速度付近の温度条件で生
物反応を行う主反応部と最大増殖速度付近の温度条件で
生物反応を行う増殖賦活部の二つの反応部間に微生物を
循環する方法、および2つの反応部を最大基質分解速度
付近の温度条件による生物反応と最大増殖速度付近の温
度条件による生物反応に交互に切換える方法などがあ
る。これらの方法により二つの温度条件の繰返えし環境
におくことにより、最大基質分解速度付近の温度条件に
おける高速度の基質分解、および最大増殖速度における
賦活増殖が繰返えされ、全体として基質分解効率が高
く、かつ微生物体量の少ない生物反応を行うことができ
る。As a method of placing microorganisms in an environment in which these two temperature conditions are repeated, a biological reaction is performed under the temperature conditions near the maximum substrate decomposition rate and a main reaction part where the biological reaction is performed under the temperature conditions near the maximum substrate decomposition rate. A method of circulating a microorganism between two reaction parts of a growth activation part, and a method of alternately switching the two reaction parts between a biological reaction under a temperature condition near the maximum substrate decomposition rate and a biological reaction under a temperature condition near the maximum growth rate, etc. There is. By placing these two temperature conditions in a repetitive environment by these methods, high-rate substrate decomposition at temperature conditions near the maximum substrate decomposition rate and activated growth at the maximum growth rate are repeated, and the substrate as a whole It is possible to carry out a biological reaction with a high decomposition efficiency and a small amount of microorganisms.
これらの二つの反応部に与える負荷は、最大基質分解速
度付近の反応部に大部分の負荷を与え、主反応として生
物反応の効率を高くし、最大増殖速度付近の反応部には
活性の賦活および微生物体量維持のための増殖に必要な
だけの少量の負荷を与えて従反応とする。二つの反応部
に分割する負荷の比率は微生物および与える負荷の種類
によつて異なるが、一般的には最大基質分解速度付近の
反応部1に対して最大増殖速度付近の反応部5〜50%
程度である。The load given to these two reaction parts gives most of the load to the reaction part near the maximum substrate decomposition rate, increases the efficiency of biological reaction as the main reaction, and activates the activity in the reaction part near the maximum growth rate. And a small amount of load necessary for the growth for maintaining the microbial mass is given to make it a secondary reaction. The ratio of the load divided into the two reaction parts varies depending on the microorganism and the kind of the load to be applied, but in general, the reaction part 1 near the maximum substrate decomposition rate is 5 to 50% of the reaction part near the maximum growth rate.
It is a degree.
最大増殖速度付近の生物反応では、最大基質分解速度付
近の反応における微生物体の減少分に相当する増殖を行
えば反応系における微生物体量が一定となり、余剰微生
物体が発生しないが、活性を賦活させるためには、微生
物体量が幾分増加する場合がある。このため、実際の系
では活性が賦活される範囲で、微生物体量の増加ができ
るだけ少なくなるように、最大増殖速度付近の反応部の
負荷量および反応時間を設定するのが望ましい。In the biological reaction near the maximum growth rate, if the growth corresponding to the decrease of the microbial cells in the reaction near the maximum substrate decomposition rate is carried out, the amount of microbial cells in the reaction system becomes constant and excess microbial cells do not occur, but the activity is activated. To do so, the microbial load may increase somewhat. For this reason, in an actual system, it is desirable to set the load amount and reaction time of the reaction section near the maximum growth rate so that the increase in the amount of microorganisms is minimized within the range where the activity is activated.
以下、図面により本発明の実施態様について説明する。
第1図ないし第3図はそれぞれ別の実施態様を示す系統
図である。第1図において、1は主反応部、2はこの主
反応部に付属した分離部、3は賦活増殖部、4はこの賦
活増殖部に付属した分離部である。発酵の原材料や廃水
等の被処理物5の大部分を主反応部1に導入し、ここで
最大基質分解速度付近の温度条件に維持して生物反応を
行い、主反応として大部分の基質を分解する。反応液は
分離部2において処理物6aと微生物体7aに分離し、
微生物体7aは賦活増殖部3に送る。賦活増殖部3では
被処理物の残部5aを導入して生物反応を行い、従反応
として、送入された微生物体7aの賦活および増殖を行
う。反応液は分離部4で処理物6bと微生物体7bに分
離し、微生物体7bは主反応部1に循環する。微生物体
量が増加したときは、余剰微生物体7cとして排出す
る。Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 to 3 are system diagrams showing different embodiments. In FIG. 1, 1 is a main reaction part, 2 is a separation part attached to this main reaction part, 3 is an activation multiplication part, and 4 is a separation part attached to this activation growth part. Most of the materials to be treated 5 such as fermentation raw materials and wastewater are introduced into the main reaction part 1, where biological reactions are carried out while maintaining the temperature conditions near the maximum substrate decomposition rate, and most of the substrates are converted as the main reaction. Disassemble. The reaction liquid is separated into a treated product 6a and a microbial body 7a in the separation unit 2,
The microbial body 7a is sent to the activated growth part 3. In the activation / proliferation part 3, the remaining portion 5a of the object to be treated is introduced to cause a biological reaction, and as a secondary reaction, the fed microorganism body 7a is activated and propagated. The reaction solution is separated into a treated product 6b and a microbial body 7b in the separation section 4, and the microbial body 7b circulates in the main reaction section 1. When the amount of microorganisms increases, it is discharged as surplus microorganisms 7c.
第2図では、分離部2が省略され、主反応部1と反応液
8をそのまま賦活増殖部3に導入するようになつてい
る。また被処理物5は全てを主反応部1に導入する場合
と、大部分を主反応部1に導入し、残部5aを賦活増殖
部3に導入する場合がある。反応液8中に賦活増殖部3
で必要な基質が含まれているときは、全てを主反応部1
に導入するだけでよい。他の構成、作用は第1図と同様
である。第2図の方法では、分離操作が1回に集約され
る。また第2図の方法において、主反応部1と賦活増殖
部3の位置を入れ替え、賦活増殖を行つた反応液をその
まま主反応部に導入するようにしてもよい。In FIG. 2, the separation part 2 is omitted, and the main reaction part 1 and the reaction liquid 8 are introduced into the activation multiplication part 3 as they are. Further, there are cases where all of the object 5 to be treated is introduced into the main reaction part 1 and cases where most of it is introduced into the main reaction part 1 and the remainder 5a is introduced into the activation multiplication part 3. Activated growth part 3 in reaction solution 8
If the required substrate is included in the main reaction part 1
You just have to install it. Other configurations and operations are similar to those in FIG. In the method of FIG. 2, the separating operations are integrated into one. Further, in the method shown in FIG. 2, the positions of the main reaction section 1 and the activation / proliferation section 3 may be exchanged, and the reaction liquid having undergone the activation / proliferation may be directly introduced into the main reaction section.
第3図は第1反応部9および第2反応部10を並列に配
置し、交互に最大基質分解速度付近の反応および最大増
殖速度付近の反応を行うようになつている。そしてそれ
ぞれ分離部2、4において分離を行い、処理物6a、6
bを得るようになつているが、最大基質分解速度付近の
反応では微生物体量は減少するので余剰微生物体7cは
発生せず、最大増殖速度付近の反応において、微生物体
量が増加する場合のみ余剰微生物体7cが発生する。In FIG. 3, the first reaction section 9 and the second reaction section 10 are arranged in parallel, and the reaction near the maximum substrate decomposition rate and the reaction near the maximum growth rate are alternately performed. Then, separation is performed in the separation units 2 and 4, respectively, and processed products 6a and 6
However, in the reaction near the maximum substrate decomposition rate, the amount of microbial cells decreases, so that excess microbial cells 7c are not generated. Only in the reaction near the maximum growth rate, the amount of microbial cells increases. Excessive microorganism body 7c is generated.
以上の方法では、いずれも最大基質分解速度付近の反応
を主反応として大部分の基質をここで分解し、これによ
り基質除去効率を高くするとともに、最大増殖速度付近
の反応では従反応として大きな負荷をかけないで、穏や
かな増殖を行い、これにより微生物体の増加を少なくし
て活性を賦活させることができる。In all of the above methods, the reaction near the maximum substrate decomposition rate is the main reaction, and most of the substrate is decomposed here, thereby increasing the substrate removal efficiency, and in the reaction near the maximum growth rate, a large load as a secondary reaction. It is possible to carry out mild growth without applying the strain, thereby reducing the increase of microbial cells and activating the activity.
なお第1図ないし第3図の方法は一般的な実施態様を示
したもので、基本的な構成は変更可能であり、また細部
の構成は自由に選択可能である。例えば分離部2、4は
付属的なものとして表示したが、独立していてもよく、
また加温手段および温度制御手段も一般に行われている
手段が採用できる。さらに本発明は微生物の種類、反応
方法、利用分野等にかかわらず広く適用可能である。The method of FIGS. 1 to 3 shows a general embodiment, and the basic configuration can be changed, and the detailed configuration can be freely selected. For example, the separation units 2 and 4 are shown as an accessory, but they may be independent,
Further, as the heating means and the temperature control means, commonly used means can be adopted. Furthermore, the present invention is widely applicable regardless of the type of microorganism, reaction method, field of use, and the like.
本発明によれば、微生物を最大基質分解速度付近の温度
条件および最大増殖速度付近の温度条件の繰返えし環境
において反応を行うようにしたので、基質分解効率が高
く、かつ微生物体量の増加を著しく少なくすることがで
きるという効果がある。According to the present invention, since the microorganisms are allowed to react in an environment where temperature conditions near the maximum substrate decomposition rate and temperature conditions near the maximum growth rate are repeated, the substrate decomposition efficiency is high, and The effect is that the increase can be significantly reduced.
グルコースを基質として、第2図の方法によりメタン生
成菌による嫌気性発酵を行つた。主反応部1は容量50
0mlで反応温度45℃、賦活増殖部3は容量500mlで
反応温度35℃とし、COD濃度18000〜20000m
g/の原水を槽負荷が主反応部7.2〜8kgCOD/m3da
y、滞留時間が両部で5dayとなるように反応を行い、容
量500mlの沈殿池で分離し、0.05〜0.1ml/mi
nの速度で分離した微生物体を全て主反応部へ循環し
た。Anaerobic fermentation with methanogens was performed by the method shown in FIG. 2 using glucose as a substrate. Main reaction section 1 has a capacity of 50
The reaction temperature is 45 ° C. at 0 ml, the volume of the activation / proliferation part 3 is 500 ml, the reaction temperature is 35 ° C., and the COD concentration is 18,000 to 20,000 m.
g / raw water is the main load in the tank 7.2 to 8 kg COD / m 3 da
y, the reaction is carried out so that the residence time is 5 days in both parts, separated in a sedimentation tank with a capacity of 500 ml, and 0.05-0.1 ml / mi
All the microorganisms separated at the rate of n were circulated to the main reaction section.
比較例1として容量1、温度35℃の反応部に同じ原
水を槽負荷3.6〜4kgCOD/m3day、滞留時間5dayとな
るように注入して、従来法による反応を行つた。また比
較例2として容量1、温度45℃の反応部に同じ原水
を槽負荷3.6〜4kgCOD/m3day、滞留時間5dayとなる
ように注入して、従来法による反応を行つた。As Comparative Example 1, the same raw water was injected into a reaction part having a capacity of 1 and a temperature of 35 ° C. so that a tank load was 3.6 to 4 kg COD / m 3 day and a residence time was 5 days, and a reaction by a conventional method was performed. Further, as Comparative Example 2, the same raw water was injected into a reaction part having a capacity of 1 and a temperature of 45 ° C. so that a tank load was 3.6 to 4 kg COD / m 3 day and a residence time was 5 days, and a reaction by a conventional method was performed.
以上の3系列の反応を1カ月間連続して行つたところ、
実施例および比較例1では連続して基質の分解が可能で
あつたが、比較例2では反応開始5日後にガス発生が停
止し、以後メタン発酵は進行しなかつた。これらの処理
結果をまとめて表1に示す。After performing the above three series of reactions continuously for one month,
In Example and Comparative Example 1, the substrate could be decomposed continuously, but in Comparative Example 2, the gas generation stopped 5 days after the start of the reaction and the methane fermentation did not proceed thereafter. The results of these treatments are summarized in Table 1.
以上の結果より、比較例2では全く生物反応は継続せ
ず、比較例1では槽負荷が小さく、滞留時間が長いにも
拘らずCOD除去率が低く、かつ汚泥増加率が大きいの
に比べ、実施例では槽負荷が高く、かつ滞留時間が短い
にも拘らずCOD除去率が高く、かつ汚泥増加率が極め
て小さいことがわかる。 From the above results, in Comparative Example 2, no biological reaction continues, and in Comparative Example 1, the COD removal rate is low and the sludge increase rate is large in spite of the small tank load and the long residence time. In the examples, it can be seen that the COD removal rate is high and the sludge increase rate is extremely small even though the tank load is high and the residence time is short.
第1図ないし第3図はそれぞれ本発明の別の実施態様を
示す系統図である。 各図中、同一符号は同一または相当部分を示し、1は主
反応部、2、4は分離部、3は賦活増殖部、5は被処理
物、6a、6bは処理物、7a、7bは微生物体、7c
は余剰微生物体、8は反応液、9は第1反応部、10は
第2反応部である。1 to 3 are system diagrams showing another embodiment of the present invention. In each figure, the same reference numerals indicate the same or corresponding parts, 1 is a main reaction part, 2 and 4 are separation parts, 3 is an activation and multiplication part, 5 is an object to be treated, 6a and 6b are treated objects, 7a and 7b are Microbial body, 7c
Is a surplus microorganism body, 8 is a reaction solution, 9 is a first reaction part, and 10 is a second reaction part.
フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C12P 1/00 Z 2114−4B Continuation of the front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location C12P 1/00 Z 2114-4B
Claims (4)
物反応方法において、微生物を最大基質分解速度付近の
温度条件および最大増殖速度付近の温度条件の繰返えし
環境において反応を行うことを特徴とする生物反応方
法。1. A biological reaction method for degrading a substrate by catabolic metabolism of a microorganism, characterized in that the reaction is carried out in an environment in which the microorganism is repeatedly subjected to temperature conditions near the maximum substrate decomposition rate and temperature conditions near the maximum growth rate. Biological reaction method.
応である特許請求の範囲第1項記載の生物反応方法。2. The biological reaction method according to claim 1, wherein the reaction near the maximum substrate decomposition rate is the main reaction.
応部および最大増殖速度付近における反応部間を循環す
る特許請求の範囲第1項または第2項記載の生物反応方
法。3. The biological reaction method according to claim 1 or 2, wherein the microorganism is circulated between the reaction part near the maximum substrate decomposition rate and the reaction part near the maximum growth rate.
最大増殖速度付近における反応が複数の反応部において
交互に行われる特許請求の範囲第1項または第2項記載
の生物反応方法。4. The biological reaction method according to claim 1 or 2, wherein the reaction near the maximum substrate decomposition rate and the reaction near the maximum growth rate are alternately carried out in a plurality of reaction sections.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21377383A JPH0611438B2 (en) | 1983-11-14 | 1983-11-14 | Biological reaction method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21377383A JPH0611438B2 (en) | 1983-11-14 | 1983-11-14 | Biological reaction method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60106587A JPS60106587A (en) | 1985-06-12 |
JPH0611438B2 true JPH0611438B2 (en) | 1994-02-16 |
Family
ID=16644791
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21377383A Expired - Lifetime JPH0611438B2 (en) | 1983-11-14 | 1983-11-14 | Biological reaction method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0611438B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8916153D0 (en) * | 1989-07-14 | 1989-08-31 | Applied Biotechnologies | Wastewater treatment |
-
1983
- 1983-11-14 JP JP21377383A patent/JPH0611438B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS60106587A (en) | 1985-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0641296B1 (en) | Process for degrading organic matter | |
CN102050521B (en) | Method for treating ammonia containing wastewater through simultaneous nitrification and denitrification | |
EP0964831B1 (en) | Method for acquiring grain-shaped growth of a microorganism in a reactor | |
CN109867359B (en) | Method and device for coupling partial anaerobic ammonia oxidation deep denitrification by sludge fermentation mixture shortcut nitrification and denitrification | |
CN101050026A (en) | Deepness denitrogenation method for treating organic wastewater in high concentration | |
AU2661292A (en) | Method and system for biologically removing nitrogen from wastewater | |
CN105016470A (en) | Method for realizing advanced nitrogen and phosphorus removal of low C/N and C/P municipal sewage through excess sludge anaerobic fermentation mixture | |
Liu et al. | Kinetic behaviors of nitrifying biofblm growth in wastewater nitrification process | |
JPH0975984A (en) | Biological nitrogen removing device | |
Sherrard | Kientics and Stoichiometry of Completely Mixed Activated Sludge | |
CN116376798B (en) | Method for domesticating excess concentrated sludge into Feamox flora | |
CN106947711A (en) | A kind of high applicability nitrifies the preparation method of microbial inoculum | |
JPH0611438B2 (en) | Biological reaction method | |
DE3641260A1 (en) | Process and apparatus for the pulsed anaerobic and aerobic treatment of effluent and water | |
KR20070056260A (en) | Carbon source preparing method for advanced biological treatment of sewage and wastewater | |
CN116251819A (en) | Method for producing denitrifying carbon source for sewage treatment by utilizing organic waste residues in food industry | |
JPH10118687A (en) | Treatment method of organic wastewater | |
CN114835255A (en) | Composite bioreactor based on iron-carbon carrier and preparation and sewage treatment method thereof | |
CN212269586U (en) | Synchronous nitrification and denitrification MBBR sewage treatment equipment | |
Willimon Jr et al. | Multistage biological processes for waste treatment | |
JPH064032B2 (en) | Combustion gas manufacturing method | |
CN114057291A (en) | Total nitrogen removal growth-promoting medicament and preparation and application thereof | |
CN111334533A (en) | Method for producing volatile fatty acid by promoting anaerobic fermentation of office waste paper and sludge by cellulase | |
Cinq‐Mars et al. | Enzymatic treatment of primary municipal sludge with Trichoderma viride cellulase | |
EP0474702B1 (en) | Wastewater treatment |