JPH0611432A - Method and device for measuring viscosity of liquid under agitation - Google Patents

Method and device for measuring viscosity of liquid under agitation

Info

Publication number
JPH0611432A
JPH0611432A JP19334392A JP19334392A JPH0611432A JP H0611432 A JPH0611432 A JP H0611432A JP 19334392 A JP19334392 A JP 19334392A JP 19334392 A JP19334392 A JP 19334392A JP H0611432 A JPH0611432 A JP H0611432A
Authority
JP
Japan
Prior art keywords
liquid
viscosity
stirring
inner cylinder
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19334392A
Other languages
Japanese (ja)
Other versions
JP3214732B2 (en
Inventor
Takenobu Isoda
武信 磯田
Misao Horigome
操 堀米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawamura Institute of Chemical Research
DIC Corp
Original Assignee
Kawamura Institute of Chemical Research
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamura Institute of Chemical Research, Dainippon Ink and Chemicals Co Ltd filed Critical Kawamura Institute of Chemical Research
Priority to JP19334392A priority Critical patent/JP3214732B2/en
Publication of JPH0611432A publication Critical patent/JPH0611432A/en
Application granted granted Critical
Publication of JP3214732B2 publication Critical patent/JP3214732B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a method and a device for measuring the viscosity of a liquid specimen while it is being agitated. CONSTITUTION:An inner and an outer cylinder 1, 2 are provided so as to be rotatable, and a narrow part 13a is formed in a part of the ring-shaped space 13 generated between the two cylinders. Upon putting a liquid specimen to be measured in this ring-shaped space 13, the two cylinders are rotated at different speeds. The specimen is agitated while passing through the narrow part, and meantime the viscosity is determined.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は液体を撹拌させながらそ
の粘性を測定する方法ならびにその装置に係り、詳しく
は、例えば、印刷インキなどの液体が印刷機の各印刷ユ
ニットを通る間にうける変化を再現しつつ、例えば、撹
拌による分散、乳化時の液体粘性を直接測定できる方法
ならびにその装置に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the viscosity of a liquid while stirring the liquid, and more particularly to a device for measuring the viscosity of the liquid. The present invention relates to a method and a device for directly measuring the viscosity of a liquid during stirring and dispersion, while reproducing the above.

【0002】[0002]

【従来の技術】従来から、種々の粘度測定装置が提案さ
れ、この中の一つとして回転粘度計が知られている。こ
の回転粘度計とは、円筒あるいは円板、あるいは球など
の物体を流体中で回転させるときに、その物体が流体の
粘性抵抗によるトルクを受けることを利用したものであ
り、非ニュ−トン流体の流動曲線を求める場合にも使用
されている。
2. Description of the Related Art Conventionally, various viscosity measuring devices have been proposed, and a rotary viscometer is known as one of them. The rotational viscometer is a non-Newtonian fluid that utilizes the fact that when an object such as a cylinder, a disk, or a sphere is rotated in a fluid, the object receives a torque due to the viscous resistance of the fluid. It is also used to determine the flow curve of.

【0003】しかし、この回転粘度計で直接測定できる
のは主として剪断粘度であり、液体のうちでも、例え
ば、印刷インキが印刷機の各印刷ユニットを通る際に湿
し水に作用して印刷インキが分散や乳化し、実際の印刷
作業では、この分散、乳化時の粘度が重要なファクタで
あるにも拘らず、従来例の回転粘度計では測定時に水の
分離等が発生するため乳化時の粘度を正確に求めること
は困難であった。
However, it is mainly the shear viscosity that can be directly measured by this rotational viscometer, and among the liquids, for example, the printing ink acts on the dampening water as it passes through each printing unit of the printing machine. Is dispersed or emulsified, and in the actual printing operation, although the dispersion and the viscosity at the time of emulsification are important factors, the conventional rotational viscometer causes separation of water during measurement and the like It was difficult to accurately determine the viscosity.

【0004】すなわち、平版用印刷インキはワニスと同
じ程度の粘り気を持った樹脂ベ−スをつくり、このベ−
スをベヒクル中に加えて顔料と練和して製造される。こ
の印刷インキは、印刷過程で、平版やオフセット印刷に
つきものの湿し水に作用して分散、乳化を起こし、なか
でも、この分散、乳化によって粘度が低下すると、印刷
インキの転写の程度が悪くなり、良好なインキ膜の印刷
物が得られない。
That is, the printing ink for lithographic printing forms a resin base having the same degree of stickiness as a varnish, and this base is used.
It is manufactured by adding the soot into the vehicle and kneading with the pigment. During the printing process, this printing ink acts on the fountain solution that is typical of lithographic printing and offset printing to cause dispersion and emulsification. Above all, when the viscosity decreases due to this dispersion and emulsification, the degree of transfer of the printing ink deteriorates. , A good ink film print cannot be obtained.

【0005】ところで、従来例の回転粘度計によって、
分散、乳化された印刷インキの粘度を測定するとなる
と、印刷インキの試料を撹拌機にかけて分散、乳化し、
これをサンプリングして、回転粘度計で測定することに
なる。
By the way, with the conventional rotational viscometer,
When measuring the viscosity of the dispersed and emulsified printing ink, a sample of the printing ink is dispersed and emulsified by applying a stirrer.
This will be sampled and measured with a rotational viscometer.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、以上の
通りに測定する場合、分散、乳化したものをサンプリン
グして従来例の回転粘度計によって測定する場合には、
試料をいちいちサンプリングしながら測定するため、測
定に時間がかかり、連続に測定することも不可能であ
る。
However, in the case of performing the measurement as described above, when the dispersed and emulsified sample is sampled and measured by the conventional rotational viscometer,
Since the sample is measured while sampling it one by one, the measurement takes time and continuous measurement is impossible.

【0007】本発明は上記欠点の解決を目的とし、具体
的には、印刷インキなどの液体の撹拌、例えば分散、乳
化を行なわせると同時に、撹拌状態で液体の粘度を連続
的に測定できる液体の粘度を測定する方法ならびにその
装置を提案する。
The present invention aims to solve the above-mentioned drawbacks. Specifically, a liquid capable of stirring, for example, dispersing or emulsifying a liquid such as a printing ink, and simultaneously measuring the viscosity of the liquid in a stirring state. We propose a method for measuring the viscosity of lactic acid and its apparatus.

【0008】[0008]

【課題を解決するための手段】この目的を達成するため
に、本発明方法は、回転する内外筒の間に形成される環
状空間の一部に狭小部を形成し、この環状空間には測定
すべき液体を入れてから、内外筒をそれぞれ速度差をつ
けて回転して、環状空間の狭小部で液体を撹拌しつつ、
このときの内外筒のいずれかのトルクや回転駆動力を測
定し、この測定値から流体の粘性を検出する。
In order to achieve this object, the method of the present invention forms a narrow portion in a part of an annular space formed between rotating inner and outer cylinders, and the annular space is measured. After putting the liquid to be added, the inner and outer cylinders are rotated with different speeds, respectively, while stirring the liquid in the narrow portion of the annular space,
At this time, the torque or rotational driving force of either the inner or outer cylinder is measured, and the viscosity of the fluid is detected from this measured value.

【0009】また、この方法を実施するのに最良とする
装置は、図1に示す二重円筒型の構造を基本構造とす
る。すなわち、図1において符号1は内筒、2は外筒を
示し、これら内外筒1、2はともに回転自在に構成し、
この円筒状外筒2の中に、速度差を持って円筒状内筒1
を収納する。内筒1の回転軸は、外筒2の回転軸と同軸
に配置することなく、平行に間隔をおき離間させて配置
する。更に、この離間する間隔は、制御又は調整できる
よう構成し、さらに、内筒1ならびに外筒2はそれぞれ
独立した速度制御機構により回転できるよう構成する。
尚、内外筒1、2の速度差は、通常同方向回転で持たせ
るが、必要に応じ異方向回転又は一方のみの回転によっ
ても持たせることができるようにする。
The best apparatus for carrying out this method is based on the double cylinder type structure shown in FIG. That is, in FIG. 1, reference numeral 1 is an inner cylinder, 2 is an outer cylinder, and the inner and outer cylinders 1 and 2 are both rotatable.
Inside the cylindrical outer cylinder 2, there is a difference in speed, and the cylindrical inner cylinder 1
To store. The rotation axis of the inner cylinder 1 is not arranged coaxially with the rotation axis of the outer cylinder 2, but is arranged in parallel with a space therebetween. Further, this spacing is configured to be controllable or adjustable, and further, the inner cylinder 1 and the outer cylinder 2 are configured to be rotatable by independent speed control mechanisms.
The speed difference between the inner and outer cylinders 1 and 2 is usually provided by rotation in the same direction, but may be provided by rotation in different directions or rotation in only one direction as necessary.

【0010】また、内筒1の外側面には、例えば、溝切
り加工などによって回転時に下向きの力が働く方向に指
向する螺旋状溝を設け、回転時の流体の巻き付きによる
阪面上昇が生じ易い粘弾性流体であっても、容易に測定
できるようにする。
Further, the outer surface of the inner cylinder 1 is provided with a spiral groove oriented in a direction in which a downward force is exerted at the time of rotation by, for example, grooving or the like, so that the slope of the slope is raised by the entrainment of the fluid at the time of rotation. Even viscoelastic fluids that are easy to measure should be able to be easily measured.

【0011】さらに、内外筒1、2の間の環状空間に定
量的に液体を供給するために、給液装置を設け、液体の
混合比を変化させながら、粘性を連続的に測定できるよ
うにする。
Further, in order to quantitatively supply the liquid to the annular space between the inner and outer cylinders 1 and 2, a liquid supply device is provided so that the viscosity can be continuously measured while changing the mixing ratio of the liquid. To do.

【0012】[0012]

【作用】本発明においては、上記の通り、内筒1と外筒
2とは、所定の速度差をもって回転するため、液体の撹
拌部として作用する内筒1には液体の粘性によるトルク
が作用する。また、内筒1の回転軸と外筒2の回転軸と
は同軸でなく平行で偏心されている。更に、内外筒間に
形成される環状凹所13の少なくとも一部に狭小部13
aが形成されるところから、この狭小部13aを通過す
る液体には高い剪断を与えられ、これにより試料の撹拌
を効果的に行なう事ができる。
In the present invention, as described above, since the inner cylinder 1 and the outer cylinder 2 rotate with a predetermined speed difference, the torque due to the viscosity of the liquid acts on the inner cylinder 1 which acts as a liquid stirring section. To do. Further, the rotation axis of the inner cylinder 1 and the rotation axis of the outer cylinder 2 are not coaxial but are parallel and eccentric. Further, at least a part of the annular recess 13 formed between the inner and outer cylinders has a narrow portion 13
Since a is formed, a high shear is applied to the liquid passing through the narrow portion 13a, whereby the sample can be effectively stirred.

【0013】すなわち、本発明は、第1に、液体試料の
乳化等の操作を行ないつつ粘度を測定する。この際、内
筒1の回転軸が外筒2の回転軸に対して偏心して狭小部
が形成されているため、液体試料の撹拌効率が上がり、
液体試料は十分に撹拌される。更に詳しく説明すると、
液体試料が狭小部13aに流入し、ここを通過した後
は、液体試料が内外筒表面間で引き延ばされ、測定され
るトルクには、剪断粘度のほかに伸張粘度の影響が加味
される。この状態は、実際の印刷ユニットにおいて、ロ
−ル−ロ−ル間のニップ(ロ−ル間の接触部)を通過し
た後に印刷インキが引き延ばされるような状態と同等で
あり、この状態を狭小部13aを通過させることによっ
て測定できる。さらに、内外筒1、2の間に回転速度差
があるため試料を引き延ばす(伸張する)効果が増幅さ
れている。
That is, according to the present invention, firstly, the viscosity is measured while performing operations such as emulsification of a liquid sample. At this time, since the rotation axis of the inner cylinder 1 is eccentric with respect to the rotation axis of the outer cylinder 2 to form a narrow portion, the stirring efficiency of the liquid sample is increased,
The liquid sample is well agitated. More specifically,
After the liquid sample flows into the narrow portion 13a and passes through the narrow portion 13a, the liquid sample is stretched between the surfaces of the inner and outer cylinders, and the measured torque is affected by the extensional viscosity in addition to the shear viscosity. . This state is equivalent to a state in which the printing ink is spread after passing through the roll-roll nip (contact portion between rolls) in an actual printing unit. It can be measured by passing through the narrow portion 13a. Furthermore, since there is a difference in rotational speed between the inner and outer cylinders 1 and 2, the effect of stretching (stretching) the sample is amplified.

【0014】また、淀みを生じることなく、液体試料は
全て高い剪断が生じる狭小部13aを通過するため、撹
拌は均一になり、このとき、内筒1の表面に発生するト
ルクを測定することにより液体試料の粘度変化を連続的
に測定することができる。
Further, since all the liquid sample passes through the narrow portion 13a where high shear occurs without causing stagnation, the stirring becomes uniform. At this time, the torque generated on the surface of the inner cylinder 1 is measured. The viscosity change of the liquid sample can be continuously measured.

【0015】なお、上記のように内外筒1、2間の距離
の最も小さい狭小部13aで液体試料に加えられる最大
剪断速度は、狭小部13aの距離や、内外筒1、2の回
転速度又は速度差の調整によって容易にコントロ−ルで
きる。
As described above, the maximum shear rate applied to the liquid sample at the narrow portion 13a having the smallest distance between the inner and outer cylinders 1 and 2 is the distance of the narrow portion 13a, the rotation speed of the inner and outer cylinders 1 and 2. It can be easily controlled by adjusting the speed difference.

【0016】ちなみに、狭小部13aにおける剪断速度
Dmは同方向回転の場合、内筒1の外表面と外筒2の内
表面間の距離(狭小部13aの距離)をC(図1参
照)、内筒1の内表面の線速度をVi、外筒2の外表面
の線速度をVoとすると、次式であらわせられる。 Dm=(Vi−Vo)/C 従って、狭小部13aの距離ならびに内外筒の速度差を
予め定めておくと、その値が液体試料に加えられる最大
の剪断速度が規定された状態で、粘度の測定が可能にな
る。
Incidentally, when the shearing speed Dm in the narrow portion 13a rotates in the same direction, the distance between the outer surface of the inner cylinder 1 and the inner surface of the outer cylinder 2 (distance of the narrow portion 13a) is C (see FIG. 1), When the linear velocity of the inner surface of the inner cylinder 1 is Vi and the linear velocity of the outer surface of the outer cylinder 2 is Vo, it can be expressed by the following equation. Dm = (Vi-Vo) / C Therefore, if the distance of the narrow portion 13a and the speed difference between the inner and outer cylinders are determined in advance, the viscosity of the viscosity is determined when the maximum shear rate applied to the liquid sample is regulated. Measurement becomes possible.

【0017】[0017]

【実施例】次に、図示の実施例を通じて、本発明を更に
詳しく説明すると、次の通りである。
The present invention will be described in more detail with reference to the embodiments shown in the drawings.

【0018】なお、図1は本発明の原理を断面で示す説
明図であり、図2は本発明を実施する装置の一例の正面
図であり、図3は図2に示す装置の側面図であり、図4
は本発明の他の実施例に係る装置の一部を示す説明図で
あり、図5は内筒に作用するトルクと粘性との関係を示
すグラフであり、図6は含水率とトルクの関係を示すグ
ラフであり、図7は撹拌時間とトルクの関係を示すグラ
フであり、図8は含水率とトルク比の関係を示すグラフ
であり、図9は狭小部の大きさ(mm)と与えられる剪
断速度(1/sec)を示すグラフである。
FIG. 1 is an explanatory view showing the principle of the present invention in cross section, FIG. 2 is a front view of an example of an apparatus for carrying out the present invention, and FIG. 3 is a side view of the apparatus shown in FIG. Yes, Figure 4
FIG. 6 is an explanatory view showing a part of an apparatus according to another embodiment of the present invention, FIG. 5 is a graph showing a relation between torque acting on the inner cylinder and viscosity, and FIG. 6 is a relation between water content and torque. 7 is a graph showing the relationship between the stirring time and the torque, FIG. 8 is a graph showing the relationship between the water content and the torque ratio, and FIG. 9 is a graph showing the size (mm) of the narrowed portion. It is a graph which shows the shear rate (1 / sec) which is made.

【0019】まず、図2において、内筒1は点線で示
し、この内筒1は、軸受3ならびにトルクの検出部4を
介して駆動用モ−タ5に接続されている。駆動用モ−タ
5は、内筒1の回転数が40〜4000rpmの範囲内
になるよう、制御ができるのが好ましい。軸受3、トル
クの検出部4及び駆動用モ−タ5は台座6に取付けら
れ、台座6は垂直方向に移動可能に構成され、更に、台
座6はモ−タ7により上下に移動される。
First, in FIG. 2, the inner cylinder 1 is shown by a dotted line, and the inner cylinder 1 is connected to the drive motor 5 via the bearing 3 and the torque detecting portion 4. The driving motor 5 is preferably controllable so that the rotation speed of the inner cylinder 1 is within the range of 40 to 4000 rpm. The bearing 3, the torque detector 4 and the driving motor 5 are attached to a pedestal 6, the pedestal 6 is vertically movable, and the pedestal 6 is vertically moved by a motor 7.

【0020】外筒2はその周囲の外筒駆動用モ−タ9に
より、例えば、0.1〜120rpmで回転できるよう
に構成されている。内筒1の回転方向は一つの方向のみ
にも構成できるが、外筒2の回転方向は内筒1と同じ方
向、または逆方向のいずれかを選択できるように構成す
る。
The outer cylinder 2 is constructed so that it can be rotated at, for example, 0.1 to 120 rpm by the outer cylinder driving motor 9 around it. The inner cylinder 1 can be configured to rotate in only one direction, but the outer cylinder 2 can be configured to select either the same direction as the inner cylinder 1 or the opposite direction.

【0021】また、外筒2の周囲には熱媒が循環可能な
恒温漕8が配置され、温度制御が可能となっている。外
筒2、恒温漕8及び外筒駆動用モ−タ9は水平に移動可
能な台座10に据え付けられ、送りネジ11により位置
の調整が可能となっている。
A constant temperature bath 8 in which a heat medium can be circulated is arranged around the outer cylinder 2 so that the temperature can be controlled. The outer cylinder 2, the constant temperature bath 8 and the outer cylinder driving motor 9 are installed on a pedestal 10 which can be moved horizontally, and the position can be adjusted by a feed screw 11.

【0022】このように構成すると、台座10は内筒1
と外筒2の回転軸が一致し同軸になった位置から内筒と
外筒が接する位置までの範囲で位置が調整でき、このよ
うにして狭小部13aの距離が調整できる。
With this structure, the pedestal 10 has the inner cylinder 1
The position can be adjusted in the range from the position where the rotation axes of the outer cylinder 2 are coincident and coaxial with each other to the position where the inner cylinder and the outer cylinder are in contact with each other, and thus the distance of the narrow portion 13a can be adjusted.

【0023】また、測定すべき液体試料の粘性によって
内筒1の受けるトルクは、内筒1に連絡するトルクの検
出部4によって検出されるが、必ずしも、トルクの検出
部4によって検出しなくとも、内筒1の駆動用モ−タ5
の電力を測定することによってトルクを検出することが
できる。内外筒1、2は所望に応じていずれの寸法にも
構成できるが、通常は外筒2の直径Doが30mm、内
筒1の直径Diが20mm、内筒の浸液長Lが60mm
程度にするのが好ましい。
The torque received by the inner cylinder 1 due to the viscosity of the liquid sample to be measured is detected by the torque detection unit 4 connected to the inner cylinder 1. However, it is not always necessary to detect it by the torque detection unit 4. , A motor 5 for driving the inner cylinder 1
The torque can be detected by measuring the electric power of. The inner and outer cylinders 1 and 2 can be configured to have any size as desired, but normally, the diameter Do of the outer cylinder 2 is 30 mm, the diameter Di of the inner cylinder 1 is 20 mm, and the immersion length L of the inner cylinder is 60 mm.
It is preferable to adjust the degree.

【0024】更に、内外筒1、2間に形成される狭小部
13aは0.1〜2.0mm程度とるのが好ましい。す
なわち、狭小部13aは上記の通り測定すべき液体試料
に所定の撹拌を与えるものである。従って、狭小部13
aの大きさをあまり大きくとると、撹拌効率が低下し、
例えば、印刷ユニットにおける印刷インキの乳化状態に
近い乳化が得られない。これに対し、狭小部13aの大
きさがあまり小さくなり、0.1mm未満になると、内
外筒1、2の工作精度を相当高めないと、回転時のふれ
の影響をうけ、狭小部13aの大きさが不均一となり誤
差を生じる。
Further, it is preferable that the narrow portion 13a formed between the inner and outer cylinders 1 and 2 has a thickness of about 0.1 to 2.0 mm. That is, the narrow portion 13a provides a predetermined stirring to the liquid sample to be measured as described above. Therefore, the narrow portion 13
If the size of a is too large, the stirring efficiency decreases,
For example, an emulsification close to the emulsified state of the printing ink in the printing unit cannot be obtained. On the other hand, if the size of the narrow portion 13a becomes too small, and is less than 0.1 mm, the working accuracy of the inner and outer cylinders 1 and 2 must be considerably increased, and the size of the narrow portion 13a will be affected by the fluctuation during rotation. Results in non-uniformity, resulting in errors.

【0025】なお、ちなみに、内筒を2000rpm、
外筒を60rpmで回転し、狭小部の大きさと液体試料
の剪断速度との関係を求めたところ、図9の通りであっ
た。
Incidentally, the inner cylinder is 2000 rpm,
The outer cylinder was rotated at 60 rpm, and the relationship between the size of the narrowed portion and the shear rate of the liquid sample was determined.

【0026】また、内筒1の表面には、図4に示すよう
に、螺旋状の溝1aを形成することもできる。この溝1
aは、回転時に液体試料を下向きに押し下げる方向に形
成し、深さ、幅、ピッチなどは測定すべき液体試料の性
質に応じて決められるが、オフセット印刷インキの場合
には、深さ0.5mm、幅3mm、ピッチ5mm内外で
十分である。更に、測定すべき液体試料によっては表面
が平滑な内筒が好ましい場合があり、このため、螺旋状
の溝1a付きの内筒1と表面が平滑な内筒1とを用意
し、液体試料に応じて交換できるようにするのが好まし
い。
Further, as shown in FIG. 4, a spiral groove 1a can be formed on the surface of the inner cylinder 1. This groove 1
a is formed so as to push the liquid sample downward during rotation, and the depth, width, pitch, etc. are determined according to the properties of the liquid sample to be measured. A size of 5 mm, a width of 3 mm, and a pitch of 5 mm are sufficient. Further, an inner cylinder having a smooth surface may be preferable depending on the liquid sample to be measured. Therefore, an inner cylinder 1 with a spiral groove 1a and an inner cylinder 1 having a smooth surface are prepared and used as a liquid sample. It is preferable to be able to replace it accordingly.

【0027】さらに、測定すべき液体を定量的に供給す
るために、例えば、電動ビュレットまたは定量ポンプ等
の給液装置12(図2参照)を設け、内外筒1、2間の
環状凹所13内に液体を供給するのが好ましい。このよ
うに構成すると、液体試料は一定速度で供給でき、液体
試料の混合比を連続的に変化させながら、粘度の変化を
測定できる。
Further, in order to quantitatively supply the liquid to be measured, for example, a liquid supply device 12 (see FIG. 2) such as an electric buret or a metering pump is provided, and an annular recess 13 between the inner and outer cylinders 1 and 2 is provided. It is preferable to supply the liquid therein. With this configuration, the liquid sample can be supplied at a constant rate, and the change in viscosity can be measured while continuously changing the mixing ratio of the liquid sample.

【0028】そこで、上記のところの測定装置の使用態
様を説明すると、次の通りである。
Then, the manner of use of the above-mentioned measuring device will be described as follows.

【0029】まず、一定量の液体試料(例えば、10c
c程度)を外筒2に秤量する。この際、液体試料のうち
で、分散媒と分散質のいずれか一方を外筒2に秤量して
おき、他方を給液装置12により供給することもでき
る。なお、分散媒と分散質と分けずにこれらを一諸にし
て最初から外筒2に秤量すると、分散質が固体の場合で
も測定できる。
First, a fixed amount of liquid sample (for example, 10c
(about c) is weighed in the outer cylinder 2. At this time, either one of the dispersion medium and the dispersoid in the liquid sample may be weighed in the outer cylinder 2 and the other may be supplied by the liquid supply device 12. If the dispersoid and the dispersoid are not separated but are separated and weighed in the outer cylinder 2 from the beginning, the measurement can be performed even when the dispersoid is solid.

【0030】次に、液体試料を秤量した外筒2を恒温漕
8上にセットする。そこで、台座6を下げ、内筒1の上
下位置をセットし、その後、送りネジ11により台座1
0を水平方向に移動すると、内筒1と外筒2との相対的
位置が決定し、狭小部13aの大きさが決められる。ま
た、必要に応じて、電動ビュレット等の給液装置12を
セットする。
Next, the outer cylinder 2 in which the liquid sample is weighed is set on the constant temperature bath 8. Therefore, the pedestal 6 is lowered, the upper and lower positions of the inner cylinder 1 are set, and then the pedestal 1 is fixed by the feed screw 11.
When 0 is moved in the horizontal direction, the relative position between the inner cylinder 1 and the outer cylinder 2 is determined, and the size of the narrow portion 13a is determined. In addition, a liquid supply device 12 such as an electric buret is set if necessary.

【0031】続いて、内外筒1、2の回転を開始し、液
体試料を狭小部13aで撹拌しながら、このときのトル
クを観測し、液体試料の粘度変化を連続的に測定する。
この際、電動ビュレット等の給液装置12により、分散
質となる液体、例えば水を一定速度で供給すると、例え
ば、印刷インキなどの液体試料の混合比率、つまり、含
水率を連続的に変化させながら、粘度が測定できる。
Then, the rotation of the inner and outer cylinders 1 and 2 is started, the torque at this time is observed while stirring the liquid sample in the narrow portion 13a, and the change in viscosity of the liquid sample is continuously measured.
At this time, when the liquid as the dispersoid, for example, water is supplied at a constant rate by the liquid supply device 12 such as an electric buret, for example, the mixing ratio of the liquid sample such as printing ink, that is, the water content is continuously changed. Meanwhile, the viscosity can be measured.

【0032】また、液体試料が粘弾性的な性質を有し、
液体試料が内筒1の外側面に巻き付いて内筒1のシャフ
トの部分まで上昇し周囲に飛び散る危険があるときに
は、螺旋の溝1aをつけた内筒1(図4参照)を用いる
と、液体試料が下向きに押し下げられて、円滑に測定で
きる。
Further, the liquid sample has a viscoelastic property,
When there is a risk that the liquid sample winds around the outer surface of the inner cylinder 1 and rises up to the shaft portion of the inner cylinder 1 and scatters around, the inner cylinder 1 with a spiral groove 1a (see FIG. 4) is used. The sample is pushed down, allowing smooth measurement.

【0033】また、トルクの検出部4で検出されたトル
クから液体試料の撹拌状態の粘度を得るには、予め、上
記測定装置によって粘度標準液について測定条件ごと
に、図5に示すような粘度−トルクの関係を測定してお
き、この結果から求める。
Further, in order to obtain the viscosity of the liquid sample in the agitated state from the torque detected by the torque detection unit 4, the viscosity as shown in FIG. -The torque relationship is measured and calculated from this result.

【0034】次に、平版インキを乳化させながら粘度を
測定する例を示す。
Next, an example of measuring the viscosity while emulsifying the planographic ink will be described.

【0035】実施例1.2種の平版インキ10ccを外
筒2に秤量し、給液装置12により水を一定速度で供給
し、乳化し、実際の印刷のときと同じ乳化状態を再現
し、このときの平版インキの「トルク−時間曲線」を測
定した。この場合は、水の供給速度から各時刻での含水
率を計算で求めたところ、図6に示す「トルク−含水率
曲線」(イ)および(ロ)が得られた。
Example 1 Two kinds of lithographic ink 10 cc were weighed in the outer cylinder 2, water was supplied at a constant speed by the liquid supply device 12, and emulsified to reproduce the same emulsified state as in actual printing. The "torque-time curve" of the planographic ink at this time was measured. In this case, when the water content at each time was calculated from the water supply rate, "torque-water content curves" (a) and (b) shown in FIG. 6 were obtained.

【0036】一般に、平版インキは印刷機上で湿り水に
作用して含水率が多い場合には20〜30%になる。図
6で(イ)で示す平版用インキは水の供給量が多くなっ
て含水率が20%をこえると、トルクが低下し、印刷し
た際の濃度(インキの膜厚)が低下することがわかる。
In general, the lithographic ink acts on the dampening water on the printing machine and has a high water content of 20 to 30%. When the water content of the planographic ink shown in FIG. 6 (a) exceeds 20% and the water content exceeds 20%, the torque is decreased and the density (ink film thickness) when printed is decreased. Recognize.

【0037】これに対し、図6で(ロ)で示す平版イン
キは、水の供給量を多くして含水率が20%をこえて
も、トルクが低下しておらず、インキ濃度が低下しない
ことがわかる。
On the other hand, in the planographic ink shown by (B) in FIG. 6, even if the water supply amount is increased and the water content exceeds 20%, the torque does not decrease and the ink density does not decrease. I understand.

【0038】実施例2.実施例1とは異なる平版印刷イ
ンキを、液体試料として用いて、次の条件を除いて実施
例1と略々同様に粘度を乳化しつつ測定した。 (1)、水を供給しないで印刷インキのみを液体試料と
して図7に示す「トルク−時間曲線」(ハ)を測定して
おいた。 (2)、液体試料を入れ換え、水を供給しながら図7に
示す「トルク−時間曲線」(ニ)を測定した。 (3)、(1)の曲線(ハ)に対する(2)の曲線
(ニ)とのトルクの比[(ニ)/(ハ)]を計算した。 (4)、水の供給速度から各時刻での含水率を計算し、
(3)で計算したトルク比とでグラフを作成したとこ
ろ、図8に示す「トルク比−含水率曲線」(ホ)が得ら
れた。
Example 2. A lithographic printing ink different from that of Example 1 was used as a liquid sample, and the viscosity was measured while emulsifying the viscosity in substantially the same manner as in Example 1 except for the following conditions. (1) The “torque-time curve” (c) shown in FIG. 7 was measured using only the printing ink as a liquid sample without supplying water. (2) The liquid sample was replaced, and the “torque-time curve” (d) shown in FIG. 7 was measured while supplying water. The ratio [(d) / (c)] of the torque of the curve (d) of (2) to the curve (c) of (3) and (1) was calculated. (4) Calculate the water content at each time from the water supply rate,
When a graph was created with the torque ratio calculated in (3), the "torque ratio-water content curve" (e) shown in FIG. 8 was obtained.

【0039】[0039]

【発明の効果】以上詳しく説明した通り、本発明は、速
度差をもって回転する内外筒の間に形成される環状空間
においてその一部に狭小部を形成し、この環状空間に測
定すべき液体試料を入れ、この流体が狭小部を通過する
間に撹拌させながら、この撹拌時の液体試料の粘度を内
外筒のいずれか一方のトルクまたは回転駆動力を検出し
て測定するものである。従って、液体試料の撹拌にとも
なう粘性の変化を連続的に測定でき、なかでも、オフセ
ットなどの印刷インキが各印刷ユニットを通過する間の
粘度の変化が確実に求められる。
As described in detail above, according to the present invention, a narrow portion is formed in a part of an annular space formed between inner and outer cylinders rotating with a speed difference, and a liquid sample to be measured in this annular space. The fluid is stirred while the fluid passes through the narrow portion, and the viscosity of the liquid sample at the time of stirring is measured by detecting the torque or the rotational driving force of either one of the inner and outer cylinders. Therefore, it is possible to continuously measure the change in viscosity with stirring of the liquid sample, and above all, it is possible to reliably obtain the change in viscosity while the printing ink such as offset passes through each printing unit.

【0040】なお、上記のところでは、印刷インキを中
心として説明したが、本発明は印刷インキ以外に粘弾性
体やそれを含む液体一般に適用できる。
In the above description, the printing ink was mainly described, but the present invention can be applied to a viscoelastic body or a liquid containing the viscoelastic body in addition to the printing ink.

【0041】また、内外筒として円筒状のものを中心に
示したが、これ以外の形状のもの、例えば三角形以上の
多角形等でも、環状空間の一部に狭小部が形成できれ
ば、いずれのものにも構成できる。
Although the cylindrical inner and outer cylinders are mainly shown, any other shape such as a polygon having a shape of a triangle or more can be used as long as the narrow portion can be formed in a part of the annular space. Can also be configured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理を断面で示す説明図である。FIG. 1 is an explanatory view showing the principle of the present invention in cross section.

【図2】本発明を実施する装置の一例の正面図である。FIG. 2 is a front view of an example of an apparatus for implementing the present invention.

【図3】図2に示す装置の側面図である。3 is a side view of the device shown in FIG. 2. FIG.

【図4】本発明の他の実施例に係る装置の一部を示す説
明図である。
FIG. 4 is an explanatory diagram showing a part of an apparatus according to another embodiment of the present invention.

【図5】内筒に作用するトルクと粘度との関係を示すグ
ラフである。
FIG. 5 is a graph showing the relationship between the torque acting on the inner cylinder and the viscosity.

【図6】含水率とトルクの関係を示すグラフである。FIG. 6 is a graph showing the relationship between water content and torque.

【図7】撹拌時間とトルクの関係を示すグラフである。FIG. 7 is a graph showing the relationship between stirring time and torque.

【図8】含水率とトルク比の関係を示すグラフである。FIG. 8 is a graph showing the relationship between water content and torque ratio.

【図9】狭小部の大きさ(mm)と与えられる剪断速度
(1/sec)を示すグラフである。
FIG. 9 is a graph showing a size (mm) of a narrow portion and a given shear rate (1 / sec).

【符号の説明】[Explanation of symbols]

1 内筒 1a 螺旋状の溝 2 外筒 3 軸受 4 トルクの検出部 5 駆動用モ−タ 6 台座 7 モ−タ 8 恒温漕 9 外筒駆動用モ−タ 10 台座 11 送りネジ 12 給液装置 13 環状凹所 13a 狭小部 1 Inner Cylinder 1a Spiral Groove 2 Outer Cylinder 3 Bearing 4 Torque Detecting Part 5 Driving Motor 6 Pedestal 7 Motor 8 Constant Temperature Tank 9 Outer Cylinder Driving Motor 10 Pedestal 11 Feed Screw 12 Liquid Supply Device 13 annular recess 13a narrow portion

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 回転する内外筒の間の環状空間において
その一部に狭小部を形成し、この環状空間に測定すべき
液体を入れてから、前記内外筒を速度差をつけて回転し
て、この流体を前記狭小部で撹拌させながら、前記内外
筒のいずれか一方のトルクまたは回転駆動力を検出し、
この検出値から前記流体の粘性を求めることを特徴とす
る液体を撹拌させながらその粘性を測定する方法。
1. A narrow portion is formed in a part of an annular space between rotating inner and outer cylinders, a liquid to be measured is put in the annular space, and then the inner and outer cylinders are rotated with a speed difference. While stirring the fluid in the narrow portion, the torque or the rotational driving force of either one of the inner and outer cylinders is detected,
A method for measuring the viscosity of a liquid while stirring the liquid, characterized in that the viscosity of the fluid is obtained from the detected value.
【請求項2】 前記液体の性質に応じて前記狭小部の幅
を調整することを特徴とする請求項1記載の液体を撹拌
させながらその粘性を測定する方法。
2. The method for measuring the viscosity of a liquid while stirring the liquid according to claim 1, wherein the width of the narrowed portion is adjusted according to the property of the liquid.
【請求項3】 外筒内に、この外筒の回転速度に較べて
速度差をもって回転する内筒を、前記外筒の回転軸と平
行でかつ所定間隔をおいて離間するよう、配置し、更
に、この内筒に加わるトルクおよび/または前記内筒を
駆動するモ−タの電力を検出する検出部を設けることを
特徴とする液体を撹拌させながらその粘性を測定する装
置。
3. An inner cylinder that rotates with a speed difference compared to the rotation speed of the outer cylinder is arranged in the outer cylinder so as to be parallel to the rotation axis of the outer cylinder and spaced at a predetermined interval. Further, a device for measuring the viscosity of a liquid while stirring the liquid is provided with a detector for detecting the torque applied to the inner cylinder and / or the electric power of the motor for driving the inner cylinder.
【請求項4】 前記外筒ならびに前記内筒を円筒状に構
成することを特徴とする請求項3記載の液体を撹拌させ
ながらその粘性を測定する装置。
4. The apparatus for measuring the viscosity of a liquid while stirring the liquid, according to claim 3, wherein the outer cylinder and the inner cylinder are formed in a cylindrical shape.
【請求項5】 前記外筒の内側面と前記内筒の外側面と
の間の距離を調整できるよう構成することを特徴とする
請求項3または4記載の液体を撹拌させながらその粘性
を測定する装置。
5. The viscosity of the liquid is measured while stirring the liquid according to claim 3 or 4, wherein the distance between the inner surface of the outer cylinder and the outer surface of the inner cylinder can be adjusted. Device to do.
【請求項6】 前記内筒の外側面に、前記内筒に付着す
る液体に対し回転時に下向きの力が働く方向に指向する
螺旋溝を、設けて成ることを特徴とする請求項3、4ま
たは5記載の液体を撹拌させながらその粘性を測定する
装置。
6. An outer surface of the inner cylinder is provided with a spiral groove oriented in a direction in which a downward force acts on the liquid adhering to the inner cylinder during rotation. Or a device for measuring the viscosity of the liquid as described in 5, while stirring the liquid.
【請求項7】 前記内外筒の間に液体を定量的に供給す
る液体供給装置を設けることを特徴とする請求項3、4
または5記載の液体を撹拌させながらその粘性を測定す
る装置。
7. A liquid supply device for quantitatively supplying a liquid between the inner and outer cylinders is provided.
Or a device for measuring the viscosity of the liquid as described in 5, while stirring the liquid.
JP19334392A 1992-06-25 1992-06-25 Method and apparatus for measuring viscosity while stirring liquid Expired - Lifetime JP3214732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19334392A JP3214732B2 (en) 1992-06-25 1992-06-25 Method and apparatus for measuring viscosity while stirring liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19334392A JP3214732B2 (en) 1992-06-25 1992-06-25 Method and apparatus for measuring viscosity while stirring liquid

Publications (2)

Publication Number Publication Date
JPH0611432A true JPH0611432A (en) 1994-01-21
JP3214732B2 JP3214732B2 (en) 2001-10-02

Family

ID=16306323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19334392A Expired - Lifetime JP3214732B2 (en) 1992-06-25 1992-06-25 Method and apparatus for measuring viscosity while stirring liquid

Country Status (1)

Country Link
JP (1) JP3214732B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007099686A1 (en) * 2006-02-28 2007-09-07 Nagaoka University Of Technology Method of measuring planar elongational viscosity and planar elongational viscosity measuring apparatus
WO2007099687A1 (en) * 2006-02-28 2007-09-07 Nagaoka University Of Technology Fluid analysis method and fluid analysis device
JP2009063505A (en) * 2007-09-07 2009-03-26 Elquest Corp Viscosity-measuring device
JP2010091499A (en) * 2008-10-10 2010-04-22 Toyo Seiki Seisakusho:Kk Inkometer
CN108489859A (en) * 2018-06-12 2018-09-04 山东大学 The preparation of polishing fluids and performance test multifunction system and method
CN116223306A (en) * 2023-03-20 2023-06-06 山东林民公路材料有限公司 Rubber asphalt viscosity testing device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007099686A1 (en) * 2006-02-28 2007-09-07 Nagaoka University Of Technology Method of measuring planar elongational viscosity and planar elongational viscosity measuring apparatus
WO2007099687A1 (en) * 2006-02-28 2007-09-07 Nagaoka University Of Technology Fluid analysis method and fluid analysis device
JP2007232539A (en) * 2006-02-28 2007-09-13 Nagaoka Univ Of Technology Measuring method and measuring instrument of planar elongation viscosity
JP2007232540A (en) * 2006-02-28 2007-09-13 Nagaoka Univ Of Technology Fluid analyzing method and fluid analyzer
US7890275B2 (en) 2006-02-28 2011-02-15 Nagaoka University Of Technology Planar elongational viscosity measuring method and planar elongational viscosity measuring apparatus
JP2009063505A (en) * 2007-09-07 2009-03-26 Elquest Corp Viscosity-measuring device
JP4675946B2 (en) * 2007-09-07 2011-04-27 独立行政法人産業技術総合研究所 Viscosity measuring device
JP2010091499A (en) * 2008-10-10 2010-04-22 Toyo Seiki Seisakusho:Kk Inkometer
CN108489859A (en) * 2018-06-12 2018-09-04 山东大学 The preparation of polishing fluids and performance test multifunction system and method
CN116223306A (en) * 2023-03-20 2023-06-06 山东林民公路材料有限公司 Rubber asphalt viscosity testing device
CN116223306B (en) * 2023-03-20 2023-09-08 山东林民公路材料有限公司 Rubber asphalt viscosity testing device

Also Published As

Publication number Publication date
JP3214732B2 (en) 2001-10-02

Similar Documents

Publication Publication Date Title
US3803903A (en) Apparatus and method for measuring the rheological properties of a fluid
Zarraga et al. The characterization of the total stress of concentrated suspensions of noncolloidal spheres in Newtonian fluids
US4077251A (en) Viscosity measuring device and method
JP3477621B2 (en) Rheometer
ES2348438T3 (en) REOMETER WITH RESISTANT AXIAL FORCE MEASUREMENT.
US20030154772A1 (en) Method and apparatus for viscosity measurement
EP1284415A1 (en) Method and device for determining the viscosity of a fluid
Spaid et al. Stability of viscoelastic dynamic contact lines: An experimental study
JPH0611432A (en) Method and device for measuring viscosity of liquid under agitation
US6535796B1 (en) Method for characterizing complex fluids and appliances resulting from said method
US4592226A (en) Rotational viscosimeter
EP0536140B1 (en) Novel in-line polymer melt rheometer
DE19752221C2 (en) Process for measuring the viscosity of mash
Triantafillopoulos Measurement of fluid rheology and interpretation of rheograms
Chohan et al. A Dispersive Mixing Testing Apparatus
JPH08233827A (en) Automatic analyser
Müller-Fischer et al. Dynamically enhanced membrane foaming
US5877410A (en) Emulsifier and structural analyzer
US20030024425A1 (en) Ink-furnishing apparatus, printing machine therewith and printing method
Martin Gas dispersion with radial and hydrofoil impellers in fluids with different coalescence characteristics
NL8900946A (en) Viscous mass for paint paste prepn. - has viscosity constantly monitored and corrections made by adding solvent and temp. is adjusted by regulating speed of stirrer
US5964526A (en) Kneader and rheometric analysis method in a kneader
JPH0221941B2 (en)
Tabbernor Rheology of printing inks
CN220323282U (en) Constant temperature tank for dissolved oxygen meter

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090727

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20090727

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 11

EXPY Cancellation because of completion of term