JPH06112467A - Solid-state image sensing element and manufacture thereof - Google Patents

Solid-state image sensing element and manufacture thereof

Info

Publication number
JPH06112467A
JPH06112467A JP4258372A JP25837292A JPH06112467A JP H06112467 A JPH06112467 A JP H06112467A JP 4258372 A JP4258372 A JP 4258372A JP 25837292 A JP25837292 A JP 25837292A JP H06112467 A JPH06112467 A JP H06112467A
Authority
JP
Japan
Prior art keywords
region
impurity
insulating film
conductivity type
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4258372A
Other languages
Japanese (ja)
Inventor
Toshio Okayasu
寿夫 岡安
Yoshihiro Okada
吉弘 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP4258372A priority Critical patent/JPH06112467A/en
Publication of JPH06112467A publication Critical patent/JPH06112467A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To prevent data charge from the image sensing region to the storage region of a frame transfer type solid-state image sensing element from deteriorating in transfer efficiency. CONSTITUTION:An impurity region 12 low in impurity concentration in an image sensing region and high in impurity concentration in a storage region is formed in a silicon substrate 11. A buried region 13 is formed on the surface of the impurity region 12 for the formation of a buried channel structure. A thin gate insulating film 14 is formed on an image sensing region, and a thick gate insulating film 15 is formed on a storage region. Transfer electrodes 16 and 17 each of two-layered structure are formed on the gate insulating films 14 and 15 respectively. Therefore, the potential of the buried region 13 is set higher in a storage region than that in an image sensing region, so that data charge is prevented from deteriorating in transfer efficiency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、過剰な電荷を基板側に
吸収させる縦型オーバーフロードレイン構造を有する固
体撮像素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state image pickup device having a vertical overflow drain structure in which excess charges are absorbed on the substrate side.

【0002】[0002]

【従来の技術】図7は、フレームトランスファ型のCC
D固体撮像素子の概略を示す平面図である。固体撮像素
子は、被写体からの映像を受ける撮像領域I、情報電荷
を蓄積する蓄積領域S、情報電荷を水平方向に転送出力
する水平転送部H及び電荷量を電圧値に変換して出力す
る出力部Oからなり、照射された被写体映像に応じて撮
像領域Iで発生する情報電荷が、1画面単位で撮像領域
Iから蓄積領域Sに転送されて一旦蓄積され、この蓄積
領域Sから1行単位で水平転送部Hを介して出力部Oへ
と出力されるように構成される。撮像領域Iには、例え
ば4相の転送クロックφI1〜φI4が供給され、垂直走査
のブランキング期間に情報電荷が蓄積領域Sへ転送され
る。そして、蓄積領域Sには、転送クロックφI1〜φI4
と同期した転送クロックφS1〜φS4が供給され、撮像領
域Iから転送された情報電荷が水平走査のブランキング
期間毎に1行ずつ水平転送部Hに転送されると共に、水
平転送部Hには、2相の転送クロックφH1、φH2が供給
されて蓄積部Sから転送された情報電荷が水平走査期間
中に出力部Oに転送出力される。従って、出力部Oより
1行毎の映像情報が時系列的に連続する映像信号を得る
ことができる。
2. Description of the Related Art FIG. 7 shows a frame transfer type CC.
It is a top view which shows the outline of a D solid-state image sensor. The solid-state imaging device includes an imaging area I for receiving an image from a subject, a storage area S for accumulating information charges, a horizontal transfer section H for horizontally transferring and outputting information charges, and an output for converting a charge amount into a voltage value and outputting the voltage value. The information charges generated in the image pickup area I in accordance with the illuminated subject image are transferred from the image pickup area I to the storage area S in a unit of one screen and temporarily stored therein. Is output to the output unit O via the horizontal transfer unit H. For example, four-phase transfer clocks φ I1 to φ I4 are supplied to the imaging region I, and information charges are transferred to the storage region S during the blanking period of vertical scanning. Then, in the storage area S, transfer clocks φ I1 to φ I4
The transfer clocks φ S1 to φ S4 synchronized with the above are supplied, and the information charges transferred from the imaging region I are transferred to the horizontal transfer unit H one row at a time for each horizontal scanning blanking period, and to the horizontal transfer unit H. Is supplied with the two-phase transfer clocks φ H1 and φ H2 , and the information charges transferred from the storage section S are transferred and output to the output section O during the horizontal scanning period. Therefore, the output unit O can obtain a video signal in which the video information for each row is continuous in time series.

【0003】このような固体撮像素子においては、撮像
部Iの各受光画素から溢れ出す情報電荷が隣り合う画素
に混入する所謂ブルーミングを抑圧するために、過剰な
電荷を吸収するオーバーフロードレインが設けられる。
ここでオーバーフロードレインは、受光画素を分離する
分離領域内にドレインを設けて過剰電荷を吸収させる横
型方式と、基板そのものをドレインとして働かせて過剰
電荷を基板深部に沈めさせる縦型方式とがあるが、近年
は受光画素の高密度化に有利な縦型方式が多く採用され
る傾向にある。
In such a solid-state image pickup device, an overflow drain for absorbing an excessive charge is provided in order to suppress so-called blooming in which information charges overflowing from each light receiving pixel of the image pickup section I are mixed into adjacent pixels. .
There are two types of overflow drains: a horizontal type in which a drain is provided in a separation region for separating light receiving pixels to absorb excess charges, and a vertical type in which the substrate itself acts as a drain to sunk excess charges into a deep portion of the substrate. In recent years, there has been a tendency to employ a vertical type, which is advantageous for increasing the density of light receiving pixels.

【0004】図8は、縦型オーバーフロードレイン方式
のCCD固体撮像素子の断面図で、撮像領域Iと蓄積領
域Sとの接続部分を示している。N型のシリコン基板1
の表面側にP型の不純物領域2が設けられ、この不純物
領域2の表面にN型の埋め込み領域3が設けられて埋め
込みチャネル構造が形成される。そして、この埋め込み
領域3上にゲート絶縁膜4を介して2層構造の複数の転
送電極5が互いに平行に配列され、これらの転送電極5
にそれぞれ転送クロックφI1〜φI4、φS1〜φS4が印加
される。従って、シリコン基板1の内部には、図9に示
すように、埋め込み領域3内で極小となり、不純物領域
2内で極大となるようなポテンシャルが形成される。埋
め込み領域3内のポテンシャルは、転送電極5に印加さ
れる電圧によって制御され、各転送電極5に印加される
転送クロックφI1〜φI4、φS1〜φS4に応答して情報電
荷の蓄積及び転送を行う。また、不純物領域2内のポテ
ンシャルは、埋め込み領域3の情報電荷がシリコン基板
1側へ流れるのを阻止する障壁を形成しており、この障
壁の高さと埋め込み領域3のポテンシャルの深さとの差
が情報電荷の蓄積容量を示すことになる。障壁の高さに
ついては、不純物領域2の不純物濃度及びシリコン基板
1の電位によって設定可能であり、通常は、撮像領域I
で低くして情報電荷が越え易いようにし、蓄積領域Sで
高くして情報電荷が越えにくいようにしている。即ち、
撮像領域Iでは各受光画素の受光状態により情報電荷が
過剰に発生し得るためにその過剰分をシリコン基板1側
に吸収させる必要があるのに対し、蓄積領域Sでは撮像
領域から転送された情報電荷を確実に蓄積させるために
情報電荷を基板側に漏れないようにする必要があり、蓄
積領域Sで不純物領域2の不純物濃度を撮像領域Iより
も濃くすることにより図9に破線で示すように、埋め込
み領域3とシリコン基板1との間の障壁を高く設定して
いる。
FIG. 8 is a cross sectional view of a vertical overflow drain type CCD solid state image pickup device, showing a connecting portion between an image pickup region I and a storage region S. N type silicon substrate 1
A P-type impurity region 2 is provided on the surface side of, and an N-type buried region 3 is provided on the surface of the impurity region 2 to form a buried channel structure. A plurality of transfer electrodes 5 having a two-layer structure are arranged in parallel on the buried region 3 with a gate insulating film 4 interposed therebetween.
The transfer clocks φ I1 to φ I4 and φ S1 to φ S4 are applied to each. Therefore, inside the silicon substrate 1, as shown in FIG. 9, a potential is formed that has a minimum in the buried region 3 and a maximum in the impurity region 2. The potential in the buried region 3 is controlled by the voltage applied to the transfer electrodes 5, and accumulates information charges in response to transfer clocks φ I1 to φ I4 and φ S1 to φ S4 applied to each transfer electrode 5. Transfer. The potential in the impurity region 2 forms a barrier that blocks the information charges in the buried region 3 from flowing to the silicon substrate 1 side, and the difference between the height of the barrier and the depth of the potential in the buried region 3 is a difference. It indicates the storage capacity of information charges. The height of the barrier can be set by the impurity concentration of the impurity region 2 and the potential of the silicon substrate 1, and is usually the imaging region I.
To make it easier for the information charges to pass, and to make it higher in the storage region S to make it harder for the information charges to pass. That is,
In the image pickup region I, since information charges may be excessively generated depending on the light receiving state of each light receiving pixel, it is necessary to absorb the excess amount to the silicon substrate 1 side, whereas in the storage region S, the information transferred from the image pickup region is collected. It is necessary to prevent the information charges from leaking to the substrate side in order to surely accumulate the charges, and by making the impurity concentration of the impurity region 2 in the accumulation region S higher than that of the imaging region I, as shown by a broken line in FIG. In addition, the barrier between the buried region 3 and the silicon substrate 1 is set high.

【0005】[0005]

【発明が解決しようとする課題】蓄積領域Sで不純物領
域2の不純物濃度を濃くしてポテンシャルの障壁を高く
すると、埋め込み領域3内のポテンシャルが浅くなり、
撮像領域Iから蓄積領域Sへの情報電荷の転送効率が劣
化するという問題が生じる。そこで、転送効率の劣化を
防止するために、蓄積領域Sの転送電極5に印加する転
送クロックφS1〜φS4の波高値を撮像領域Iの転送電極
5に印加する転送クロックφI1〜φI4の波高値より高く
設定し、不純物濃度の影響により蓄積領域Sで埋め込み
領域3のポテンシャルが浅くなる分を補償するようにし
ている。しかしながら、波高値の異なる2種類の転送ク
ロックを得るためには、それぞれに対応する電源が必要
となることから、固体撮像素子の駆動回路が複雑とな
り、結果的に固体撮像素子を搭載する装置のコスト高を
招いている。
When the impurity concentration of the impurity region 2 in the storage region S is increased to raise the potential barrier, the potential in the buried region 3 becomes shallower.
There arises a problem that the transfer efficiency of the information charges from the imaging region I to the storage region S deteriorates. Therefore, in order to prevent the deterioration of the transfer efficiency, the peak values of the transfer clocks φ S1 to φ S4 applied to the transfer electrodes 5 in the storage area S are applied to the transfer electrodes 5 in the imaging area I. Transfer clocks φ I1 to φ I4 Is set to be higher than the peak value of ## EQU1 ## to compensate for the shallow potential of the buried region 3 in the storage region S due to the influence of the impurity concentration. However, in order to obtain two types of transfer clocks having different peak values, corresponding power supplies are required, which complicates the drive circuit of the solid-state image sensor, resulting in a device equipped with the solid-state image sensor. Inviting high costs.

【0006】そこで本発明は、転送効率の劣化を伴うこ
となく駆動回路の簡略化が図れる固体撮像素子の提供を
目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a solid-state image pickup device capable of simplifying a drive circuit without deterioration of transfer efficiency.

【0007】[0007]

【課題を解決するための手段】本発明は、上述の課題を
解決するために成されたもので、被写体映像を受けて映
像パターンに対応した情報電荷を発生する撮像領域及
び、この撮像領域から一定の周期で上記情報電荷を受け
て蓄積する蓄積領域が同一基板上に形成される固体撮像
素子において、一導電型の半導体基板と、この半導体基
板の一主面に設けられ、上記蓄積領域で上記撮像領域よ
り不純物濃度が高くなる逆導電型の不純物領域と、この
不純物領域を被って上記半導体基板の一主面上に設けら
れ、上記蓄積領域で上記撮像領域より膜厚が厚くなる絶
縁膜と、この絶縁膜上に上記情報電荷の転送方向に沿っ
て配列される複数の転送電極と、を備えたことを特徴と
している。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an imaging area for receiving an image of a subject and generating information charges corresponding to an image pattern, and an imaging area In a solid-state imaging device in which a storage region for receiving and accumulating the information charges at a constant cycle is formed on the same substrate, a semiconductor substrate of one conductivity type and a semiconductor substrate provided on one main surface of the semiconductor substrate are provided. An impurity region of opposite conductivity type having an impurity concentration higher than that of the imaging region, and an insulating film covering the impurity region and provided on one main surface of the semiconductor substrate and having a thickness greater than that of the imaging region in the accumulation region. And a plurality of transfer electrodes arranged on the insulating film along the transfer direction of the information charges.

【0008】そして、本発明の製造方法は、一導電型の
半導体基板の一主面上の第1領域に逆導電型の不純物を
導入して第1不純物領域を形成し、一主面上の第2領域
に逆導電型の不純物を導入して第1不純物領域より不純
物濃度の高い第2不純物領域を形成する工程と、上記第
1及び第2不純物領域を被って上記半導体基板の一主面
上に絶縁膜を形成し、この絶縁膜を上記第2不純物領域
上を除く部分で膜厚を薄くする工程と、部分的に膜厚が
薄くされた上記絶縁膜上に導体材料を積層し、この導体
材料層を所望の形状に成形して上記第1及び第2不純物
領域上に転送電極を形成する工程と、を含み、上記第2
不純物領域を上記蓄積領域に対応させることを特徴とし
ている。
Then, in the manufacturing method of the present invention, an impurity of opposite conductivity type is introduced into a first region on one main surface of a semiconductor substrate of one conductivity type to form a first impurity region, and the first impurity region is formed on the one main surface. A step of introducing an impurity of opposite conductivity type into the second region to form a second impurity region having a higher impurity concentration than that of the first impurity region; and a main surface of the semiconductor substrate covering the first and second impurity regions A step of forming an insulating film on the insulating film, thinning the insulating film in a portion other than the second impurity region, and laminating a conductor material on the insulating film partially thinned, Forming the transfer material on the first and second impurity regions by molding the conductor material layer into a desired shape, and
It is characterized in that the impurity region corresponds to the storage region.

【0009】[0009]

【作用】本発明によれば、蓄積領域のゲート絶縁膜の膜
厚を撮像領域より厚くすることで、半導体基板の表面付
近にポテンシャルがより深く形成されるようになる。従
って、不純物濃度が濃くなってポテンシャルが浅くなる
分がゲート絶縁膜を厚くしたことで相殺され、半導体基
板の表面付近には撮像領域と蓄積領域とでほぼ同等のポ
テンシャルが形成されるため、撮像領域と蓄積領域との
転送電極を同一レベルの転送クロックで駆動することが
できる。
According to the present invention, the gate insulating film in the storage region is made thicker than the imaging region, so that the potential is formed deeper near the surface of the semiconductor substrate. Therefore, the increase in the impurity concentration and the decrease in the potential are offset by the increase in the thickness of the gate insulating film, and an almost equal potential is formed in the imaging region and the accumulation region near the surface of the semiconductor substrate. The transfer electrodes of the area and the storage area can be driven by the transfer clock of the same level.

【0010】[0010]

【実施例】図1は、本発明のCCD固体撮像素子の断面
図で、撮像領域と蓄積領域との接続部分を示す。N型の
シリコン基板11の表面側には、P型の不純物領域12
が設けられ、さらにこの不純物領域12の表面にN型の
埋め込み領域13が設けられる。これらの不純物領域1
2及び埋め込み領域13については、図8と同一であ
り、不純物領域12の濃度が蓄積領域で濃く形成されて
いる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a sectional view of a CCD solid-state image pickup device of the present invention, showing a connecting portion between an image pickup region and a storage region. A P-type impurity region 12 is formed on the surface side of the N-type silicon substrate 11.
And an N type buried region 13 is further provided on the surface of the impurity region 12. These impurity regions 1
2 and the buried region 13 are the same as those in FIG. 8, and the impurity region 12 is formed to have a high concentration in the accumulation region.

【0011】本発明の特徴とするところは、撮像領域の
ゲート絶縁膜14に対して蓄積領域のゲート絶縁膜15
を厚く形成し、これらのゲート絶縁膜14、15上に2
層構造の転送電極16、17をそれぞれ配置したところ
にある。即ち、埋め込みチャネル構造においては、シリ
コン基板に電界を与える転送電極と埋め込み領域13と
の距離が離れるほど埋め込み領域13に形成されるポテ
ンシャルがより深くなるため、蓄積領域でゲート絶縁膜
15の膜厚を厚くして埋め込み領域13と転送電極17
との距離を離し、埋め込み領域13のポテンシャルが深
くなるようにしている。これにより、蓄積領域のポテン
シャルは、図2に示すように、ゲート絶縁膜14の膜厚
が薄く不純物領域12の不純物濃度が薄い撮像領域のポ
テンシャルと比較すると、埋め込み領域13で深く形成
されると共に、不純物領域12のポテンシャルの障壁が
高く形成されることになる。従って、撮像領域及び蓄積
領域の転送電極16、17を同一の波高値を有するクロ
ックで駆動した場合でも、埋め込み領域13のポテンシ
ャルが撮像領域に対して蓄積領域で浅くなるようなこと
がなく、撮像領域から蓄積領域へ効率よく情報電荷を転
送でき、且つ撮像領域から転送された情報電荷を蓄積領
域に確実に蓄積させることができる。
The feature of the present invention resides in that the gate insulating film 14 in the image pickup region is different from the gate insulating film 15 in the storage region.
Is formed thick, and 2 is formed on these gate insulating films 14 and 15.
The transfer electrodes 16 and 17 having a layered structure are arranged respectively. That is, in the buried channel structure, the potential formed in the buried region 13 becomes deeper as the distance between the transfer electrode for applying an electric field to the silicon substrate and the buried region 13 increases, so that the film thickness of the gate insulating film 15 in the storage region. To make the embedded region 13 and the transfer electrode 17 thicker.
And the potential of the buried region 13 is deepened. As a result, as shown in FIG. 2, the potential of the accumulation region is deeper in the buried region 13 as compared with the potential of the imaging region in which the film thickness of the gate insulating film 14 is thin and the impurity concentration of the impurity region 12 is thin. Therefore, the potential barrier of the impurity region 12 is formed to be high. Therefore, even when the transfer electrodes 16 and 17 of the imaging region and the storage region are driven by a clock having the same peak value, the potential of the embedded region 13 does not become shallow in the storage region with respect to the imaging region, and the imaging is performed. The information charges can be efficiently transferred from the area to the storage area, and the information charges transferred from the imaging area can be reliably stored in the storage area.

【0012】図3乃至図6は、本発明の製造方法を説明
する工程別の断面図である。まず、図3に示すように、
N型の導電型を示すシリコン基板11の全面にボロンイ
オン等のP型不純物を注入して均一な不純物領域12a
を形成し、後に撮像領域となる部分をレジスト膜20で
被って再度P型不純物を注入して部分的に不純物領域1
2bを形成する。これにより、撮像領域に対して蓄積領
域で不純物濃度が濃くなる不純物領域12が形成され
る。次に、不純物領域12の表面にリン等のN型不純物
を注入して埋め込み領域13を形成し、この埋め込み領
域13を被って厚い酸化膜を形成する。続いてその酸化
膜を、図4に示すように、撮像領域部分をエッチングし
て薄くし、ゲート酸化膜14とする。蓄積領域について
は厚い酸化膜がそのままゲート絶縁膜15となる。そし
て、図5に示すように、各ゲート絶縁膜14、15上に
多結晶シリコン層を積層し、この多結晶シリコン層を所
望のパターンにエッチングして1層目の転送電極16、
17を形成する。これらの1層目の転送電極14、15
の表面を酸化して絶縁膜を形成した後、図6に示すよう
に、1層目と同様に多結晶シリコン層を積層し、これを
所望のパターンにエッチングして2層目の転送電極を形
成する。これにより、蓄積領域で撮像領域よりもゲート
絶縁膜15の膜厚が厚くなるCCD固体撮像素子が得ら
れる。
3 to 6 are cross-sectional views of respective steps for explaining the manufacturing method of the present invention. First, as shown in FIG.
A uniform impurity region 12a is formed by implanting P-type impurities such as boron ions into the entire surface of the silicon substrate 11 having N-type conductivity.
Is formed, and a portion which will be an imaging region later is covered with a resist film 20 and P-type impurities are implanted again to partially implant the impurity region 1.
2b is formed. As a result, the impurity region 12 is formed in which the impurity concentration is high in the storage region with respect to the imaging region. Next, an N-type impurity such as phosphorus is implanted into the surface of the impurity region 12 to form a buried region 13, and the buried region 13 is covered to form a thick oxide film. Subsequently, as shown in FIG. 4, the oxide film is etched and thinned in the imaging region to form a gate oxide film 14. In the storage region, the thick oxide film becomes the gate insulating film 15 as it is. Then, as shown in FIG. 5, a polycrystalline silicon layer is laminated on each of the gate insulating films 14 and 15, and the polycrystalline silicon layer is etched into a desired pattern to transfer the first transfer electrode 16,
Form 17. These first-layer transfer electrodes 14 and 15
After the surface of the is oxidized to form an insulating film, as shown in FIG. 6, a polycrystalline silicon layer is laminated in the same manner as the first layer, and this is etched into a desired pattern to form the transfer electrode of the second layer. Form. As a result, a CCD solid-state imaging device in which the film thickness of the gate insulating film 15 is thicker in the storage region than in the imaging region can be obtained.

【0013】尚、膜厚の異なるゲート絶縁膜14、15
の形成については、薄い酸化膜を先に形成して撮像領域
のゲート絶縁膜とし、後に酸化膜を部分的に成長させて
蓄積領域のゲート絶縁膜15とすることも考えられる。
The gate insulating films 14 and 15 having different thicknesses are provided.
For the formation of (1), it is conceivable to form a thin oxide film first to form the gate insulating film in the imaging region, and then to partially grow the oxide film to form the gate insulating film 15 in the storage region.

【0014】[0014]

【発明の効果】本発明によれば、蓄積領域でゲート絶縁
膜の膜厚を厚く形成することにより、埋め込み領域のポ
テンシャルが深くなるため、撮像領域から蓄積領域への
情報電荷の転送が効率よく行われる。また、撮像領域及
び蓄積領域の転送電極に供給する転送クロックの波高値
を等しく設定できることから、各転送電極に転送クロッ
クを与える駆動回路の簡略化が可能となり、固体撮像素
子を搭載する装置の回路規模を縮小してコストの低減が
図れる。
According to the present invention, since the gate insulating film is formed thicker in the storage region, the potential of the buried region becomes deeper, so that the information charges can be efficiently transferred from the imaging region to the storage region. Done. Moreover, since the peak values of the transfer clocks supplied to the transfer electrodes in the imaging area and the storage area can be set to be equal, it is possible to simplify the drive circuit that supplies the transfer clocks to the transfer electrodes, and the circuit of the device equipped with the solid-state imaging device Cost can be reduced by reducing the scale.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の固体撮像素子の要部を示す断面図であ
る。
FIG. 1 is a cross-sectional view showing a main part of a solid-state image sensor according to the present invention.

【図2】本発明の固体撮像素子の深さ方向のポテンシャ
ルの状態を表す図である。
FIG. 2 is a diagram showing a state of a potential in a depth direction of the solid-state imaging device of the present invention.

【図3】本発明の固体撮像素子の製造方法の第1の工程
を示す断面図である。
FIG. 3 is a cross-sectional view showing a first step of the method for manufacturing a solid-state imaging device of the present invention.

【図4】本発明の固体撮像素子の製造方法の第2の工程
を示す断面図である。
FIG. 4 is a cross-sectional view showing a second step of the method for manufacturing a solid-state imaging device of the present invention.

【図5】本発明の固体撮像素子の製造方法の第3の工程
を示す断面図である。
FIG. 5 is a cross-sectional view showing a third step of the method for manufacturing a solid-state imaging device of the present invention.

【図6】本発明の固体撮像素子の製造方法の第4の工程
を示す断面図である。
FIG. 6 is a cross-sectional view showing a fourth step of the method for manufacturing a solid-state imaging device of the present invention.

【図7】フレームトランスファ形のCCD固体撮像素子
の概略図である。
FIG. 7 is a schematic view of a frame transfer type CCD solid-state imaging device.

【図8】従来の固体撮像素子の撮像領域と蓄積領域との
境界部分を示す断面図である。
FIG. 8 is a cross-sectional view showing a boundary portion between an imaging area and a storage area of a conventional solid-state imaging device.

【図9】従来の固体撮像素子の深さ方向のポテンシャル
の状態を示す図である。
FIG. 9 is a diagram showing a state of a potential in a depth direction of a conventional solid-state image sensor.

【符号の説明】[Explanation of symbols]

1、11 シリコン基板 2、12 不純物領域 3、13 埋め込み領域 4、14、15 ゲート絶縁膜 5、16、17 転送電極 I 撮像領域 S 蓄積領域 H 水平転送部 O 出力部 1, 11 Silicon substrate 2, 12 Impurity region 3, 13 Embedded region 4, 14, 15 Gate insulating film 5, 16, 17 Transfer electrode I Imaging region S Storage region H Horizontal transfer unit O Output unit

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 被写体映像を受けて映像パターンに対応
した情報電荷を発生する撮像領域及び、この撮像領域か
ら一定の周期毎に上記情報電荷を受けて蓄積する蓄積領
域を同一基板上に配置して成る固体撮像素子において、
一導電型の半導体基板と、この半導体基板の一主面に設
けられ、上記蓄積領域で上記撮像領域より不純物濃度が
高くなる逆導電型の不純物領域と、この不純物領域を被
って上記半導体基板の一主面上に設けられ、上記蓄積領
域で上記撮像領域より膜厚が厚くなる絶縁膜と、この絶
縁膜上に上記情報電荷の転送方向に沿って配列される複
数の転送電極と、を備えたことを特徴とする固体撮像素
子。
1. An imaging area for receiving an image of a subject and generating information charges corresponding to an image pattern, and an accumulation area for receiving and accumulating the information charges at regular intervals from the imaging area are arranged on the same substrate. In the solid-state image sensor consisting of
A semiconductor substrate of one conductivity type, an impurity region of an opposite conductivity type which is provided on one main surface of the semiconductor substrate and has an impurity concentration higher than that of the imaging region in the storage region, and the impurity region is covered to cover the semiconductor substrate. An insulating film, which is provided on one main surface and has a thickness larger than that of the imaging region in the storage region, and a plurality of transfer electrodes arranged on the insulating film along the transfer direction of the information charges. A solid-state imaging device characterized by the above.
【請求項2】 上記逆導電型の不純物領域の表面に上記
半導体基板と同一導電型の埋め込み領域が設けられる請
求項1記載の固体撮像素子。
2. The solid-state imaging device according to claim 1, wherein a buried region having the same conductivity type as that of the semiconductor substrate is provided on a surface of the opposite conductivity type impurity region.
【請求項3】 被写体映像を受けて映像パターンに対応
した情報電荷を発生する撮像領域及び、この撮像領域か
ら一定の周期毎に上記情報電荷を受けて蓄積する蓄積領
域を同一基板上に配置して成る固体撮像素子の製造方法
において、一導電型の半導体基板の一主面上の第1領域
に逆導電型の不純物を導入して第1不純物領域を形成す
ると共に、一主面上の第2領域に逆導電型の不純物を導
入して第1不純物領域より不純物濃度の高い第2不純物
領域を形成する工程と、上記第1及び第2不純物領域を
被って上記半導体基板の一主面上に絶縁膜を形成し、こ
の絶縁膜を上記第2不純物領域上を除く部分で膜厚を薄
くする工程と、部分的に膜厚が薄くされた上記絶縁膜上
に導体材料を積層し、この導体材料層を所望の形状に成
形して上記第1及び第2不純物領域上に複数の転送電極
を形成する工程と、を含み、上記第2不純物領域を上記
蓄積領域に対応させることを特徴とする固体撮像素子の
製造方法。
3. An image pickup area for receiving an image of a subject and generating information charges corresponding to an image pattern, and an accumulation area for receiving and accumulating the information charges at regular intervals from the image pickup area are arranged on the same substrate. In the method of manufacturing a solid-state imaging device having the above-mentioned structure, an impurity of opposite conductivity type is introduced into a first region on one main surface of a semiconductor substrate of one conductivity type to form a first impurity region, and a first impurity region on the one main surface is formed. Forming a second impurity region having an impurity concentration higher than that of the first impurity region by introducing an impurity of opposite conductivity type into the second region; and covering the first and second impurity regions on one main surface of the semiconductor substrate. An insulating film is formed on the insulating film, and the insulating film is thinned in a portion except on the second impurity region; and a conductive material is laminated on the partially thinned insulating film. The conductor material layer is formed into a desired shape, and the first and And a step of forming a plurality of transfer electrodes on the second impurity region, wherein the second impurity region corresponds to the storage region.
【請求項4】 上記第1及び第2不純物領域に上記半導
体基板と同一導電型の不純物を注入し、上記半導体基板
表面に一導電型の埋め込み領域を形成する工程をさらに
含むことを特徴とする請求項3記載の固体撮像素子の製
造方法。
4. The method further comprises the step of implanting an impurity of the same conductivity type as that of the semiconductor substrate into the first and second impurity regions to form a buried region of one conductivity type on the surface of the semiconductor substrate. The method for manufacturing a solid-state image sensor according to claim 3.
JP4258372A 1992-09-28 1992-09-28 Solid-state image sensing element and manufacture thereof Pending JPH06112467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4258372A JPH06112467A (en) 1992-09-28 1992-09-28 Solid-state image sensing element and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4258372A JPH06112467A (en) 1992-09-28 1992-09-28 Solid-state image sensing element and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH06112467A true JPH06112467A (en) 1994-04-22

Family

ID=17319335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4258372A Pending JPH06112467A (en) 1992-09-28 1992-09-28 Solid-state image sensing element and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH06112467A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7701495B2 (en) 2004-03-01 2010-04-20 Sanyo Electric Co., Ltd. Image capture device and controller of image capture device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7701495B2 (en) 2004-03-01 2010-04-20 Sanyo Electric Co., Ltd. Image capture device and controller of image capture device

Similar Documents

Publication Publication Date Title
US9711559B2 (en) Solid-state imaging device, method for driving the same, method for manufacturing the same, and electronic device
CA1173544A (en) Solid state image sensors
US8183657B2 (en) Solid state imaging device comprising charge retention region and buried layer below gate
JPS6262553A (en) Solid state image pick-up device
EP0174133B1 (en) A solid-state image sensor
US5014132A (en) CCD imager
EP0278565B1 (en) Charge-coupled device and camera provided with such a device
JP2874668B2 (en) Method for manufacturing solid-state imaging device
US6215521B1 (en) Solid state image sensor having an unnecessary electric charge exhausting section formed adjacent to a horizontal electric charge transfer section, and a method for manufacturing the same
US7422925B2 (en) Solid-state imaging apparatus and manufacturing method thereof
JPH07161970A (en) Solid-state image pickup device
US4908684A (en) Solid-state imaging device
CN100394610C (en) Solid shooting component and its drive method
JP3052560B2 (en) Charge transfer imaging device and method of manufacturing the same
JPH06112467A (en) Solid-state image sensing element and manufacture thereof
KR100279961B1 (en) Solid-state imaging device, manufacturing method thereof, and driving method thereof
JP2812003B2 (en) Solid-state imaging device and driving method thereof
US5063581A (en) Semiconductor imaging device having a plurality of photodiodes and charge coupled devices
KR100697766B1 (en) Solid state imaging device and method of manufacturing the same
JP3128839B2 (en) Solid-state imaging device
JP4797302B2 (en) Solid-state imaging device and manufacturing method thereof
US6686963B1 (en) Method for driving solid-state image device
JPH06339081A (en) Driving method for solid-state image pickup element
JP4882207B2 (en) Solid-state image sensor
JPH01123468A (en) Solid-state image sensing element