JPH06114294A - Method and device for treatment of muddy water or sand and soil-containing material - Google Patents

Method and device for treatment of muddy water or sand and soil-containing material

Info

Publication number
JPH06114294A
JPH06114294A JP4302808A JP30280892A JPH06114294A JP H06114294 A JPH06114294 A JP H06114294A JP 4302808 A JP4302808 A JP 4302808A JP 30280892 A JP30280892 A JP 30280892A JP H06114294 A JPH06114294 A JP H06114294A
Authority
JP
Japan
Prior art keywords
water
sand
mud
fluidized bed
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4302808A
Other languages
Japanese (ja)
Inventor
Jiro Sasaoka
治郎 笹岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP4302808A priority Critical patent/JPH06114294A/en
Publication of JPH06114294A publication Critical patent/JPH06114294A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily and efficiently execute acceleration of a filtration rate, fractionation, dehydration or purification and to improve environmental problems by a cost reduction by treating sewage or sand and soil-contg. materials in prescribed stages in liquid cyclones, discriminating these materials to specific parts or above by a separator and respectively separately using or dehydrating the liquid contg. relatively fine particulates and the parts contg. relatively coarse particles. CONSTITUTION:The method for treatment of the sewage or the sand and soil-contg. materials consists in supplying the muddy water, muddy material or sand and soil together with water to the liquid cyclone 5 by means of a pump 4 in the case of treatment of the mud water, muddy material or sand and soil. These materials are treated in two stages with the liquid cyclones 5, 14 and are fractionated by the separator selected from an inclined plate settling device 9 and a fluidized bead treatment device to total 3 parts; the fluid part contg. the relatively fine particulates and the dissolving components and the two parts of the different grain size distributions including the relatively coarse particle components. The liquid contg. the fractionated relatively fine particles and the parts contg. the relatively coarse particles and respectively separately used or dehydrated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は土木工事泥水、ベントナ
イト泥水、汚泥の処理とリサイクル、残土、掘削土、浚
渫土、、ゴミ理立て地等土壌の分別、浄化、上下水、河
川、池、水槽、湖沼、港湾等の浚渫土、ヘドロ等の処
理、即ち洗浄、分級、濾過等による脱臭、微粒子分離、
脱水、有害物除去、浄化を効率よく行うに適した方法お
よび機器に関するもので、環境浄化、水利用、埋立、土
地造成、分離土砂の建設、土木等への活用等を目的とす
る。
BACKGROUND OF THE INVENTION The present invention is directed to civil engineering mud, bentonite mud, sludge treatment and recycling, residual soil, excavated soil, dredged soil, soil separation, purification, water supply, rivers, ponds, etc. Treatment of dredged soil such as aquariums, lakes and harbors, sludge, etc., namely deodorization by washing, classification, filtration, etc., fine particle separation,
It relates to methods and equipment suitable for efficient dehydration, removal of harmful substances, and purification, and is intended for environmental purification, water use, land reclamation, land reclamation, construction of separated sediment, utilization for civil engineering, etc.

【0002】[0002]

【従来の技術】従来建設に使用する泥水、汚泥、浚渫
泥、土砂、有害物やゴミを含む土砂を分別あるいは浄化
処理する低コスト、簡易な処理法が無かった。建設工事
で発生した廃棄泥水、泥土は汚泥として全量を中和しつ
つ沈降剤を加えた後そのまま脱水し、埋立地に埋立てさ
れ、または汚泥のまま海洋投棄され水汚濁の見地から問
題であった。臭気、有害成分を含む土砂、汚泥等は焼
却、セメント固化によって処理するのが普通であった。
また夾雑物の分離も難かしく、多くは化学工業に使用さ
れてきた機器の型をそのまま利用することが多く、高価
で、しかも処理しても必ずしも被処理物の最終処分費用
が安くならず、処理によって排水が発生する場合、排水
処理にも設備費、動力費、運転費等がかかるものが多
く、大規模に実施するのに適していなかった。従来の解
砕、篩分、分離、脱臭、脱水、水処理に使用できる単位
装置も同様コスト高であり、プラントとして総合コスト
を下げる試みも少なかった。しかし輸送費、埋立て処分
費用が比較的安かったので、問題にならず、適正な処分
をする技術の開発自体が困難であった。 近年、地球温
暖化に関する炭酸ガス問題、、珊瑚礁、海藻類の汚染、
成育障害、魚類汚染問題から海洋投棄も問題にされるよ
うになった。しかも適当な埋立て地が少なくなり、さら
に、埋め立た物からの有害物が地下水汚染する事故が表
面化し、人件費高騰、輸送費上昇も重なって処分費が高
くなり、環境的配慮と減量が強く要請されるようになっ
た。一方化学物質で汚染された土壌を浄化するために土
地に蒸気を吹き込み、回収井から真空で引いて気化性有
害物を回収浄化する方法があるが、非揮発性物のように
有効でない場合があり、堆積物、バラ積み土砂、汚泥、
少量土砂、廃棄物埋立て地等には必ずしも適していな
い。
2. Description of the Related Art Conventionally, there has been no low-cost, simple treatment method for separating or purifying muddy water, sludge, dredging mud, earth and sand, and harmful earth and dust that are used for construction. Waste muddy water and mud generated during construction work are neutralized as sludge, and while adding a sedimentation agent, dehydrated as is and then landfilled or dumped as sludge into the ocean, which is a problem from the viewpoint of water pollution. It was Odor, earth and sand containing harmful components, sludge, etc. were usually treated by incineration or cement hardening.
In addition, it is difficult to separate impurities, and most of them use the mold of the equipment used in the chemical industry as it is, which is expensive, and even if it is processed, the final disposal cost of the processed object is not always low, When wastewater is generated by the treatment, the wastewater treatment often involves facility costs, power costs, operating costs, etc., and was not suitable for large-scale implementation. The cost of the conventional unit that can be used for crushing, sieving, separation, deodorization, dehydration and water treatment is also high, and there have been few attempts to reduce the overall cost of the plant. However, transportation costs and landfill disposal costs were relatively low, so there was no problem and it was difficult to develop technology for proper disposal. In recent years, carbon dioxide problems related to global warming, pollution of coral reefs and seaweeds,
Marine dumping has become a problem due to problems with growth and fish pollution. Moreover, the number of suitable landfills will decrease, and further, the accidents that polluted the groundwater with harmful substances from the landfill will surface, and the cost of personnel will increase, the cost of transportation will increase, and the disposal cost will increase. I was strongly requested. On the other hand, there is a method of blowing vapor into the land to purify the soil contaminated with chemical substances, and pulling a vacuum from the collection well to collect and purify the volatile harmful substances, but it may not be effective like non-volatile substances. Yes, sediment, bulk sediment, sludge,
Not suitable for small amounts of earth and sand, landfills, etc.

【0003】[0003]

【発明が解決しようとする課題】土砂や汚泥、泥水は多
くは雑物を含み、有害物を含む場合には無害化処理、ま
たは浄化処理が必要であり、できればリサイクル使用す
るのが好ましい。建設工事で発生する泥水、泥土、ある
いは浚渫、汚染土壌等を処理する場合に水洗、浄化、p
H調節、濾過、脱水速度の改善を検討した結果そのまま
脱水する場合と脱水性を改善するためアルミニュウム化
合物、鉄塩等の沈降剤を加える場合がある。また単に分
級して砂を回収できる場合と、混入している有機物、即
ちCOD成分、臭気、有害物、塩分等の分離を必要とす
る場合とがある。どの場合もも多くは先ず金属屑、針
金、ワイヤロープ屑、プラスチックフイルム、木片、小
石等の夾雑物を分離し、次に凝結している土を粒子レベ
ルまで解砕し、更に水、温水洗い、または分級し、必要
に応じて土砂を脱水する。このようにすれば土砂の再利
用が可能になり、水は循環使用し、あるいは浄化放流し
て完結する。針金、木片、プラスチック片、フイルム、
紐等は篩い目を塞いだり、巻きついたりしてこれらの分
離を困難にする。しかし対策としての装置構造の改良、
洗滌水量の増加、分離設備の強度付与、動力消費の増
大、装置の複雑化、大型化、高価という難点があり小規
模はもちろん大規模に実施することも難かしかった。埋
立て地の不足から、埋立てたゴミ中の金属くず、鋼材、
プラスチック等可燃物の分離処理、焼却等による減容が
埋立て地の有効利用、汚染地の回復処理のために簡易な
技術が要請されていた。液体サイクロンは高価なため使
用が避けられていた。操作条件を制御するための比重測
定は大流量であることに加え、測定中の砂分沈降分離の
ため正確な測定は手数がかかりしかも手作業を余儀なく
されていた。このため土建関係では施工品質の管理に手
数がかかっていた。本発明はこれらの装置、操作を簡易
化して組合せ、高能率、低動力、低燃料消費で工事用重
液、その汚泥、汚染土砂、一般汚泥、ヘドロ等の処理に
適する低コストの方法、設備を得ることを目的とする。
The earth and sand, sludge, and muddy water often contain foreign substances, and when they contain harmful substances, they must be detoxified or purified, and if possible, they are preferably recycled. When treating muddy water, muddy soil, dredging, contaminated soil, etc. generated during construction work, washing, purifying, p
As a result of examining the adjustment of H, filtration and improvement of dehydration rate, dehydration may be carried out as it is, or a precipitation agent such as an aluminum compound or an iron salt may be added in order to improve dehydration property. In some cases, sand can be simply classified to recover sand, and in other cases, it is necessary to separate mixed organic substances, that is, COD components, odors, harmful substances, salt, and the like. In all cases, most of the time, first, the impurities such as metal scraps, wire, wire rope scraps, plastic film, wood chips, and pebbles are separated, then the condensed soil is crushed to the particle level, and then washed with water and warm water. , Or classify and dehydrate the soil if necessary. In this way, the soil can be reused and the water can be recycled or purified and discharged to complete the process. Wire, wood, plastic, film,
A string or the like blocks the sieve mesh or winds it, making it difficult to separate them. However, improvement of the device structure as a countermeasure,
It was difficult to implement it not only on a small scale but also on a large scale because it had the problems of increasing the amount of washing water, increasing the strength of the separation equipment, increasing the power consumption, complicating the equipment, increasing the size and cost. Due to lack of landfill, scrap metal, steel materials, etc. in landfill waste
A simple technique was demanded for the separation treatment of combustible materials such as plastics, the effective volume reduction by incineration, and the recovery treatment of contaminated land. The use of liquid cyclones has been avoided because they are expensive. In addition to the large flow rate for the measurement of specific gravity for controlling the operating conditions, the sedimentation and separation of the sand during the measurement required precise measurement, which required manual work. For this reason, it took a lot of time to manage the construction quality in terms of construction. The present invention is a low-cost method and equipment suitable for treating heavy equipment for construction, sludge, contaminated earth and sand, general sludge, sludge, etc. with high efficiency, low power, and low fuel consumption by combining these devices and operations in a simplified manner. Aim to get.

【0004】[0004]

【問題を解決するための手段】泥水、含水土砂を脱水処
理する場合、pH調整、濾過脱水速度の改善を検討した
結果そのまま脱水する場合に比し微粒子成分と粗粒子成
分を粒度別に2−3部分以上に分割後別に脱水すると粗
粒子の脱水性が大幅に改善され、必ずしも脱水機を必要
とせずに堆積状態で容易に脱水できることを発見した。
この分割は必ずしも厳密を要せず必要の程度でよい。分
割したものの濾過で目詰まりが激しいものは、発明者が
既に提案している特願昭62−274897、平4−7
5115あるいは平4−157258等の使用によって
脱水処理するのが有利である。即ち分別して機械脱水す
べき泥の量を減じ、限定量の土砂を含む泥水を少量の微
粒子漏洩を許容することによって、濾過速度をあげるこ
とができる。吸引濾過して薄層のケーキを形成し、濾過
面間隔をあけて逆ブローし、排出するサイクルを繰返し
濾過する。薄い層での脱水は流動性の乏しい粘土状のも
のから、流動性のクリーム状の物まで可能である。必要
により濾過過程で逆方向に液を流動させ脱水速度と脱水
率を上げることができる。これはケーキ目詰まりが第一
の濾過面付近で大きく、その逆側に水分が残るためであ
る。従って時間をずらせて逆側第2面から吸引脱水して
脱水率をあげることができる。脱水性を改善するため従
来よく行われてきたアルミニウム化合物、鉄塩等の沈降
剤を加えると微粒子成分を増加するだけでなく、微粒子
を増加させ、共存する土砂成分を巻き込んでゲル化傾向
を助長し、高濃度、大量の泥処理においては沈降槽にお
ける分離をかえって阻害し、脱水用濾過器を大型にする
場合があることがわかった。このような操作の後では同
様に微粒子成分除去操作を行うのが脱水性を改善し、簡
易化できる。しかも汚濁物、有害成分は有機物、無機物
を問わず有害物自体の粒子中に存在するもの以外は大部
分が土砂粒子表面に沈着または吸着され、固定している
か、液相と吸着平衡にあることがわかった。表面積は同
型粒子では粒子径の3乗に比例していることはよく知ら
れていることであり、従って粒度分布に応じて分離すべ
き範囲を定めることにより土壌あるいは泥、汚泥の浄化
操作を効率的にできることがわかった。土建用泥水重液
で粘性成分を添加するもので分離されたシルト分に移行
するので少量補充すればリサイクルして使用でき。しか
も分離水のCODは40ppm程度にとどまる。本発明
は粒子径の小な部分の分離を流動層分級または液体サイ
クロンによって行い、次に比較的粗な成分をそのまま脱
水操作するものである。従来脱水は処理される泥、土砂
に関係なく全量を一括して脱水するのが普通であった。
これは微粒子に粗な粒子が混入している方が濾過性がよ
いと考えられていたからである。しかし特に土木用のベ
ンントナイト泥水のように目詰めと重液の役割を果たす
微粒子が存在すると水切れと、濾過性が極端に悪くなり
これが汚泥として法律的に扱われる原因になっていた。
ところが微粒子を分離することにより水切れのよい砂あ
るいはシルトとして扱えることを発見しこの発明に至っ
たものである。従来のように単に沈降槽で沈降させると
共沈が起こり粗粒子に微粒子が混入して脱水性を悪くし
ていることがわかった。サイクロンで分離して土砂濃度
を下げるとサイクロンで分離されず液中に残った砂、シ
ルトは暫く沈降、流動層分離、2段目サイクロン処理が
いずれも容易になる。、分離用流動層を形成する場合、
ポンプまたはプロペラを使用して水槽に流動化上向水流
を発生させ、、土砂粒子の懸濁層または流動層を形成さ
せることができ、しかも土砂に機械的解砕力または剪断
力をを加えて凝結を解消した後、流動層に供給するかま
たは流動層内で、機械的解砕力を加え、必要により化学
的、物理化学的、または生物化学的分離操作を複合して
処理することができる。しかも簡易な装置、操作とす
る。分離される土砂は懸濁状態または流動層で作用をう
けるもので、(1)汚染物洗浄除去、(2)分級、の処
理を受けると同時に、自身は(3)重液として働いて投
入された土砂等と共存し、水系の見かけの密度を上げ
て、土塊解砕、流動を助け、比較的軽量の木片、廃プラ
スチック等の浮上分離を促進する。サイクロンまたは流
動層において流動粒子表面摩耗は通常好ましくないとさ
れているが、本発明では付着物の除去作用を生じ洗浄を
促進する利点となる。従来工事用水槽で泥水循環を局部
で行う例はあったが、不均一懸濁液の循環であって、こ
れを積極的に重液として分離に使用できるものではなか
った。また単に水を利用する場合には、木片、プラスチ
ック片のように水との比重差の小なものは水流に巻き込
まれて土砂、小石とともに沈降する場合があり、これを
防止するためには水量が増加し、従って動力消費も増加
し分離作業の障害になっていた。沈降槽内には流動層を
部分的に形成するのが容易で動力消費が少ない。土砂
は、特に微粒子成分が多いもの、多価イオンたとえばカ
ルシウム、アルミニウム、鉄イオンを添加し、または本
来含むもの、有機、無機性のコロイドを含むものは、静
的状態では固定層状態で凝結しているが、固結していな
いものはゲル状になっていることがあり、透水性が乏し
く、有機物や金属イオンを包蔵ないし吸着しチキソトロ
ビーを示し易い。還元性雰囲気にあった腐食質汚泥で鉄
分が存在すると、2価の鉄塩として存在し、ゲル化の原
因になり易い。このような現象は浚渫汚泥だけでなく、
地盤の掘削、現場杭打ちで発生する泥水、安定化泥水の
処理においても発生する。これは炭酸ガスを吹き込み、
安定化して、沈降性、脱水性、洗浄性を改善できる。次
に微粒子と粗粒子が共存している場合には単に潅水する
だけでは、洗浄が難しい。大量の土砂処理の場合、堆積
層の大部分が微粒子で目詰まりを起こし短絡水路ができ
るために、死空間が多く、簡単には洗浄できないものと
推測された。通常の状態では、沈降剤として加えた金属
塩でも加水分解してそのまま水酸化物の形であることが
多いこと、粒子が高濃度になるとゲルを安定化して脱
水、洗浄を逆に阻害するようにみえることに着目して水
酸化物の膠質沈殿と反応して難溶性沈殿を形成する酸残
基、イオン、または炭酸ガス、燃焼ガスを加えて膠質を
実質的に解消することがある。或種の沈殿の濾過性改善
に微量の陰イオンを加える操作は分析化学の分野では特
殊事例として知られているが、硫酸、塩酸の添加は土建
用骨材等として使用する時に有害イオンになったり、安
定液の凝結を促進すること等の難点があり好ましくな
い。
[Means for Solving the Problem] When dewatering muddy water or hydrated earth and sand, as a result of examining pH adjustment and improvement of filtration / dehydration rate, the fine particle component and the coarse particle component are classified by particle size as compared with the case of being dehydrated as it is. It was discovered that dehydration of coarse particles is significantly improved when the water is separated into more than one part and then dehydrated separately, and that dehydration can be easily performed in a deposited state without necessarily requiring a dehydrator.
This division does not necessarily need to be strict and may be as necessary. Those which are severely clogged by filtration of the divided ones are disclosed in Japanese Patent Application Nos. 62-274897 and 4-7 already proposed by the inventor.
It is advantageous to perform dehydration treatment by using 5115 or flat 4-157258. That is, the filtration rate can be increased by reducing the amount of mud to be separated and mechanically dehydrated, and allowing a small amount of fine particles to leak mud water containing a limited amount of earth and sand. Suction filtration is performed to form a thin layer cake, which is back-blown with a space between the filtration surfaces and discharged, and the cycle is repeated. Dehydration in thin layers can range from clay-like ones with poor fluidity to creamy ones with fluidity. If necessary, the liquid can be flowed in the opposite direction in the filtration process to increase the dehydration rate and the dehydration rate. This is because cake clogging is large near the first filtration surface and water remains on the opposite side. Therefore, the dehydration rate can be increased by shifting the time and sucking and dehydrating from the second surface on the opposite side. Adding a precipitating agent such as aluminum compounds and iron salts, which has been commonly used to improve dehydration, not only increases the fine particle component, but also increases the fine particle and entrains coexisting sediment components to promote gelation tendency. However, it was found that in the treatment of a high concentration and a large amount of mud, the separation in the settling tank is rather hindered and the dehydration filter may be enlarged. After such an operation, it is possible to improve the dehydration property and simplify the operation by similarly removing the fine particle component. In addition, most of the pollutants and harmful components, whether organic or inorganic, are present in the particles of the harmful substance itself, most of them are deposited or adsorbed on the surface of the sediment particles and are fixed or in adsorption equilibrium with the liquid phase. I understood. It is well known that the surface area is proportional to the cube of the particle size for the same type of particles. Therefore, by determining the range to be separated according to the particle size distribution, the purification operation of soil, mud and sludge can be performed efficiently. I found that I could do it. A viscous component is added to the mud heavy liquid for earthmoving, and it shifts to the separated silt component, so if a small amount is replenished, it can be recycled. Moreover, the COD of the separated water remains around 40 ppm. According to the present invention, a portion having a small particle diameter is separated by fluidized bed classification or a liquid cyclone, and then a relatively coarse component is directly dehydrated. Conventionally, it was common to dehydrate all of the water in one batch, regardless of the mud and sand that are treated.
This is because it was thought that the filterability was better when coarse particles were mixed in the fine particles. However, in particular, the presence of fine particles that play a role of clogging and heavy liquid, such as bentonite muddy water for civil engineering, causes water drainage and extremely deteriorates filterability, which causes the sludge to be legally treated.
However, the present invention was accomplished by discovering that fine particles can be treated as sand or silt with good drainage. It has been found that when the particles are simply settled in a settling tank as in the conventional case, coprecipitation occurs, and fine particles are mixed with coarse particles to deteriorate the dehydration property. If the soil concentration is reduced by separating with a cyclone, the sand and silt remaining in the liquid that are not separated by the cyclone will be settled for a while, fluidized bed separation, and the second stage cyclone treatment will be easy. When forming a fluidized bed for separation,
A pump or propeller can be used to generate a fluidizing upward flow in the aquarium to form a suspended or fluidized bed of sediment particles, which is then subjected to mechanical disintegration or shearing forces to condense. After elimination, it can be fed to or in the fluidized bed with mechanical disintegration force, and if necessary, combined with chemical, physicochemical or biochemical separation operations. Moreover, the device and operation are simple. The separated soil is subjected to the action in a suspended state or in a fluidized bed, and at the same time it is treated as (1) cleaning and removing contaminants, (2) classification, it itself works as (3) heavy liquid and is input. Coexisting with soil and sand, it increases the apparent density of the water system, assists in the crushing and flow of clods, and promotes the floating separation of relatively lightweight wood chips and waste plastics. Although surface wear of fluidized particles in a cyclone or a fluidized bed is generally considered to be unfavorable, the present invention has an advantage of removing deposits and promoting cleaning. There was an example in which mud circulation was performed locally in a conventional water tank for construction, but it was a circulation of a heterogeneous suspension and could not be positively used as a heavy liquid for separation. Also, when simply using water, those with a small specific gravity difference with water, such as wood chips and plastic chips, may be entrained in the water stream and settle with sediment and pebbles. And therefore the power consumption was also an obstacle to the separation work. It is easy to partially form a fluidized bed in the settling tank and it consumes less power. Sediments, especially those containing a large amount of fine particles, polyvalent ions such as those containing or originally containing calcium, aluminum, iron ions, those containing organic or inorganic colloids, are fixed in a fixed layer state in a static state. However, those that are not solidified may be in the form of gel, have poor water permeability, and easily encase or adsorb organic substances and metal ions, and easily show thixotrovies. If iron is present in the corrosive sludge in the reducing atmosphere, it is present as a divalent iron salt, which easily causes gelation. This phenomenon is not limited to dredging sludge,
It is also generated in the excavation of the ground, the muddy water generated by on-site pile driving, and the treatment of stabilized muddy water. This blows in carbon dioxide,
Stabilization can improve sedimentation, dehydration, and detergency. Next, when fine particles and coarse particles coexist, it is difficult to wash them simply by irrigating. In the case of a large amount of sediment treatment, it was presumed that most of the sedimentary layer would be clogged with fine particles to form a short-circuit canal, resulting in a large number of dead spaces, which could not be easily cleaned. In the normal state, even the metal salt added as a precipitating agent often hydrolyzes and remains in the form of hydroxide as it is, and when the concentration of particles becomes high, it stabilizes the gel and inhibits dehydration and washing on the contrary. In view of the above, an acid residue, ion or carbon dioxide gas or combustion gas that reacts with the gelatinous precipitate of hydroxide to form a sparingly soluble precipitate may be added to substantially eliminate the collagen. The operation of adding a trace amount of anion to improve the filterability of a certain type of precipitation is known as a special case in the field of analytical chemistry, but the addition of sulfuric acid and hydrochloric acid turns into a harmful ion when used as an aggregate for construction. And there are difficulties such as promoting the coagulation of the stabilizing solution, which is not preferable.

【0005】[0005]

【分離用流動層、懸濁層の形成】本発明では含水土砂に
チキソトロピー性があり、剪断力、振動力をかけると地
盤、大塊だけでなく小粒子集団内部でも流動性が得られ
ることを見出し、利用するものである。しかもこのよう
な土砂は静置すると再び凝結固化し、あるいはゲル化し
分級、洗浄は困難になる。水で流動化すると粒子同志の
衝突確率が小になることによって、再凝結の速度を低下
することができ、ゆるい撹拌でも凝結時間を大幅に延長
し事実上再凝結沈降あるいはゲル化を防止することに成
功した。撹拌速度は回転数にして0.1−60回/時の
程度で土質によって試験的に容易に定めることができる
が、多くの場合0.2−20回転/時の程度であり動力
消費は少ない。振動数と強度も実験的に定めることがで
きる。水中では土砂の凝集力を弱め、解砕を容易にす
る。従って水中で凝結塊を崩壊させ、篩い分け、流動体
としまたは流動化しつつ抽出、洗浄等の操作が可能にな
る。撹拌は沈積した凝結粒子を再解離し、分級または洗
浄速度を上げる。装置上部では土砂の粒子自体が重液材
料として作用するので、湿式粗篩いによる土砂の解砕、
分級は粗大な異物を浮力をかけつつ分離しいっそう容易
になる。必要により噴流または局部的強撹拌で解砕すれ
ば流動化し、篩分動力あるいは攪拌動力も節約できる。
弱撹拌は弱い解砕とともに凝結塊を低い位置にある別の
小型強撹拌羽根を設けた強撹拌部に移動する。流動層全
体を強撹拌すると動力消費が増加し、摩耗の問題も発生
する。さらに土砂懸濁または流動化は水系の密度を増加
させるので、木片、プラスチック片、フイルム、紐等水
と比重差を大にし、比重接近のため分離困難であった雑
物は撹拌により巻き込まれた土砂と分離して浮上し、水
面下にある篩機構への付着障害や巻きつき障害を防止で
きる。従来大規模に粒子を流動化する場合ポンプ等の流
体加圧動力が大きい難点があったが、本発明では必要に
より槽内または槽付近で水または温水循環し、分配機構
により分散して流動化流体とすることにより動力消費を
大幅に節約できる。たとえば大径フードまたは大径管と
プロペラあるいはターピンポンプと多孔板または多孔管
分散機構で足りる。流動化流体分配機構はその他公知の
ものが使用できるが、単数又は複数の旋回吹き込み口も
利用でき、低圧損失で閉塞防止が容易である。これらの
操作は設備と後工程の脱水が容易になることによって組
合せ実施が経済的に可能になるものである。
[Formation of separation fluidized bed and suspension bed] In the present invention, hydrous earth and sand has thixotropic property, and when shear force and vibration force are applied, fluidity can be obtained not only in the ground and large lumps but also in small particle groups. The headline is what you use. Moreover, if such earth and sand are allowed to stand, they will again solidify and solidify or gel to make classification and washing difficult. When fluidized with water, the collision probability of the particles becomes small, so the re-condensation speed can be reduced, and even with gentle stirring the re-condensation time can be greatly extended, effectively preventing re-condensation sedimentation or gelation. succeeded in. The stirring speed can be easily determined experimentally depending on the soil quality at a rotation speed of about 0.1-60 rotations / hour, but in most cases it is about 0.2-20 rotations / hour, and power consumption is low. . The frequency and intensity can also be determined experimentally. In water, it weakens the cohesive force of soil and facilitates crushing. Therefore, it is possible to disintegrate the aggregate in water and to perform operations such as sieving, fluidizing or extracting while fluidizing and washing. Agitation re-dissociates the deposited coagulated particles and increases the classification or washing speed. In the upper part of the device, the particles of earth and sand themselves act as heavy liquid material, so the earth and sand are crushed by a wet coarse sieve,
Classification becomes easier by separating coarse foreign matter while applying buoyancy. If necessary, it can be fluidized by crushing with a jet flow or local strong stirring, and sieving power or stirring power can be saved.
With weak agitation, the agglomerates are moved to a strong agitation unit equipped with another small strong agitation blade at a low position with weak crushing. When the whole fluidized bed is vigorously stirred, power consumption increases and there is a problem of wear. Furthermore, since sedimentation or fluidization increases the density of the water system, the difference in specific gravity between water, such as wood chips, plastic chips, films, strings, etc., becomes large, and miscellaneous substances that were difficult to separate due to the proximity of specific gravity were caught by stirring. It separates from the soil and floats, and can prevent adhesion problems and winding problems with the screen mechanism below the water surface. Conventionally, when fluidizing particles on a large scale, the fluid pressurizing power of a pump or the like was large, but in the present invention, water or warm water is circulated in or near the tank as necessary, and dispersed and fluidized by a distribution mechanism. By using a fluid, power consumption can be greatly saved. For example, a large-diameter hood or large-diameter pipe, a propeller, a turpin pump, a perforated plate or a perforated pipe dispersion mechanism is sufficient. As the fluidized fluid distribution mechanism, other known ones can be used, but a single or a plurality of swirl blow ports can also be used, and it is easy to prevent blockage due to low pressure loss. These operations make it possible to carry out the combination economically by facilitating the dehydration of the equipment and the subsequent steps.

【0006】[0006]

【液体サイクロンと沈降槽】剪断力をかけること及び解
砕効果を発揮することは解砕性能を持つポンプで泥水を
液体サイクロンに送りまたは分級流動層に供給すること
によって容易かつ効果的に達成される。液体サイクロン
の下からの粗粒を分級流動層または多段洗浄流動層に供
給し、直列処理すると剪断効果と分離または洗浄効果が
重畳され特に効果的である。土建用重液の使用で発生す
る高濃度スラリーをサイクロン1段で所望の微粒子懸濁
液あるいは製品とするのは難しく、このため沈降槽中で
不規則に沈降させ、時に分離不充分で掘削工事では支障
を生じていた。従って比較的小径で粒子分級曲線が鋭い
直径100−150mm以下の複数のサイクロンをを2
段以上多段に使用するか、流動層と直列併用するか、振
動機付の傾斜板沈降装置の併用が好ましい。このように
すると一時的に高濃度スラリーが供給されても変動を吸
収できることがわかった。液体サイクロンは軸流サイク
ロンを使用することにより解砕作用と接触作用をさせ動
力消費を少なくすることもできる。処理量が比較的少な
い場合には複数のサイクロンを直列に使用することは単
数の高圧ポンプまたは複数の比較的低圧のポンプを使用
して各段間の移動を強制的に行うので容易であるが、電
力消費が大きくなり、設備費、運転費とも嵩み、摩耗に
よる機器の損耗も無視できなくなる。大規模たとえば5
0−500KW程度以上の電気容量では、洗浄、分級に
流動層技術を多段に利用するものが適している。流動層
自体は液体サイクロンや空気流動層の場合と異なり圧損
失を少なくでき、動力は1/2−1/5程度で済む利点
を生ずる。特に見かけ上槽内循環流で、懸濁微粒子を少
なくとも部分的に分離しつつ循環しゲル化に対して不活
性稀釈材として砂またはシルトの比較的粗い部分を流動
化させることによって分級または洗浄効果を上げるもの
である。流動層には微粒子を分散撹乱して接触効率を上
げる効果があるが、水系流動層で、撹拌し凝集を防止し
つつ、かつ分級し、洗浄した例はない。またそれを沈降
槽内で行うことも例がない。静的沈降層では高濃度の泥
状物で有機質、粘土質微粒子、砂分等を含むものがゲル
状になり易く、流動層形成は勿論、見かけ上、サイクロ
ンによる分離も困難とされるものであった。サイクロン
形状について、従来サイクロンは旋回吹き込み部、胴
体、円錐底取り出し部、上流取り出し部からなるのが普
通であった。ところが胴体部と円錐部の境界部は移行が
不連続で流れは不自然であり、しかも円錐底取り出し部
は正規裁頭円錐の製作が容易でなく、変形していること
が多いので、分離効率を低下させる原因になっていた。
本発明はこれらの点に着目して、配管用の汎用異径継ぎ
手を円錐部の代りに使用できることを見出した。この継
ぎ手は規格量産品であるので、形状は安定し、これを使
用すると縦の継ぎ目は工作上なくなり、横の継ぎ目は斜
面部には設けないので製作されたサイクロンの性能は安
定していることがわかり製作模様医になる。2段に径を
落して途中に曲線の変曲点を設けて、遠心力による重い
粒子の斜面に沿う逆流方向の流れを減じ効率を改善るこ
ともできる。サイクロン底部に連結しいる弁あるいはダ
ンパーは取り出し量の調整に使用されるが、絞ると閉塞
しやすくなる。従来は閉塞防止のために、中央開口部を
残すように周囲から絞ることがおこなわれていた。しか
しこれは広範囲の流量の制御は簡単ではない。本発明で
は絞った時にできる死空間の弁体部またはダンバー板部
に孔あるいはスリット、切欠きを設けることによって少
量の流体の流通を許し、従って粒子流動を起こすことに
より閉塞を防止するものである。孔径、スリット、切欠
きの代表寸法は0.5−10mmの程度が適当で複数で
あってもよい。
[Hydrocyclone and settling tank] Applying shearing force and exerting the crushing effect can be easily and effectively achieved by sending muddy water to the hydrocyclone with a pump having a crushing ability or supplying it to the classification fluidized bed. It It is particularly effective to supply coarse particles from the bottom of the liquid cyclone to a classification fluidized bed or a multi-stage washing fluidized bed, and perform a series treatment to combine the shearing effect with the separating or washing effect. It is difficult to make a high-concentration slurry generated by using heavy liquid for civil engineering into a desired fine particle suspension or product with a single cyclone. Therefore, it is randomly settled in the settling tank, and sometimes the separation is insufficient and excavation work is performed. Then there was a problem. Therefore, a plurality of cyclones having a relatively small diameter and a sharp particle classification curve of 100 to 150 mm or less should be used.
It is preferable to use in multiple stages or more, to use in series with a fluidized bed, or to use an inclined plate settling device with a vibrator in combination. By doing so, it was found that the fluctuation can be absorbed even if the high-concentration slurry is temporarily supplied. The liquid cyclone can also reduce the power consumption by using the axial flow cyclone to perform the crushing action and the contact action. When the throughput is comparatively small, it is easy to use multiple cyclones in series, because a single high-pressure pump or multiple relatively low-pressure pumps are used to force movement between stages. However, power consumption increases, equipment costs and operating costs increase, and wear of equipment due to wear cannot be ignored. Large scale eg 5
With an electric capacity of 0 to 500 KW or more, it is suitable to use the fluidized bed technology in multiple stages for cleaning and classification. Unlike the case of a liquid cyclone or an air fluidized bed, the fluidized bed itself can reduce the pressure loss and has an advantage that the power is about 1 / 2-1 / 5. Especially in the apparent circulation in the tank, the suspended fine particles are circulated while at least partially separating and fluidizing a relatively coarse portion of sand or silt as a diluent that is inert to gelation. To raise. The fluidized bed has the effect of dispersing and agitating the fine particles to improve the contact efficiency, but there is no example in which the particles were classified and washed in an aqueous fluidized bed while stirring to prevent aggregation. Moreover, there is no example of performing it in a sedimentation tank. In the static sedimentation layer, high-concentration mud matter containing organic matter, fine clay particles, sand particles, etc. tends to be gelled, and it is difficult to form a fluidized bed, and it is apparently difficult to separate by a cyclone. there were. Regarding the cyclone shape, conventional cyclones usually consisted of a swirl blowing part, a body, a conical bottom extraction part, and an upstream extraction part. However, the transition between the body and the cone is discontinuous and the flow is unnatural, and it is not easy to make a regular truncated cone at the bottom of the cone, and the cone is often deformed. Was causing the decrease.
Focusing on these points, the present invention has found that a general-purpose different diameter joint for piping can be used instead of the conical portion. Since this joint is a standard mass-produced product, its shape is stable, and when it is used, the vertical seam disappears due to machining, and the horizontal seam is not provided on the slope part, so the performance of the manufactured cyclone is stable. I became a doctor who made a design. It is also possible to reduce the diameter in two stages and provide an inflection point of the curve in the middle to reduce the flow of the heavy particles in the backward flow direction along the slope due to the centrifugal force to improve the efficiency. The valve or damper connected to the bottom of the cyclone is used to adjust the amount of removal, but if it is squeezed, it tends to become blocked. Conventionally, in order to prevent blockage, it has been squeezed from the periphery so as to leave the central opening. However, it is not easy to control a wide range of flow rates. In the present invention, a small amount of fluid is allowed to flow by providing a hole, a slit, or a notch in the valve body portion or the damper plate portion of the dead space that is formed when squeezed, and therefore, clogging is prevented by causing particle flow. . The representative dimensions of the hole diameter, slits, and notches are appropriately about 0.5-10 mm, and a plurality of them may be provided.

【0007】[0007]

【分離操作】温水を汚泥等有害物を含む土の洗浄に使用
すると高沸点の油分の分離が容易になる。従来少量の油
分を含むが、水きりが悪く、自燃しない油泥は処理が特
に困難で、大量の燃料を使用して焼却処理する以外、方
法がなかった。従来のこの種の装置は高価なものであつ
た。また自燃しない微量の油分を含む泥、汚泥、ヘドロ
の処理は燃料消費が多く経済的観点からみて事実上処理
が難しいものであった。これは時にゲル状泥塊の外観を
呈し、煮沸による以外、抽出ができないと思われていた
ためであろう。ところが本発明ではポンプ、液体サイク
ロン、振動機等により泥、土砂を解砕しつつ剪断力をか
け、チキソトロピー有効時間内で同時にまたは相次いで
温水(熱水を含む)中で処理することにより容易に処理
できる。大がかりの撹拌槽は必要でない。温水は廃棄物
(分離した廃油、廃プラスチック、紙等の可燃物であっ
てもよい)の燃焼等による安い熱源を利用できる。この
熱源利用によって、発生した排水の処理に活性炭使用が
可能になる。、その廃活性炭は同じ低温熱源の200−
600℃の熱風で低温再生を行い工程に再利用できる利
点を生ずる。このような方法でゴミと汚泥の混じった湖
沼、港湾の底質汚泥を浄化することができ、港湾の浚渫
土砂を浄化しつつ埋立てまたはゴミ埋立て地造成に使用
することもできる。、一方で分離した砂を建材、骨材原
料として利用することができる。砂を建材に使用するこ
とによって泥土の容積を減らすことができる。分離成分
を再び配合してたとえば生ゴミの堆肥化物等を混入して
園芸、農業用、埋立て用としてもよい。海、港湾の底質
汚泥は塩水であるが、遠心ポンプ、液体サイクロン等ま
たはそれに次ぐ流動層にかけると劣化した安定化泥水同
様ゲル構造が少なくとも一時的に破壊され、サイクロン
分離または流動層分級、または洗浄できることがわかっ
た。興昧あることにこのようにして部分的に微粒子を分
離しあるいは洗浄したものはそれぞれが、静置沈降ある
いは機械沈降、流動化分級が可能になる。この時石灰を
加えまたは加えることなく炭酸ガス吹き込むことができ
る。これはゲルの性質に起因する沈降または分離障害の
解消に役立つ。分離微粒部に同様の操作を加えて濾過脱
水し、さらに硬化させることもできる。硬化時に石膏や
セメント系硬化剤を加えて硬化し、または粗粒化するこ
とができる。雑物の予備分離は海水中に設置した装置で
可能であり通常分離困難で分離費がかかる比重1に近い
プラスチック、木片の浮上分離を容易にする。粒子懸濁
流、あるいは流動層中ではさらに容易になる。バケット
浚渫して水槽(または海水の槽)に入れ、泥自身または
砂によって形成された流動層あるいは振動流動層とすれ
ば、比較的軽い雑物を浮上する。この際流動層内または
その上部に篩分機を設置し、篩分機を通過したものによ
って重液としての流動層を形成するのが好ましい。篩分
機上は流動化水流によって微粒子を同伴し、これと雑物
を格子等の分離機で分離する。強水流を併用撹拌しても
よい。しかし機械的撹拌装置による泥と雑物の機械的分
離が効果的である。分離砂はさらに海水とともに液体サ
イクロン、流動分級にかけ泥分をさらに分離し、最後に
淡水で向流洗浄して、セメント骨材にできる。
[Separation operation] If hot water is used to wash soil containing harmful substances such as sludge, the separation of high boiling point oil components will be facilitated. Conventionally, a small amount of oil was contained, but the water drainage was poor and the oil mud that did not self-combust was particularly difficult to treat, and there was no method other than incineration using a large amount of fuel. Conventional devices of this type are expensive. Moreover, the treatment of mud, sludge, and sludge containing a small amount of oil that does not burn by itself consumes a lot of fuel and is practically difficult from an economical point of view. This is probably due to the appearance of a gel-like mud mass that could not be extracted except by boiling. However, in the present invention, it is possible to easily apply a shearing force while crushing mud and earth and sand by a pump, a hydrocyclone, a vibrator, etc., and treating them simultaneously in hot water (including hot water) within the thixotropic effective time. It can be processed. No large stirred tank is required. The hot water can use a cheap heat source by burning waste (which may be separated waste oil, waste plastic, combustible materials such as paper). By using this heat source, activated carbon can be used to treat the generated wastewater. , The waste activated carbon is the same low temperature heat source 200-
There is an advantage that it can be reused in the process by performing low temperature regeneration with hot air of 600 ° C. By such a method, it is possible to purify the sediment sludge of a harbor and a port in which garbage and sludge are mixed, and it is also possible to use it for landfilling or construction of a landfill site while purifying the dredged material of the port. On the other hand, the separated sand can be used as a building material or a raw material for aggregate. The volume of mud can be reduced by using sand as a building material. The separated components may be blended again and mixed with, for example, raw garbage compost or the like for horticulture, agriculture, or landfill. Sediment sludge from sea and harbor is salt water, but when applied to a centrifugal pump, hydrocyclone, etc. or a fluidized bed that follows it, the gel structure is at least temporarily destroyed like stabilized mud that deteriorated, and cyclone separation or fluidized bed classification, Or found to be washable. What is interesting is that each of the particles thus partially separated or washed can be subjected to static sedimentation or mechanical sedimentation, and fluidized classification. At this time, carbon dioxide gas can be blown in with or without the addition of lime. This helps eliminate settling or separation obstacles due to the nature of the gel. It is also possible to apply the same operation to the separated fine particle portion, filter and dehydrate, and further cure. At the time of hardening, gypsum or cement-based hardening agent can be added to harden or coarsen. Preliminary separation of foreign matters is possible with a device installed in seawater, and it is usually difficult to separate and costly separates. It becomes even easier in a particle suspension flow or in a fluidized bed. If a bucket is dredged and put in a water tank (or seawater tank) to form a fluidized bed or a vibrating fluidized bed formed by the mud itself or sand, relatively light foreign matters are floated. At this time, it is preferable to install a sieving machine inside or above the fluidized bed and to form a fluidized bed as heavy liquid by passing through the sieving machine. On the sieving machine, fine particles are entrained by the fluidized water flow, and this is separated from foreign matters by a separator such as a grid. You may stir together strong water flow. However, it is effective to mechanically separate mud and foreign matters with a mechanical stirrer. The separated sand can be further subjected to hydrocyclone with seawater, subjected to fluid classification to further separate mud, and finally subjected to countercurrent washing with fresh water to form cement aggregate.

【0008】[0008]

【水の浄化とリサイクル】分離に使用する水、海水、淡
水及び土建用泥水再生リサイクルは粒子に関しては、比
較的簡単な分離後にリサイクル使用することができ、高
能率でしかも環境汚染を防止できる。水質に関しては、
生物化学的分解と物理化学的分離を併用するのが有利で
前者には発明者の「流体処理法と装置特願平4−157
258」が適している。後者には流動活性炭法、微生物
活性炭処理とその廃活性炭低温再生プロセスの利用が微
粒子、溶解塩類や粘着物による閉塞その他の障害を防止
でき、低コストで適している。この方法として発明者の
開発による「活性炭の流動再生方法(特許103141
8号)」、「活性炭の低温再生法(特願62−1279
48)」、および「炭素質吸着体の再生方法(特願62
−149854)」が特に適している。しかし他の低
温、高温処理法、微生物再生を利用してもよい。ただ
し、海水浄化の場合には活性炭の高温再生は不適当であ
る。泥分からさらに有機質、無機質微粒子を分離すると
比較的透水性、通気性の改良された土が得られ、脱水操
作の能率をあげ、その土は農業用、園芸用に利用でき
る。脱水法として、特願平4−75115がコンパクト
の故に適している。温水を処理に使用することにより、
有害物を抽出分離無害化が容易になり、滅菌温度以上で
は、殺菌、脱臭し、操作自体を清潔化できる。この所要
熱は40ー45℃以上の廃熱または温排水でまかなうこ
とができ、ゴミの焼却熱、発電所、工場の温排水が利用
できる。温水中ではプラスチック強度が小になるので、
分離自体が容易になり、分離後の処理にも異臭の発生が
少なく便利である。脱水過程の能率化は処理、利用のた
めに重要で従来阻害要因であったが、土砂や汚泥の脱水
困難の原因の一つは有機または無機の微粒子が脱水操作
の際に粗粒子間隙を閉塞して水の透過を妨害するためで
ある。液体サイクロン特に径100mm以下の小径サイ
クロンまたは低速撹拌流動層、多段流動層分級装置は微
粒子分級曲線が鋭く分離性能が比較的優れているので以
後の脱水操作を容易にする。分離されたサイクロン下流
はシルト成分を含むにかかわらず、野積みだけで砂同様
に脱水できることがわかった。振動機付の水分離装置は
含水粒子の脱水を促進することができ、微粒子を分離し
透水性を上げた泥または土砂は脱水性が改善される。分
離した微粒子の水懸濁液も稀薄液になっているのでケー
キ形成は少なく濾過脱水は容易になった。これは微粒子
濾過に粗粒子である濾過助剤を使用する在来の濾過脱水
法とは異なっている。これは微粒子を重液として再利用
し、または濾過または分離操作で微粒子漏れを許容し装
置処理能力を上げる環境対応技術であり従来の化学機械
におけるような清澄濾過にこだわらずに解決した点に特
徴がある。土砂の大型沈降槽や沈砂池は土砂あるいはシ
ルトが底に沈殿し埋まって分離条件が時間経過に従って
異なってくる問題の他に過大な滞留時間は微粒子沈降量
を増加し粗粒子との分離を不良にして結果的に沈降土砂
の脱水性を悪くする。ベントナイト泥水に沈降槽を使用
する時、当初は土砂がなく、ベントナイト泥水の滞留時
間がながいために砂と共にベントナイト、シルトが沈殿
する。このような問題を防止するには、当初は沈降槽の
水位を低くし沈降土砂で埋まるにつれ水位をあげて水の
滞留時間を過大にしないのがよい。水位の変動に従って
浮子が水取り出し手段、即ち、排水口、吸入口、水中ポ
ンプを上へと引き揚げることにより達成される。沈降速
度が遅い小粒径粒子の分離を促進し、微粒子と分離する
には、平行傾斜板沈降装置を同様に浮子によって上下す
ることにより容易に達成される。これは動力を殆ど要し
ないので、液体サイクロンを重畳して使うより動力消費
が少ない利点がある。
[Purification and Recycling of Water] Water, seawater, fresh water, and mud reclaiming for construction used for separation can be recycled after a relatively simple separation, and with high efficiency, environmental pollution can be prevented. Regarding water quality,
It is advantageous to use both biochemical decomposition and physicochemical separation, and the former is the inventor's "fluid treatment method and apparatus Japanese Patent Application No. 4-157".
258 "is suitable. For the latter, the use of fluidized activated carbon method, microbial activated carbon treatment and its spent activated carbon low temperature regeneration process can prevent clogging and other obstacles due to fine particles, dissolved salts and sticky substances, and is suitable at low cost. As a method for this, a flow regeneration method of activated carbon developed by the inventor (Patent 103141
No. 8) "," Low temperature regeneration method of activated carbon (Japanese Patent Application No. 62-1279).
48) "and" a method for regenerating a carbonaceous adsorbent (Japanese Patent Application No. 62
"149854)" is particularly suitable. However, other low and high temperature treatment methods, microbial regeneration may be utilized. However, high temperature regeneration of activated carbon is not suitable for seawater purification. By further separating organic and inorganic fine particles from the mud, a soil having relatively improved water permeability and air permeability can be obtained, which improves the efficiency of dehydration operation, and the soil can be used for agriculture and horticulture. As a dehydration method, Japanese Patent Application No. 4-75115 is suitable because of its compact size. By using warm water for treatment,
It is easy to extract and separate harmful substances to render them harmless, and to sterilize and deodorize above the sterilization temperature to clean the operation itself. This required heat can be covered by waste heat of 40-45 ° C. or higher or hot waste water, and heat of waste incineration, hot waste water of power plants and factories can be used. In warm water, the plastic strength will be small, so
Separation itself becomes easy, and it is convenient for the treatment after separation with less offensive odor. The efficiency of the dehydration process has been an important factor for treatment and utilization and has been a hindrance in the past, but one of the causes of difficulty in dehydration of soil and sludge is that organic or inorganic fine particles block the coarse particle gap during the dehydration operation. This is to prevent the permeation of water. A liquid cyclone, especially a small-diameter cyclone having a diameter of 100 mm or less, a low-speed agitation fluidized bed, or a multi-stage fluidized bed classifier has a sharp fine particle classification curve and relatively excellent separation performance, and therefore facilitates subsequent dehydration operation. It was found that the separated cyclone downstream can be dehydrated just like sand, even if it contains silt components, just like open sand. A water separator equipped with a vibrator can accelerate the dehydration of water-containing particles, and the dewaterability of mud or earth and sand that have been separated by increasing the water permeability can be improved. Since the separated water suspension of the fine particles was also a dilute liquid, cake formation was small and filtration and dehydration became easy. This is different from conventional filtration and dehydration methods that use coarse particle filter aids for fine particle filtration. This is an environment-friendly technology that reuses fine particles as heavy liquid, or allows fine particle leakage during filtration or separation operations to increase the processing capacity of the equipment, and is characterized in that it has been solved without focusing on clarification filtration as in conventional chemical machinery. There is. Large sedimentation tanks and sedimentation basins have a problem that sediment or silt settles at the bottom and is buried, and the separation conditions vary with the passage of time.Excessive residence time increases the amount of fine particles settling out and causes poor separation from coarse particles. As a result, the dewaterability of the sediment is deteriorated. When a sedimentation tank is used for bentonite mud, initially there is no sediment, and bentonite and silt precipitate together with sand due to the long residence time of bentonite mud. In order to prevent such a problem, it is better to lower the water level in the sedimentation tank at the beginning and raise the water level as it is filled with sedimentation so that the residence time of water is not excessive. The float is achieved by raising the water withdrawal means, i.e. drain, inlet, submersible pump, as the water level changes. The separation of small particles having a slow sedimentation speed and the separation of the particles can be easily achieved by moving the parallel inclined plate sedimentation device up and down by a float as well. Since it requires almost no power, it has an advantage of less power consumption than using a liquid cyclone in superposition.

【0009】[0009]

【実施例1】図1は現場構成杭の一種であるアースドリ
ル工法に使用する安定化泥水の処理に適した装置の例で
ある。掘削穴からの泥水は脱水篩2の分配器1に入り、
ストレーナー篩を通り、雑物を分離し、沈降槽3に落下
し、ポンプ4により液体サイクロン5へ送られる。pH
調節用炭酸ガスはポンプ付近またはサイクロン前の送入
口102から吹き込む。サイクロン下流は弁60で流出
量または比重調節し、脱水篩面6で砂分を分離し、残り
の砂、シルトと共に再び沈降槽に落ち砂を沈降しつつ邪
魔板7の下を通って水面に浮子で浮いている平行傾斜板
沈降装置を通過し砂を分離して、粗い濾過板を通って水
面からの深さを地吊り具11または鎖12によって調節
できるポンプ13によってサイクロン14に送られる。
下流15は循環する。上流16は使用可能なリサイクル
重液として貯蔵槽に送られる。サイクロン5の上流は質
によって貯蔵槽または循環精製される。17は振動機で
槽底の上砂の流動性の改善に利用する。18は沈降土砂
と水の界面である。19は槽底での土砂拡散を防止し、
しかも水を通すギャラリー、20はポンプ13の台、2
1は操作レバー22によって開閉できるダンパーであ
る。なお、この装置は専ら砂分離に使用し、シルト分
離、砂精製脱水を別の装置でおこなってもよい。この装
置により比重1.2−1.4の土砂含有ベントナイト重
液から土砂を分離して比重1.06−1.1に再生し
た。従来ゲル化のため比重が規格を超え使用不能とな
り、汚泥として廃棄されていたものも同様に再生使用す
ることができた。分離土砂は沈降槽に沈降したものも脱
水性が改善され、砂質土は脱水篩を使用せずに山積みし
て容易に脱水できた。シルト分は粒度が細かいので掘削
地盤の性質により流動性があり、堆積による自然脱水に
は時間がかかるが、粗い濾材10を充填した堰をもつピ
ットにいれ、日ないし週の単位で、砂質土同様に水切り
できた。能率を上げるためには、29に蓄積したシルト
はポンプ13または浚渫用バケット等で図2の脱水槽3
2に送り、静置して、分離水相を粗濾材10で水きり3
5から排出し、微粒子懸濁液を分離し、ついで真空濾過
面34から吸引系38によって吸引除去する。脱水終了
後扉36を開け傾斜装置37によって脱水シルトを排出
する。沈降砂層18(図1)からポンプ、水位差、バケ
ット等により砂脱水槽31に送られた砂は、同様に水相
を濾材10、34により分離し、水相はポンプ4で槽3
に戻し、回収する。シルト分、増粘剤含量の多い砂は吸
引濾過脱水してもよい。シルト、粘土質、ベントナイト
の脱水は砂量が以上の操作によって減じているので一般
にはむしろ濾過性は改善されているが、粒子の保水性、
乾燥時、脱水時の界面皮膜の形成によるために薄いケー
キを作るように脱水強制脱水するのが適当である。逆ブ
ロー、既に述べたように反方向からの吸引を併用したも
のが効率がよい。これには発明者の特願平4−7511
5の装置が適し、図2の33は速やかに開閉できる濾過
板34、開閉ヒンジ42、振動機17または槽の傾斜機
能37から鋼性されている。スラリーあるいは処理すべ
き安定化重液は蓋45を開けて槽にいれ、真空吸引装置
38により、常法で対向する2面の1面から脱水する。
液はケーキ形成まで追加され、次に2面から吸引して残
留水を除く、槽内の死角に濾過面を配置すると脱水率は
改善される。41は濾過面と槽側面蓋36の開閉機構で
ある。これらの脱水設備と工程の組合せにより、砂は堆
積するだけで容易に水分3−15%になり、シルト、ベ
ントナイト等も処理量と条件により従来に比し簡単な設
備で25−60%まで容易に脱水大規模、高価な圧濾機
や遠心分離機を使用せずに掘削用泥水の再生、土砂の処
理が可能になった。汚染土、ヘドロはこの装置に循環水
浄化装置を付加することにより処理できる。
[Embodiment 1] FIG. 1 shows an example of an apparatus suitable for the treatment of stabilized mud used in an earth drilling method, which is a type of construction pile. The muddy water from the drill hole enters the distributor 1 of the dewatering sieve 2,
The foreign matters are separated through the strainer sieve, fall into the settling tank 3, and are sent to the liquid cyclone 5 by the pump 4. pH
The carbon dioxide gas for adjustment is blown in near the pump or from the inlet 102 in front of the cyclone. In the downstream of the cyclone, the outflow amount or specific gravity is adjusted by the valve 60, and the dewatering sieve surface 6 separates the sand content. The remaining sand and silt fall into the settling tank again, and the sand is settled while passing under the baffle plate 7 to the water surface. The sand is separated by passing through a parallel slanted plate settler floating on a float and passed through a coarse filter plate to a cyclone 14 by a pump 13 whose depth from the water surface can be adjusted by ground slings 11 or chains 12.
The downstream 15 circulates. The upstream 16 is sent to the storage tank as usable recycled heavy liquid. Depending on the quality, the upstream of the cyclone 5 is a storage tank or circulation refinement. Reference numeral 17 is a vibrator used to improve the fluidity of the sand on the bottom of the tank. 18 is the interface between the sediment and the water. 19 prevents the spread of sediment at the bottom of the tank,
Moreover, a gallery that allows water to pass through, 20 is a base for the pump 13, 2
Reference numeral 1 denotes a damper that can be opened and closed by the operation lever 22. Note that this device may be used exclusively for sand separation, and silt separation and sand purification / dehydration may be performed by another device. By this device, sediment was separated from the bentonite heavy liquid containing sediment having a specific gravity of 1.2-1.4 and regenerated to a specific gravity of 1.06-1.1. Due to gelation, the specific gravity exceeded the standard and became unusable, and what was discarded as sludge could also be recycled. The separated sediment settled in the sedimentation tank had improved dewatering property, and the sandy soil could be piled up and dehydrated easily without using a dewatering sieve. Since the silt content has a fine grain size, it has fluidity due to the nature of the excavated ground, and although natural dewatering by sedimentation takes time, it is put in a pit with a weir filled with coarse filter medium 10 and the sand quality is measured on a daily or weekly basis. It was able to drain like soil. In order to improve the efficiency, the silt accumulated in 29 is stored in the pump 13 or a dredging bucket, etc.
2), let stand still, and separate water phase with coarse filter medium 10 and drain 3
5, the fine particle suspension is separated, and then suction-removed from the vacuum filtration surface 34 by the suction system 38. After completion of the dehydration, the door 36 is opened and the dehydrating silt is discharged by the tilting device 37. The sand sent from the settling sand layer 18 (FIG. 1) to the sand dewatering tank 31 by a pump, a water level difference, a bucket, etc. similarly separates the water phase by the filter media 10 and 34, and the water phase is pumped by the pump 4 to the tank 3.
Return to and collect. Sand having a high silt content and thickening agent content may be suction filtered and dehydrated. Dehydration of silt, clay, and bentonite generally improves the filterability because the amount of sand is reduced by the above operation, but the water retention of particles,
It is appropriate to perform dehydration and forced dehydration so as to make a thin cake due to the formation of an interfacial film during drying and dehydration. It is efficient to use the reverse blow and the suction in the opposite direction together as described above. The Japanese Patent Application No. 4-7511
5 is suitable, and 33 in FIG. 2 is made of steel from a filter plate 34 that can be quickly opened and closed, an opening / closing hinge 42, a vibrator 17 or a tank tilting function 37. The slurry or the stabilized heavy liquid to be treated is placed in a tank with the lid 45 opened, and dehydrated from one of the two opposing surfaces by a vacuum suction device 38 in a conventional manner.
The liquor is added until cake formation, then suction is removed from two sides to remove residual water, and the dehydration rate is improved by arranging the filtration side in the dead zone in the tank. Reference numeral 41 denotes an opening / closing mechanism for the filtration surface and the tank side cover 36. By combining these dewatering facilities and processes, sand can easily reach a water content of 3-15%, and silt, bentonite, etc. can be easily up to 25-60% depending on the treatment amount and conditions with simple equipment. It is now possible to recycle mud water for excavation and treat soil without using a large-scale, expensive filter or centrifuge. Contaminated soil and sludge can be treated by adding a circulating water purifier to this equipment.

【0010】[0010]

【実施例2】、SGP管(40A)で遅い撹拌速度の撹
拌目皿型流動層を構成し、回分流動層により実施例1同
様の操作を行った。同様温水では効率がよく、常温水で
は効率は比較的劣るが、微粒子、有機質の分離でき、泥
分の分離もよく何れの場合も泥分5%以下の砂が得られ
た。連続型撹拌多段流動層でも同様の成績が得られた。 (対照例)撹拌しない流動層に凝結塊を入れて操作した
が流動層は形成されず従って洗浄および分級効果はなか
った。砂分が少ないヘドロで低流速、撹拌流動層では撹
拌停止後、流動層の凍結が認められ、同様、洗浄、分級
効果は停止した。撹拌機を使用せず1夜放置後水流を送
ったが、凝結塊、凝結粒を生じ、多段流動層では、局部
強撹拌機能の無いものは下段の砂から凝結粒が砂に混じ
て排出された。
[Example 2] An SGP tube (40A) was used to form a stir plate type fluidized bed with a slow stirring speed, and the same operation as in Example 1 was performed using a batch fluidized bed. Similarly, the efficiency is good with warm water and relatively poor with normal temperature water, but fine particles and organic matter can be separated, and the separation of mud is also good, and in all cases, sand with a mud content of 5% or less was obtained. Similar results were obtained with a continuous stirred multi-stage fluidized bed. (Comparative Example) An operation was carried out by putting agglomerate into a fluidized bed which was not stirred, but no fluidized bed was formed, and therefore, washing and classification effects were not obtained. Freezing of the fluidized bed was observed after agitation was stopped in the agitated fluidized bed with sludge containing a small amount of sand, and similarly, the washing and classification effects stopped. A water stream was sent after leaving it overnight without using a stirrer, but agglomerates and agglomerates were generated. In a multi-stage fluidized bed, the agglomerates were mixed with sand from the sand in the lower stage and discharged in the sand without local strong agitation function. It was

【0011】[0011]

【実施例3】図3は汚染土砂の浄化、ゲル化傾向のある
掘削用泥水、汚泥の処理で動力の節約、大量処理、土建
用砂の製造あるいは回収に適した装置である。スラリー
あるいは懸濁液は分配器1から供給され篩6で雑物、石
塊等を除去し、槽3、サイクロン5、制御弁60を経て
流動層分離装置51にはいる。流動層はサイクロンの上
流からの稀薄水、濾過水あるいは外部からの水を送入口
48から導入し、多孔板、スリット板等49によって分
配して形成される。土砂粒子は分配板の孔あるいはスリ
ットを水と向流的に接触し分別または浄化しつつ下段に
降下する。段はターボグリッド型、リンデ型のような打
ち抜き口でもよい。段としては単数または複数の逆円錐
底型でもよい。撹拌腕52は駆動機50により比較的遅
く回転し、強い局部撹拌機53は分散板の低位置にあ
り、沈下する凝結塊を解砕する。解砕機は普通供給口の
ある段だけで足りる。供給口を中間段に設けた時はその
段以下に付けるのが当然である。溢流口54、55は砂
あるいはシルトの粒度の異なるものが回収できる。シル
ト混入の少ない砂は取り出し56から公知方法で取り出
される。サイクロン5の上流は微粒子懸濁液で斜面沈降
板装置9でシルト分を分離し、出口25から取り出しリ
サイクル使用するか、微粒子分離の既述法か公知方法で
処理される。57は循環用の沈降装置あるいは濾過装置
である。 図4は撹拌装置部分の説明図である。掻
き取り突起61は撹拌腕52の形状により省略できる。
図5はごみ、雑物を含む土砂、汚泥、ヘドロ、道路側溝
汚泥等の処理に適した装置である。流動層あるいは微粒
子懸濁層中に浸漬した振動篩69で雑物、石塊、ごみを
篩別して掻きだし装置67で分離し、土砂を流動層分
別、洗浄する。48流動化用水の入り口である。炭酸ガ
ス噴出孔102を設けた撹拌腕52で流動層を撹拌し凝
結を防止する。下段への送りは分配板49の低い部分に
設けた降下管63から、部分的開口64を持つ回転板弁
64による。66は流動化流体の短絡を防ぐ邪魔板、7
0は篩上の堆積物を解砕する撹拌腕である。図は上部が
懸濁層であるが、水を69から送り、分配器68で流動
層を形成できる。この25からの流出水は別に処理でき
る。13はシルト等の送りポンプである。
[Embodiment 3] FIG. 3 shows an apparatus suitable for purifying contaminated earth and sand, excavating mud having a tendency to gel, and saving sludge for power saving, large-scale treatment, and production or recovery of earth building sand. The slurry or suspension is supplied from the distributor 1 to remove foreign matters, lumps of stones, etc. with the sieve 6, and then enters the fluidized bed separator 51 through the tank 3, the cyclone 5, and the control valve 60. The fluidized bed is formed by introducing diluted water from the upstream of the cyclone, filtered water, or water from the outside through the inlet port 48 and distributing it by a perforated plate, a slit plate or the like 49. The sediment particles come into countercurrent contact with water through the holes or slits of the distribution plate and descend to the lower stage while separating or purifying. The steps may be punched holes such as turbo grid type and Linde type. The step may be of a single or multiple inverted conical bottom type. The stirrer arm 52 is rotated relatively slowly by the drive unit 50, and the strong local stirrer 53 is at the lower position of the dispersion plate and breaks down the settling agglomerates. The crusher usually needs only a stage with a supply port. When the supply port is provided in the intermediate stage, it is natural to attach it below that stage. The overflow ports 54 and 55 can collect sand or silt having different particle sizes. The sand containing less silt is taken out from the take-out 56 by a known method. Upstream of the cyclone 5 is a fine particle suspension for separating the silt component by the slope sedimentation plate device 9 and taking it out from the outlet 25 for recycling, or it is treated by the above-mentioned method for fine particle separation or a known method. 57 is a settling device or a filtering device for circulation. FIG. 4 is an explanatory view of the stirring device portion. The scraping protrusion 61 can be omitted depending on the shape of the stirring arm 52.
FIG. 5 shows an apparatus suitable for treating dirt, sediment containing dirt, sludge, sludge, road gutter sludge, and the like. The vibrating screen 69 immersed in the fluidized bed or the fine particle suspension bed is used to screen out foreign matters, stone blocks, and debris, and the scraping device 67 separates them. 48 It is an inlet for fluidizing water. The fluidized bed is agitated by the agitating arm 52 provided with the carbon dioxide gas ejection hole 102 to prevent condensation. Feeding to the lower stage is performed by a rotating pipe valve 64 having a partial opening 64 from a downcomer pipe 63 provided at a lower portion of the distribution plate 49. 66 is a baffle for preventing short circuit of the fluidizing fluid, 7
0 is a stirring arm for crushing the deposit on the sieve. In the figure, the upper part is a suspension layer, but water can be sent from 69 and a fluidized bed can be formed by a distributor 68. The effluent from this 25 can be treated separately. Reference numeral 13 is a feed pump for silt or the like.

【0010】[0010]

【実施例4】道路側溝下水道の沈積汚泥、50gを20
0mlビーカーにとり撹拌しつつ50mlの温水を加え
35−80℃で120rpmと通常の撹拌を行い、傾瀉
洗浄を3回繰り返し放冷した。臭気は消失し、水抽出を
したが抽出水は無色でしかもCOD20ppm以下であ
った。洗液は濁り、微粒子と有機質、臭気が移行してい
た。また油膜が認められた。洗液は濾紙による濾過で濁
り、油膜は除去され、活性炭処理または曝気により脱
臭、CODも浄化され、繰返し洗浄に使用できた。常温
の水で同様処理した。洗浄回数は汚損の程度によって温
水の場合の2−10倍の水量を要した。油分の抽出は難
かしかった。図5は雑物が混入した道路側溝、下水道の
沈積汚泥の処理に適した汚泥処理施設の例である。水中
での堆積土砂の解砕、篩分は2−3mm目以上では順調
であった。ある場合には粗粒子も微細でシルト、粘土に
近いものが多く、堆積だけによる脱水は困難で、図2の
45に相当する脱水装置が適していた。 (対照例)撹拌することなく5分間温水浸漬しても臭気
は消えなかった。バキュームカーから汚泥を出して普通
の格子分別器、篩分器上に載せても、ひも、針金、プラ
スチックフイルム、ボロ布等のため分別困難で分別には
手作業が必要であった。
[Embodiment 4] Sediment sludge of road gutter sewer, 20 g of 50 g
In a 0 ml beaker, 50 ml of warm water was added with stirring, normal stirring was performed at 35-80 ° C and 120 rpm, and decantation washing was repeated 3 times and allowed to cool. The odor disappeared and water extraction was performed, but the extracted water was colorless and had a COD of 20 ppm or less. The washing liquid was turbid, and fine particles, organic matter, and odor were transferred. In addition, an oil film was observed. The washing liquid became turbid by filtration with a filter paper, the oil film was removed, deodorization was performed by activated carbon treatment or aeration, and COD was also purified, and the washing liquid could be used for repeated washing. The same treatment was performed with water at room temperature. The number of washings required 2-10 times the amount of water depending on the degree of fouling compared with the case of warm water. Extraction of oil was difficult. FIG. 5 shows an example of a sludge treatment facility suitable for treating accumulated sludge in road gutters and sewers mixed with foreign matters. Crushing of sediment in water and sieving were successful at 2-3 mm or more. In some cases, coarse particles are also fine and often close to silt and clay, and it is difficult to dehydrate only by depositing, and a dehydrator corresponding to 45 in FIG. 2 was suitable. (Control Example) The odor did not disappear even when immersed in warm water for 5 minutes without stirring. Even if sludge was taken out from the vacuum car and placed on an ordinary lattice sorter or sieve, it was difficult to sort due to strings, wires, plastic film, rags, etc., and manual work was required for sorting.

【0012】[0012]

【実施例5】図6は異型棒71と駆動機構41、腕72
からなる揺動格子である。水噴霧73併用して土砂を解
砕できる。図7は水中、懸濁層中、あるいは流動層中に
置かれた揺動格子71と振動篩69を使用する処理装置
である。
[Fifth Embodiment] FIG. 6 shows a modified rod 71, a drive mechanism 41, and an arm 72.
Is a rocking lattice. Sediment can be crushed by using water spray 73 together. FIG. 7 shows a processing apparatus using an oscillating lattice 71 and an oscillating sieve 69 placed in water, in a suspension bed, or in a fluidized bed.

【0013】[0013]

【実施例6】図8は大幅に変動するスラリー濃度による
再生安定液の品質変動、粉体の固結による閉塞を防止で
き安定な制御に適したゲート弁体75に設けた閉塞防止
バイパス孔77の図である。図10は同様スラリー等制
御に適したダンパーあるいは弁の弁体に設けた閉塞防止
バイパス孔の図である。従来のダンパーは流れの死角に
粉粒が堆積して凝集し、成長、崩壊してその大塊が細い
流路を閉塞する。バイパスは堆積部を目皿のように加工
して流動させることによって障害を防止するものと考え
られる。孔はスリット、ギャラリー状打ち抜き加工等で
もよい。図11はA−A断面である。主流路は中央であ
る。図12はコック等に使用できる弁体を流れ方向から
見たバイパスと主流路の形状のずである。図13はその
側面断面に相当するもので堆積を防止している状況を示
す。ボール弁でも同様出ある。土建用サイクロンでは泥
水中の砂含量が工程の進行に伴い0.4−40%程度野
範囲で変動することが多い。この対応は従来は困難であ
った。本発明による弁により規模による弁交換は少なく
なり。手動または自動調節は容易になり、工事の質が改
善される。なお本発明によるサイクロンでは弁の主流口
はサイクロンの中心軸に一致しなくてよいことがわか
り、このような制御弁の発明に至った。勿論多少の性能
低下を許せば他の既存のサイクロンにも使用できる。
[Embodiment 6] FIG. 8 is a blockage prevention bypass hole 77 provided in the gate valve body 75, which is suitable for stable control because it can prevent fluctuations in the quality of the regenerating stabilizing solution due to a drastically changing slurry concentration and blockages due to the solidification of powder. FIG. FIG. 10 is a view of a blockage prevention bypass hole formed in a valve body of a damper or a valve suitable for controlling slurry and the like. In the conventional damper, powder particles are accumulated at the blind spots of the flow and aggregate, grow and collapse, and the large block blocks the narrow flow path. It is considered that the bypass prevents obstacles by processing the deposition part like a perforated plate and making it flow. The holes may be slits, gallery-like punching or the like. FIG. 11 is an AA cross section. The main flow path is in the center. FIG. 12 shows the shape of the bypass and the main flow path when the valve element that can be used in the cock or the like is viewed from the flow direction. FIG. 13 corresponds to the side cross section thereof and shows a situation in which deposition is prevented. The same goes for ball valves. In earth building cyclones, the sand content in mud water often fluctuates in the range of 0.4-40% as the process progresses. This has been difficult in the past. The valve according to the invention reduces valve replacement by scale. Manual or automatic adjustment is facilitated and construction quality is improved. In the cyclone according to the present invention, it was found that the main outlet of the valve does not have to coincide with the central axis of the cyclone, and the invention of such a control valve was achieved. Of course, it can also be used for other existing cyclones if it allows some performance degradation.

【0014】[0014]

【実施例7】土砂等を粒度別に2−3部分以上に分ける
とベントナイト安定液、粘土懸濁液のような微粒子懸濁
液の脱水が必要である。しかし処理すべき固形分の絶対
量がへっているので、多少の漏れを許し必要ならば沈降
槽等を併用することによって能率はよくなる。図14は
対向する濾過面を2段階に使用して脱水率を上げる脱水
機である。スラリーは入り口1から濾室に入り吸引系3
8から下の第一濾過面を介して液を吸引しケーキを形成
する。振動を与えることにより真空濾過でも通常の加圧
濾過同様の脱水率になる。濾過速度が低下したら上面第
二濾過面から吸引して終了し、扉36を開き振動を与え
つつ逆ブローしケーキを排出する。この際傾斜は排出側
につけると円滑である。濾過中は濾過面は水平の方が脱
水率はよいので濾過時と排出時の傾斜を変えてもよい。
ケーキ水分は容易荷40−45%が得られた。
[Example 7] If soil or the like is divided into 2-3 parts or more according to particle size, it is necessary to dehydrate a fine particle suspension such as a bentonite stabilizing solution or a clay suspension. However, since the absolute amount of solids to be treated is low, the efficiency can be improved by allowing some leakage and using a settling tank in combination if necessary. FIG. 14 shows a dehydrator which increases the dehydration rate by using two opposing filtration surfaces. The slurry enters the filter chamber through the inlet 1 and the suction system 3
Liquid is aspirated through the first filtration surface below 8 to form a cake. By applying vibration, the dehydration rate can be the same as in ordinary pressure filtration even in vacuum filtration. When the filtration speed is reduced, suction is performed from the upper second filtration surface to finish, and the door 36 is opened and the cake is discharged by reverse blow while vibrating. At this time, the slope is smooth when it is attached to the discharge side. Since the dehydration rate is better when the filtration surface is horizontal during filtration, the inclination during filtration may be different from that during discharge.
A cake load of 40-45% was easily obtained.

【0015】[0015]

【実施例8】図15は濾過または脱水に使用できる圧縮
成型−落圧時膨張の濾材とその応用図である。単位線あ
るいは面10は流体の流れと平行であり、圧縮方向は流
れと交差方向になっていて閉塞粒子の脱離を容易にす
る。80は濾材の整列を容易にする仕切板である。振動
機は濾過、接触および脱離を補助する。水スラリーは分
配器1の上から供給され分配板49を通り濾過層10で
濾過され、スペーサー81によって空間を保持されてい
る薄い吸引室82を通り出口35から真空系にはいる。
濾材の目開きはシリンダー、ねじ等の制御操作機器によ
り調節でき、微粒子を通過させることが工業的に可能で
ある。図16は図15の平面図である。この場合平板型
を示すが、槽状、塔状、角柱、円筒等であってもよい。
圧縮方向は流体流れと同一であってもよく、これらの選
択は試験により容易に決めることができる。加圧はバ
ネ、シリンダー、ネジ、ラック等を組み合わせて自動ま
たは手動で操作できる。 濾材は弾性ある線状、小片
状、短冊状、板状、網や布状の種々の材料を使用でき、
弾性材料が含まれていれば、非弾性の紙片、繊維製品、
農林産物、木の葉、藁のような植物質等が含まれていて
よい。棒状に細く裁断された古タイヤは弾性材料として
も使用できる。スリットヤーン、スリットされたプラス
チックシート、スリットされたポリスチレントレー等は
廃棄物であってもよい。使い捨て濾材あるいは微生物処
理坦体に使用するときには、加圧装置は押出し機能も持
たせることができる。このようにして食品、家庭電器包
装に使用された発泡ポリスチレンは処分、再利用が経済
的に難しいものであったが、スリッターにかけて小棒
状、片状にして使い捨て材料になる。
[Embodiment 8] FIG. 15 is a diagram showing a filter material which can be used for filtration or dehydration and which is expandable at the time of pressure drop and compression molding. The unit line or plane 10 is parallel to the fluid flow and the compression direction is transverse to the flow to facilitate the detachment of the occluded particles. Reference numeral 80 is a partition plate that facilitates the alignment of the filter media. The vibrator assists filtration, contact and desorption. The water slurry is supplied from above the distributor 1, passes through the distribution plate 49, is filtered by the filter layer 10, passes through the thin suction chamber 82 whose space is held by the spacer 81, and enters the vacuum system from the outlet 35.
The opening of the filter medium can be adjusted by a control operation device such as a cylinder or a screw, and it is industrially possible to pass the fine particles. FIG. 16 is a plan view of FIG. In this case, a flat plate type is shown, but it may be a tank shape, a tower shape, a prism, a cylinder or the like.
The direction of compression may be the same as the fluid flow and these choices can be easily determined by testing. Pressurization can be automatically or manually operated by combining springs, cylinders, screws, racks and the like. As the filter material, various elastic materials such as linear, small piece, strip, plate, net and cloth can be used.
Inelastic paper pieces, textiles, if elastic materials are included,
It may include agricultural and forest products, leaves, plant material such as straw, and the like. The old tire, which is cut into a rod shape, can also be used as an elastic material. Slit yarn, slit plastic sheets, slit polystyrene trays, etc. may be waste. When used as a disposable filter medium or a microbial-treated carrier, the pressure device can also have an extrusion function. Although it was economically difficult to dispose and recycle the expanded polystyrene used for packaging foods and household electric appliances in this manner, it is made into a small stick-shaped or piece-shaped disposable material by slitting to become a disposable material.

【0016】[0016]

【実施例9】図17は液体サイクロンであって、量産さ
れている配管継手を排出部絞り85に使用したものであ
る。比較的細い、例えば内径100−125mm程度以
下のものが粒径分離能力、動力消費の点から適してい
る。ところが30−100m/時以上の処理ではサイ
クロン個数が増加し、高価になる難点があったが、配管
継手の使用により簡略化され、実用が容易になった。勿
論サイクロン導入部絞りに使用できる。図18は下部絞
りに継手を2段に使用した例である。1段で同径にさげ
る場合に比べ、絞り傾斜が緩やかになり、しかも粒子に
かかる遠心力の外側斜め上に向かう分力を生じない緩衝
部分を設けることになり分離効率は改善される。内径の
細いサイクロンは胴体を長くできることがわかった。こ
れは回転のエネルギー損失が少なく、処理能力が低下し
ないためである。従って胴体を延長して斜めにして配管
として機能させることができる。しかも弁60の排出孔
がサイクロン中心軸に一致する必要がなくなり、新しい
形の無閉塞弁使用が可能になった。継手は溶接継手が最
も適しているが、ネジ継手も使用でき、径違いソケット
継手がよいことがわかった。図17において、88から
泥水が挿入され交換可能の胴部で旋回運動をお越し、遠
心力で長い胴部を壁付近に押し寄せられて分離しつつ下
降し絞り部を経て弁60から排出される。微粒子を含む
水は出口91から出て集合管92にはいる。93は入り
口側分岐主管である。図19は土建用ベントナイト液処
理において沈降槽を直列に使用する時、サイクロン胴体
を1段前の隣の槽に残留シルトを返送する管として使用
する例である。
[Embodiment 9] FIG. 17 shows a liquid cyclone in which a mass produced pipe joint is used for the discharge portion throttle 85. A relatively thin one, for example, having an inner diameter of about 100 to 125 mm or less is suitable in terms of particle size separation ability and power consumption. However, the treatment of 30-100 m 3 / hour or more has a drawback that the number of cyclones increases and the cost becomes high. However, the use of the pipe joint simplifies and makes practical use easy. Of course, it can be used to throttle the cyclone inlet. FIG. 18 shows an example in which a joint is used in two stages for the lower throttle. Compared with the case where the diameter is reduced in one step, the diaphragm inclination becomes gentle, and a buffering portion that does not generate a centrifugal force acting on the particles outward and obliquely upward is provided to improve the separation efficiency. It was found that a cyclone with a small inner diameter can lengthen the body. This is because the rotational energy loss is small and the processing capacity does not decrease. Therefore, the body can be extended and slanted to function as a pipe. Moreover, the discharge hole of the valve 60 does not have to be aligned with the central axis of the cyclone, and a new type of non-blocking valve can be used. Welded joints are the most suitable joints, but screw joints can also be used, and it has been found that reduced diameter socket joints are preferable. In FIG. 17, the muddy water is inserted from 88 and the swinging movement is performed in the replaceable body portion. The long body portion is pushed to the vicinity of the wall by centrifugal force and is separated while descending and discharged from the valve 60 through the throttle portion. The water containing fine particles exits from the outlet 91 and enters the collecting pipe 92. Reference numeral 93 is an inlet side branch main pipe. FIG. 19 shows an example in which the cyclone body is used as a pipe for returning the residual silt to the next tank one step before, when the sedimentation tanks are used in series in the bentonite liquid treatment for civil engineering.

【0017】[0017]

【実施例10】図20は砂に適した脱水装置である。バ
ケット、またはスラリーポンプにより液を装置に入れる
と砂は槽底に沈降し上に水層ができる。側壁に粗な濾過
面があり微細粒子を通過させつつ、水槽を排出する。微
粒子が砂層を透過すると補修されて砂自体の水きりを悪
化し、砂の品質も低下するからである。0.5−5時間
程度で脱水は終了し、扉36を開いて持ち上げ装置96
により槽を傾けて砂を排出する。底部に吸引濾過面を設
けて脱水を促進してもよい。振動機17はインバーター
100で回転数を変えて振動数を最適にし振動濾過を促
進する。排出時も振動を与えれば加速される。
Tenth Embodiment FIG. 20 shows a dehydrator suitable for sand. When the liquid is put into the device by a bucket or a slurry pump, the sand settles on the bottom of the tank and a water layer is formed on the sand. The side wall has a rough filtration surface and allows the fine particles to pass through, while discharging the water tank. This is because when the fine particles pass through the sand layer, they are repaired and the water drainage of the sand itself deteriorates, and the quality of the sand also deteriorates. The dehydration is completed in about 0.5-5 hours, and the door 36 is opened to lift the device 96.
Tilt the tank to discharge the sand. A suction filtration surface may be provided at the bottom to promote dehydration. The vibrator 17 optimizes the vibration frequency by changing the rotation speed with the inverter 100 and promotes vibration filtration. Even when ejected, it will be accelerated if vibration is applied.

【0018】[0018]

【実施例11】図21は脱水篩、脱水槽、沈降槽からな
る処理装置で、図22はその側面断面図である。掘削
時、従来脱水篩だけが使用されていたが、脱水できない
ものがあり簡単な解決法がなくコスト高になり問題であ
った。本発明ではこれに脱水槽を加えることにより、ど
のような土質掘削にも対応可能にしたもので、砂とシル
ト、粘土の脱水を別にする。脱水篩と脱水槽を立体配置
できない時にはシルト槽29のボンプを利用して汲み上
げることができる。サイクロン14は必要に応じて使用
する。
[Embodiment 11] FIG. 21 is a processing apparatus comprising a dehydrating sieve, a dehydrating tank and a sedimentation tank, and FIG. 22 is a side sectional view thereof. At the time of excavation, only the dehydrating sieve was used conventionally, but there were some that could not be dehydrated, and there was no simple solution, which resulted in high cost, which was a problem. In the present invention, by adding a dehydration tank to this, any soil excavation can be supported, and sand, silt, and clay are not dehydrated. When the dehydration screen and the dehydration tank cannot be arranged three-dimensionally, the pump of the silt tank 29 can be used for pumping. The cyclone 14 is used as needed.

【発明の効果】本発明は以上に説明したように土建の掘
削用重液、汚染土砂、汚泥等の処理において、粒度別に
分別すること、解砕、剪断力付加を水中で効率良く行う
こと、水分分離濾過を微粒子漏れを許容することにより
相分離した水を粗な濾過面で分離すること、液体サイク
ロンの小径のものの使用、脱水槽の使用、濾過面の吸引
時期をずらせること、等で濾過速度の促進、分別、脱水
または浄化を容易に効率的に行う利点を生じ、コストダ
ウンにより環境問題の改善に役立つ。
INDUSTRIAL APPLICABILITY As described above, in the present invention, in the processing of heavy liquid for excavation of soil, contaminated earth and sand, sludge, etc., classification by particle size, crushing, and addition of shearing force efficiently in water, By separating water that has been phase-separated by allowing fine particle leakage in water separation filtration with a coarse filtration surface, using a liquid cyclone with a small diameter, using a dehydration tank, shifting the suction time of the filtration surface, etc. It has the advantage of facilitating filtration rate, fractionation, dehydration or purification easily and efficiently, and helps reduce environmental problems by reducing costs.

【図面の簡単な説明】[Brief description of drawings]

【図1】泥水処理装置の断面説明図。FIG. 1 is an explanatory cross-sectional view of a muddy water treatment device.

【図2】図1の装置に適した脱水装置断面図。2 is a cross-sectional view of a dehydrator suitable for the device of FIG.

【図3】流動層装置の断面説明図。FIG. 3 is a cross-sectional explanatory view of a fluidized bed device.

【図4】撹拌機腕と分散板、強撹拌機部分見取り図。FIG. 4 is a sketch of a stirrer arm, a dispersion plate, and a strong stirrer.

【図5】水中振動篩と流動層分離装置の断面説明図。FIG. 5 is a cross-sectional explanatory view of a submersible vibrating screen and a fluidized bed separator.

【図6】土砂、ごみ処理の揺動格子解砕と振動篩の組合
せ立体説明図。
FIG. 6 is a three-dimensional explanatory view of a combination of rocking grid disintegration for soil and sand disposal and a vibrating screen.

【図7】図6の水中篩と流動層または撹拌槽、サイクロ
ン、脱水ピット説明図。
FIG. 7 is an explanatory view of the submerged sieve and fluidized bed or stirring tank, cyclone, and dehydration pit of FIG.

【図8】流路から切欠きと孔を持つ制御弁体を見た説明
図。
FIG. 8 is an explanatory view of a control valve body having cutouts and holes from a flow path.

【図9】図8の半開状態説明図。9 is an explanatory view of a half-open state of FIG. 8.

【図10】ダンパー板説明図。FIG. 10 is an explanatory view of a damper plate.

【図11】図10に相当する管路の縦断面図。11 is a vertical cross-sectional view of a pipe line corresponding to FIG.

【図12】コックの弁体見取図。FIG. 12 is a sketch of a valve body of a cock.

【図13】コツク、ボール弁の縦断面。FIG. 13 is a vertical cross section of a cock and a ball valve.

【図14】真空濾過板の断面図。FIG. 14 is a sectional view of a vacuum filtration plate.

【図15】弾性濾材を使用する濾過装置正面断面図。FIG. 15 is a front sectional view of a filtering device using an elastic filter medium.

【図16】同上平面断面図。FIG. 16 is a plan sectional view of the same.

【図17】サイクロン正面図。FIG. 17 is a front view of a cyclone.

【図18】サイクロン正面図。FIG. 18 is a front view of a cyclone.

【図19】サイクロンと沈降槽列の組合せ説明図。FIG. 19 is an explanatory view of a combination of a cyclone and a settling tank row.

【図20】脱水槽正面図。FIG. 20 is a front view of the dehydration tank.

【図21】脱水装置正面図。FIG. 21 is a front view of the dehydrator.

【図22】脱水装置側面図。FIG. 22 is a side view of the dehydrator.

【符号の説明】[Explanation of symbols]

1 泥水、スラリー供給口 2 振動篩 3 槽 4、13 ポンプ 5、14 サイクロン 6 脱水篩面 69 ストレーナー 8 浮子 9 傾斜板沈降装置 10 濾過またはストレーナー面 16、23、25 液出口 17 振動機 31、32、33 脱水装置 51 流動層処理装置 52 撹拌腕 53 小撹拌機 67 回転弁 71 揺動解砕格子 77 弁体のバイパス孔 102 炭酸ガス入口 1 Muddy Water, Slurry Supply Port 2 Vibrating Screen 3 Tanks 4, 13 Pumps 5, 14 Cyclone 6 Dewatering Sieve Surface 69 Strainer 8 Float 9 Inclined Plate Sedimentation Device 10 Filtration or Strainer Surface 16, 23, 25 Liquid Outlet 17 Vibrators 31, 32 , 33 Dewatering device 51 Fluidized bed processing device 52 Stirring arm 53 Small stirrer 67 Rotating valve 71 Swinging crushing grid 77 Bypass hole of valve body 102 Carbon dioxide gas inlet

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 E03F 5/14 7005−2D ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location E03F 5/14 7005-2D

Claims (21)

【特許請求の範囲】[Claims] 【請求項1】泥水、泥状物、または土砂を処理する場合
に水分と共にポンプで液体サイクロンに供給し、液体サ
イクロンに2段にかけまたは沈降槽、流動層から選ばれ
た分離装置により比較的微粒子または溶解成分を含む流
動性部分と比較的粗粒子成分を含む異なった粒度分布の
2部分の計3部分以上に分別し、分別された比較的微粒
子を含む液と比較的粗粒子を含む部分をそれぞれ別に使
用し、または脱水する泥水または土砂含有物処理法。
1. When treating muddy water, muddy matter, or earth and sand, the mist is supplied together with water to a liquid cyclone by a pump, and the liquid cyclone is divided into two stages or a relatively fine particle is obtained by a separation device selected from a sedimentation tank and a fluidized bed. Alternatively, a fluid portion containing a dissolved component and two portions having different particle size distributions containing a relatively coarse particle component are separated into a total of three or more portions, and a separated liquid containing relatively fine particles and a portion containing relatively coarse particles are separated. A method for treating muddy water or sediment containing substances that are used or dehydrated separately.
【請求項2】泥水、泥状物または土砂を処理する場合
に、撹拌機構を備えた分離用流動層に供給し、循環水に
より流動化して比較的微粒子を含む部分と比較的粗粒子
を含む2部分以上に分離した後、それぞれ別に使用また
は脱水する泥水または土砂含有物処理法。
2. When treating muddy water, mud matter or earth and sand, the muddy water is supplied to a separation fluidized bed equipped with a stirring mechanism and fluidized by circulating water to contain relatively fine particles and relatively coarse particles. A method for treating muddy water or sediment containing substances that are used or dehydrated separately after separating into two or more parts.
【請求項3】泥水が地盤掘削に使用するベントナイトま
たは泥粒子懸濁液であり微粒子を含む液と粗粒子を含む
部分の3部分以上に分離し、液を掘削に再利用し、また
は脱水する請求項1または2記載の泥水または土砂含有
物処理法。
3. Mud water is bentonite or mud particle suspension used for ground excavation, and is separated into three or more parts of a liquid containing fine particles and a part containing coarse particles, and the liquid is reused for excavation or dehydrated. The method for treating muddy water or sediment containing matter according to claim 1 or 2.
【請求項4】泥状物が地盤掘削に使用したベントナイト
懸濁液または泥粒子懸濁液を含む汚泥である請求項1ま
たは2記載の泥水または土砂含有物処理法。
4. The method for treating muddy water or sediment containing matter according to claim 1 or 2, wherein the muddy material is sludge containing bentonite suspension or muddy particle suspension used for ground excavation.
【請求項5】泥水、泥状物または土砂が、浚渫泥または
有害物により汚染した土質である請求項1または2記載
の泥水または土砂含有物処理法。
5. The method for treating muddy water or sediment containing matter according to claim 1 or 2, wherein the muddy water, mud-like matter or sediment is soil soil contaminated with dredged mud or harmful substances.
【請求項6】流動化液が淡水、海水、泥の懸濁水から選
ばれた1つまたは組合せであり、振動篩が沈降水槽中ま
たは水系流動層に浸漬するように設置され、粗大物を分
離除去し、篩下を液体サイクロンまたは撹拌流動層で剪
断力をかけつつ3分割以上に粒度別に分画の後、別に脱
水する請求項1または2記載の泥水または土砂含有物処
理法。
6. The fluidizing liquid is one or a combination selected from fresh water, seawater, and suspended water of mud, and a vibrating sieve is installed in a settling tank or so as to be immersed in an aqueous fluidized bed to separate coarse particles. The method for treating muddy water or earth and sand inclusions according to claim 1 or 2, wherein the sludge is removed and fractionated according to the particle size into three or more fractions while applying a shearing force to the bottom of the sieve with a liquid cyclone or a stirred fluidized bed.
【請求項7】流動層内に設けた比較的遅い撹拌機と流動
層内の低位置または流動層に隣接し、流動化固体粒子に
強い剪断力または解砕力を流動層系に与える撹拌装置ま
たはポンプ装置とからなる請求項1ないし6記載の流動
層装置。
7. A relatively slow stirrer provided in the fluidized bed and a stirring device or pump provided at a low position in the fluidized bed or adjacent to the fluidized bed to impart a strong shearing force or crushing force to the fluidized solid particles in the fluidized bed system. The fluidized bed apparatus according to claim 1, which comprises an apparatus.
【請求項8】懸濁粒子を含む循環水または溶解成分を浄
化した循環水による洗浄を行う請求項1ないし3記載の
泥水または土砂含有物処理法。
8. The method for treating mud water or earth and sand inclusions according to claim 1, wherein washing with circulating water containing suspended particles or circulating water purified of dissolved components is carried out.
【請求項9】比較的粗粒子部分を懸濁粒子または溶解成
分を含む水系流動層分級装置にかけ微粒子分離の後、比
較的清浄な水を流動化液とする流動層で処理して土砂を
回収する請求項6または7記載の泥水または土砂含有物
処理法と装置。
9. A relatively coarse particle portion is subjected to an aqueous fluidized bed classifier containing suspended particles or dissolved components to separate fine particles, and then treated with a fluidized bed using relatively clean water as a fluidizing liquid to recover earth and sand. The method and apparatus for treating muddy water or sediment containing substances according to claim 6 or 7.
【請求項10】貯水、貯泥設備あるいは泥水槽におい
て、傾斜平行板沈降装置を使用し、上層懸濁水の滞留時
間を制限しつつ処理する請求項1または2記載の泥水ま
たは土砂含有物処理法。
10. The method for treating muddy water or earth and sand inclusions according to claim 1 or 2, wherein an inclined parallel plate sedimentation device is used in the water storage, mud storage facility or muddy water tank while limiting the retention time of the upper layer suspension water. .
【請求項11】傾斜平行板沈降装置または水排出手段を
浮子で沈降池または槽の沈降物上面付近以上に浮かせた
粒子の分離装置。
11. A device for separating particles, wherein an inclined parallel plate sedimentation device or water discharge means is floated by a float above the upper surface of the sediment in a sedimentation basin or tank.
【請求項12】スラリーまたは粉体の弁またはダンパー
装置において、通路を絞る場合に流量が多い主流口と弁
体またはダンパー板の死角部に孔径が小でスラリー粒子
または粉体粒子が通過できる単数または複数の孔、スリ
ットあるいは切欠きを有する弁またはダンパー装置。
12. In a slurry or powder valve or damper device, a single hole having a small hole diameter and capable of passing slurry particles or powder particles in a blind hole portion of a main body and a valve body or damper plate where a flow rate is large when a passage is throttled. Or a valve or damper device with multiple holes, slits or notches.
【請求項13】複数の棒または異型溝が実質的に並行で
互いに間隙を保持して格子状に配置され、各単位が回転
し、または全体として揺動する解砕分離装置に供給し、
水存在下で解砕しつつ、比較的粗大物と微粒を分離し、
比較的微粒子を分離用沈降槽または分離用流動層に供給
し、分離された土砂成分を、それぞれ別に沈降、液体サ
イクロン分級、脱水または洗浄処理から選ばれた処理を
する請求項1記載の泥水または土砂含有物処理法。
13. A crushing / separating device in which a plurality of rods or atypical grooves are arranged substantially in parallel to each other with a gap between them, and each unit rotates or swings as a whole,
While crushing in the presence of water, relatively coarse particles and fine particles are separated,
The muddy water according to claim 1, wherein relatively fine particles are supplied to a settling tank for separation or a fluidized bed for separation, and the separated sediment components are separately treated by sedimentation, hydrocyclone classification, dehydration or washing treatment. Sediment inclusion treatment method.
【請求項14】振動装置、側壁濾過面、槽内容物の傾斜
排出装置とからなる脱水設備に泥水、含水泥土または土
砂を投入し、振動をかけつつ水を分離して濾材で分離水
を排出し、次に槽を傾けて脱水物を排出する泥水または
土砂の脱水法。
14. Muddy water, water-containing mud or earth and sand are put into a dehydration facility consisting of a vibrating device, a side wall filtering surface, and an inclined discharging device for tank contents, and the water is separated while vibrating and the separated water is discharged by a filter medium. Then, the dewatering method of muddy water or sediment that tilts the tank and discharges the dehydrated product.
【請求項15】泥または土砂を脱水する場合に比較的微
粒子と粗粒子の2部分以上に分割分離し、分離したもの
について、対向する対になった濾過面を有する脱水機に
供給し、対向する2面の濾過面を時間的に位相をずらせ
て使用し最初に第一濾過面にケーキを形成し、次に反対
面から吸引する濾過脱水法。
15. When dewatering mud or earth and sand, it is separated into two or more parts of relatively fine particles and coarse particles, and the separated ones are supplied to a dehydrator having opposed paired filtration surfaces, and opposed. A filtration dehydration method in which two filtration surfaces are used, which are temporally out of phase to form a cake on the first filtration surface and then suction from the opposite surface.
【請求項16】濾材または充填材が弾性または復元性を
有する線、片または面材料を集積した面または立体的充
填層と、加、減圧機能からなる濾過または接触処理装
置。
16. A filtration or contact treatment apparatus comprising a surface or a three-dimensional packing layer in which a filter material or a packing material has elasticity or resilience and a line, piece or surface material is accumulated, and a pressurizing and depressurizing function.
【請求項17】材料が弾性に富むステンレス線、プラス
チック線、シート加工品または廃棄物あるいは弾性材料
を含むものから選ばれたものである請求項16記載の濾
過または接触処理装置。
17. The filtration or contact treatment apparatus according to claim 16, wherein the material is selected from elastic wires such as stainless steel wire, plastic wire, sheet processed product or waste, or materials containing elastic material.
【請求項18】液体サイクロン胴体の下狭窄部が鋼製異
型継ぎ手である液体サイクロン装置。
18. A hydrocyclone device in which the lower constriction portion of the hydrocyclone body is a steel irregular joint.
【請求項19】液体サイクロン胴体が長く直立または傾
斜して下出口流を供給槽に戻しまたは近接する他の槽ま
たは区画に送る請求項1または2記載の泥水または土砂
含有物処理法。
19. The method for treating mud or earth and sand inclusions according to claim 1 or 2, wherein the liquid cyclone body is long and upright or inclined to return the lower outlet flow to the supply tank or to another tank or section adjacent thereto.
【請求項20】掘削に使用する泥水重液を調整する液体
サイクロン上出口の流出液を容器底部の流速を上げる沈
降防止型比重測定容器に流しつつ比重を測定し、所定比
重を外れるものを別の槽または区画に送る請求項1また
は2記載の泥水または土砂含有物処理法。
20. Specific gravity is measured while flowing the effluent at the upper outlet of a liquid cyclone for adjusting the mud heavy liquid used for excavation into a sedimentation prevention type specific gravity measuring container that increases the flow velocity at the bottom of the container, and the specific gravity is excluded. The method for treating muddy water or sediment containing matter according to claim 1 or 2, wherein the muddy water or sediment containing matter is sent to the tank or the compartment.
【請求項21】沈降槽、ストレーナー、土砂排出装置付
濾過脱水槽、脱水槽への篩い下の切り替え供給機能を有
する脱水篩、複数の液体サイクロン、ポンプ、とからな
る泥水または土砂含有物処理装置。
21. A device for treating mud water or sediment containing a sedimentation tank, a strainer, a filtration dehydration tank with a sediment discharge device, a dehydration sieve having a function of switching the sieve to the dehydration tank, a plurality of liquid cyclones, and a pump. .
JP4302808A 1992-10-02 1992-10-02 Method and device for treatment of muddy water or sand and soil-containing material Pending JPH06114294A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4302808A JPH06114294A (en) 1992-10-02 1992-10-02 Method and device for treatment of muddy water or sand and soil-containing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4302808A JPH06114294A (en) 1992-10-02 1992-10-02 Method and device for treatment of muddy water or sand and soil-containing material

Publications (1)

Publication Number Publication Date
JPH06114294A true JPH06114294A (en) 1994-04-26

Family

ID=17913359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4302808A Pending JPH06114294A (en) 1992-10-02 1992-10-02 Method and device for treatment of muddy water or sand and soil-containing material

Country Status (1)

Country Link
JP (1) JPH06114294A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100449169B1 (en) * 2002-03-05 2004-09-16 서해건설주식회사 A Treatment System and Biological Treatment Method of Refractory Materials in Contaminated Sediment by Volume Reduction
JP2008036550A (en) * 2006-08-08 2008-02-21 Obagumi:Kk Sorting method of artificial grass filler, sorting apparatus, and sorting and collecting apparatus
KR101142193B1 (en) * 2011-10-28 2012-05-07 김용술 Apparatus for shutting off rain and sand inflow into storm overflow chamber
CN103088898A (en) * 2013-02-01 2013-05-08 江苏东浦管桩有限公司 Drainage device for stirring blender pond
KR101355583B1 (en) * 2013-10-04 2014-01-24 한국지질자원연구원 Simplicity valuable mineral decollator and valuable mineral separating method using thereof
JP2015033665A (en) * 2013-08-08 2015-02-19 株式会社リソースクリエイト Settling separation apparatus for coagulant-added turbid water
JP2015040728A (en) * 2013-08-21 2015-03-02 株式会社リソースクリエイト Mobile type compact decontamination device
JP2016128140A (en) * 2015-01-09 2016-07-14 株式会社熊谷組 Heavy liquid and specific gravity screening method
CN107445445A (en) * 2017-09-22 2017-12-08 安徽佳明环保科技股份有限公司 A kind of city river sludge drying sludge-water separating system
CN108160314A (en) * 2017-11-28 2018-06-15 深圳市万佳晟环保产业有限公司 Building waste processing system
CN115026119A (en) * 2022-01-30 2022-09-09 湖北理工学院 Contaminated soil mixed detection treatment and restoration device and use method thereof
CN115286127A (en) * 2022-02-14 2022-11-04 齐齐哈尔大学 Sewage treatment device for construction engineering construction
CN116393240A (en) * 2023-03-31 2023-07-07 黄河水利委员会黄河水利科学研究院 Water-sand separation classification method and device based on hydrocyclone

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100449169B1 (en) * 2002-03-05 2004-09-16 서해건설주식회사 A Treatment System and Biological Treatment Method of Refractory Materials in Contaminated Sediment by Volume Reduction
JP2008036550A (en) * 2006-08-08 2008-02-21 Obagumi:Kk Sorting method of artificial grass filler, sorting apparatus, and sorting and collecting apparatus
KR101142193B1 (en) * 2011-10-28 2012-05-07 김용술 Apparatus for shutting off rain and sand inflow into storm overflow chamber
CN103088898A (en) * 2013-02-01 2013-05-08 江苏东浦管桩有限公司 Drainage device for stirring blender pond
JP2015033665A (en) * 2013-08-08 2015-02-19 株式会社リソースクリエイト Settling separation apparatus for coagulant-added turbid water
JP2015040728A (en) * 2013-08-21 2015-03-02 株式会社リソースクリエイト Mobile type compact decontamination device
KR101355583B1 (en) * 2013-10-04 2014-01-24 한국지질자원연구원 Simplicity valuable mineral decollator and valuable mineral separating method using thereof
US9227197B2 (en) 2013-10-04 2016-01-05 Korea Institute Of Geoscience And Mineral Resources Simplified valuable mineral sorting apparatus and method of sorting valuable minerals using the same
JP2016128140A (en) * 2015-01-09 2016-07-14 株式会社熊谷組 Heavy liquid and specific gravity screening method
CN107445445A (en) * 2017-09-22 2017-12-08 安徽佳明环保科技股份有限公司 A kind of city river sludge drying sludge-water separating system
CN108160314A (en) * 2017-11-28 2018-06-15 深圳市万佳晟环保产业有限公司 Building waste processing system
CN108160314B (en) * 2017-11-28 2023-06-06 深圳江氏恩泽实业有限公司 Construction waste treatment system
CN115026119A (en) * 2022-01-30 2022-09-09 湖北理工学院 Contaminated soil mixed detection treatment and restoration device and use method thereof
CN115026119B (en) * 2022-01-30 2023-05-02 湖北理工学院 Contaminated soil mixed detection treatment restoration device and application method thereof
CN115286127A (en) * 2022-02-14 2022-11-04 齐齐哈尔大学 Sewage treatment device for construction engineering construction
CN116393240A (en) * 2023-03-31 2023-07-07 黄河水利委员会黄河水利科学研究院 Water-sand separation classification method and device based on hydrocyclone
CN116393240B (en) * 2023-03-31 2023-09-22 黄河水利委员会黄河水利科学研究院 Water-sand separation classification method and device based on hydrocyclone

Similar Documents

Publication Publication Date Title
US5338459A (en) Muddy and waste water treatment method
US20170113952A1 (en) Recycled Water and Solids Management System
JPS58501110A (en) Method and apparatus for regenerating useful water and other materials from oil field mud/drainage pits
JPH06114294A (en) Method and device for treatment of muddy water or sand and soil-containing material
KR100534067B1 (en) Soil washing method and facility for physical separation and remediation of polluted soil
JP2001020318A (en) Waters purifying method and waters purifying system and dam soil discharging system
KR102388288B1 (en) High magnetic combine system for efficient heavy metal treatment
JPH0999203A (en) Treatment of rain water and/or waste water
JP2007146425A (en) Method and system for dredging lake water
KR101760902B1 (en) A pollutant purification system
JP2565482B2 (en) Method and device for treating muddy water and industrial wastewater in muddy water excavation method
KR100639042B1 (en) A purifying system for dredged sediment
JP2807657B2 (en) Method and apparatus for treating muddy water and industrial wastewater in muddy water drilling method
JPS6034886B2 (en) Wastewater treatment method
KR100926382B1 (en) Method of producing filter material comprising bottom ash
Krasauskas Review of sludge disposal practices
JP4382397B2 (en) Earth and sand cleaning device and earth and sand cleaning method
US20030146167A1 (en) Apparatus for dewatering coal tailings and slurries and removing contaminants therefrom
CA1054728A (en) Coal-base landfill, leachate treatment
KR200178934Y1 (en) A sludge compressor
CN215900993U (en) Contaminated soil ex-situ remediation slurry reactor system
KR102441986B1 (en) A non-point source pollution treatment facility with swirling and filetring device
JP3759811B2 (en) Sewage / septic tank sludge treatment equipment equipped with the same sand removal device from human waste / septic tank sludge
JPH10328510A (en) Waste water treating/regenerating device
KR102600279B1 (en) Complex polluted soil purification and recycling system