JPH06112383A - Equipment case inner temperature lowering means - Google Patents

Equipment case inner temperature lowering means

Info

Publication number
JPH06112383A
JPH06112383A JP29756792A JP29756792A JPH06112383A JP H06112383 A JPH06112383 A JP H06112383A JP 29756792 A JP29756792 A JP 29756792A JP 29756792 A JP29756792 A JP 29756792A JP H06112383 A JPH06112383 A JP H06112383A
Authority
JP
Japan
Prior art keywords
heat
housing
convection
sword
heat sink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29756792A
Other languages
Japanese (ja)
Inventor
Hisateru Akachi
久輝 赤地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Actronics KK
Original Assignee
Actronics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Actronics KK filed Critical Actronics KK
Priority to JP29756792A priority Critical patent/JPH06112383A/en
Publication of JPH06112383A publication Critical patent/JPH06112383A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To notably enhance the temperature performance while miniaturizing a sealed equipment case for making it light weighted by applying a heat sink comprising a spiky fin group as a radiator. CONSTITUTION:The radiating surface 3-3 of a cooled element 3 is bonded onto the inner wall surface of the specific part of a case wall 1 while the heated surface 2-4 of the heated flat plate 2-2 of a spiky heat sink 2 is bonded onto the outer wall surface exactly corresponding to the bonded surface of the radiating surface 3-3 of the cooled element 3. At this time, the radiating surface 3-3 of the cooled element 3 and the heated surface 2-4 of the heated flat plate 2-2 of the heat sink 2 are provided with almost the same shape and area. Furthermore, at least the bonded part of the radiating surface 3-3 and the heated surface 2-4 are to be formed of thin and high thermal conductive metal e.g. aluminum thin sheet. Through these procedures, not only the temperature lowering performance can be notably enhanced but also the sealed equipment case can be miniaturized to the light weighted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は密閉機器筐体の内部温度
を降下せしめる手段に関するもので特に剣山形状ヒート
シンクが有効利用された機器筐体内部温度降下手段に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a means for lowering the internal temperature of a sealed device housing, and more particularly to a device housing internal temperature lowering means in which a sword-shaped heat sink is effectively used.

【0002】[0002]

【従来の技術】機器筐体の密閉を可能にし塵埃による汚
染を防止することを可能にする為の筐体内部温度上昇防
止手段としての筐体冷却装置の代表的な例を図5及び図
6に示す。図5に於ては対流制御筐体10は屈曲型のセ
パレータパネルに依って機器筐体内の空気の流れである
高温対流4−7が流れる流路と機器筐体外の空気の流れ
である低温対流2−7が流れる流路とは気密に分離遮断
されてある。高温対流発生手段4−6及び低温対流発生
手段2−6に依り夫々の流路を高温対流4−7及び低温
対流2−7が流れる場合は、熱伝導性の良好な金属の薄
板を屈曲成形して伝熱面積を拡大せしめてあるセパレー
タパネル9の比較的良好な熱交換性能により、高温対流
4−7は低温対流2−7により冷却され、その結果とし
て機器筐体内の空気温度は降下せしめられる。
2. Description of the Related Art A typical example of a casing cooling device as a casing internal temperature rise preventing means for making it possible to seal a device casing and prevent contamination by dust is shown in FIGS. Shown in. In FIG. 5, the convection control housing 10 has a flow path through which a high temperature convection 4-7, which is the flow of air inside the equipment housing, and a low temperature convection that is the flow of air outside the equipment housing, depending on the bent separator panel. It is hermetically separated from the flow path through which 2-7 flows. When the high temperature convection 4-7 and the low temperature convection 2-7 flow through the respective flow paths by the high temperature convection generating means 4-6 and the low temperature convection generating means 2-6, a thin metal plate having good thermal conductivity is formed by bending. Due to the relatively good heat exchange performance of the separator panel 9 having the expanded heat transfer area, the high temperature convection 4-7 is cooled by the low temperature convection 2-7, and as a result, the air temperature in the equipment casing is lowered. To be

【0003】図6は図5の場合より大容量高性能が要求
される時に使用される筐体冷却装置の例であって、熱交
換はセパレータパネル9を貫通して高温対流4−7と低
温対流2−7の間に跨がって配置されてあるヒートパイ
プ群8の熱輸送に依って行われる。 セパレータパネル
9は熱交換の機能は必要とされず単に高温対流流路と低
温対流流路とをセパレートするだけの役目のみが与えら
れている。ヒートパイプ群8は高温対流4−7から熱量
を吸収して低温対流側に輸送し、低温対流2−7の流れ
内に放熱する。この熱交換性能は各ヒートパイプに設け
られてあるフィン群8−1によって増加せしめられる。
FIG. 6 shows an example of a case cooling device used when a large capacity and high performance are required as compared with the case of FIG. 5, and the heat exchange penetrates through the separator panel 9 to obtain high temperature convection 4-7 and low temperature. The heat transfer is performed by the heat transport of the heat pipe group 8 which is arranged across the convection 2-7. The separator panel 9 is not required to have a heat exchange function, and is merely provided with the role of simply separating the high temperature convection flow path and the low temperature convection flow path. The heat pipe group 8 absorbs the amount of heat from the high temperature convection 4-7, transports it to the low temperature convection side, and radiates heat into the low temperature convection 2-7. This heat exchange performance is increased by the fin group 8-1 provided in each heat pipe.

【0004】[0004]

【発明が解決しようとする課厘】図5の場合は簡易で且
つ安価である利点はあるものの、熱交換性能が低い為高
性能を発揮せしめる必要ある場合は屈曲型セパレータパ
ネルの面積を大きくする必要があり、その為に装置が大
型になる点が問題であった。
In the case of FIG. 5, there is an advantage that it is simple and inexpensive, but since the heat exchange performance is low, the area of the bending type separator panel is increased when high performance is required. It was necessary, and the problem was that the device was large.

【0005】図6の場合はヒートパイプの熱輸送による
熱交換であるから高性能ではあるが装置の構成が複雑と
なり製作費が高価となる点が問題点となっていた。
In the case of FIG. 6, since the heat is exchanged by the heat transfer of the heat pipe, the performance is high, but the structure of the apparatus is complicated and the manufacturing cost is high, which is a problem.

【0006】また図5、図6の両例の共通の問題点とし
ては、外部雰囲気が悪く低温流路内が汚染されて洗浄の
必要が生じた場合、筐体冷却装置のすべてを分解する必
要があった。特に図6の場合はヒートパイプ8のフィン
群8−1の洗浄は困難で煩雑な作業であった。
A common problem of both the examples of FIGS. 5 and 6 is that when the external atmosphere is bad and the inside of the low temperature passage is contaminated and cleaning is required, it is necessary to disassemble the entire casing cooling device. was there. Particularly in the case of FIG. 6, cleaning the fin group 8-1 of the heat pipe 8 was a difficult and complicated task.

【0007】更にヒートパイプ式筐体冷却装置に於ける
他の重要な問題点として、使用されるヒートパイプが通
常の2相流ヒートパイプある場合にはトップヒートモー
ドでは作動不能であり、保持姿勢で大幅に性能が変化
し、ヒートパイプが水平になった場合は熱輸送能力が半
減する点がある。従ってヒートパイプ式筺体冷却装置は
機器に装着する際の姿勢に大きな制約が発生し、これは
機器内の部品の配置にも制約を及ぼすことになる。発明
が解決しようとする課題は以上の如き諸問題点である。
Further, as another important problem in the heat pipe type cooling device for the case, if the heat pipe used is a normal two-phase flow heat pipe, it cannot operate in the top heat mode, and the holding posture There is a point that the heat transport capacity is halved when the heat pipe is leveled due to the drastic change in performance. Therefore, the heat pipe type housing cooling device has a large restriction on the posture when it is mounted on the device, and this also restricts the arrangement of parts in the device. The problems to be solved by the invention are various problems as described above.

【0008】[0008]

【課題を解決する為の手段】問題点を解決する為の基本
的な手段について以下の各項に述べる。 (1)筐体外気中に熱量を放熱せしめる手段として剣山
形状ヒートシンクを用いる。剣山形状ヒートシンクは最
近の半導体の急激な進歩に対応して改善され、特にこの
数年の発達は目覚ましく、小型軽量ではあっても強力な
放熱能力を有する剣山形状ヒートシンクが出現するに至
った。
[Means for Solving the Problems] Basic means for solving the problems will be described in the following sections. (1) A sword-shaped heat sink is used as a means for dissipating heat into the outside air of the housing. Kenzan-shaped heat sinks have been improved in response to the recent rapid progress of semiconductors, and in particular, the development in recent years has been remarkable, and a small and light-weighted heat-sink-shaped heat sink has emerged.

【0009】従来放熱性能が悪く、大型かつ重量である
ためアルミヒートシンクは筐体冷却装置における放熱部
として使用されることは無かった。然し最近の高密度剣
山形状ヒートシンクは従来のアルミヒートシンクに比較
して数倍の放熱能力を有し、且つ数分の一に小型軽量化
され、機器筐体の内部温度降下手段に適用すれば、その
小型軽量化に大きな効果を発揮させることが出来る。
Conventionally, the aluminum heat sink has not been used as a heat radiating portion in a case cooling device because of its poor heat radiating performance, large size and heavy weight. However, the recent high-density Kanayama-shaped heat sink has a heat dissipation capacity several times that of conventional aluminum heat sinks, and is made compact and lightweight by a fraction, and if applied to the internal temperature lowering means of the equipment case, It is possible to exert a great effect on the reduction in size and weight.

【0010】特に特願平4−135507及び特願平4
−214456に細管ヒートパイプを用いて適用したl
字形状ピン群を有する剣山型ヒートシンクは通常の剣山
形状ヒートシンクに比較して更に1.5〜2.0倍も強
力であり、これを放熱部として適用して筐体冷却装置を
構成した場合は従来型のヒートパイプ応用の筐体冷却装
置より遥かに小型高性能の筐体冷却装置を構成すること
が出来る。
In particular, Japanese Patent Application No. 4-135507 and Japanese Patent Application No.
-214456 applied using a capillary heat pipe
The sword-shaped heat sink having the V-shaped pin group is 1.5 to 2.0 times stronger than the ordinary sword-shaped heat sink. It is possible to construct a case cooling device having a much smaller size and higher performance than a conventional case cooling device using a heat pipe.

【0011】(2)筐体壁の所定の部分、またはそれに
相当し、筐体内外空気の相互間流動をを遮断するセパレ
ータパネルの何れかを熱伝導性の極めて良好な金属の薄
板で形成し、その筐体内に相当する面に被冷却体を接着
し、それに対応する筐体外に相当する面に剣山形状ヒー
トシンクを接着し、被冷却体と剣山形状ヒートシンクと
が直接接着されてある場合と殆ど同様にに近接接着せし
める。この構造は被冷却体から放熱部である剣山形状ヒ
ートシンクに到る間の熱輸送距離を最短ならしめ、熱輸
送の為の熱抵抗を極めて小さくする。
(2) A predetermined portion of the housing wall or a separator panel corresponding to the predetermined portion, which blocks mutual flow of air inside and outside the housing, is formed of a thin metal plate having excellent heat conductivity. , The body to be cooled is adhered to the surface corresponding to the inside of the housing, and the sword-shaped heat sink is adhered to the surface corresponding to the outside of the housing corresponding to the case where the cooled body and the sword-shaped heat sink are directly bonded. Similarly, close and adhere. This structure minimizes the heat transport distance from the object to be cooled to the sword-shaped heat sink, which is the heat radiating portion, and makes the thermal resistance for heat transport extremely small.

【0012】(3)剣山形状ヒートシンク、及び被冷却
体が剣山形状熱吸収素子である場合の熱吸収フィン群、
等の剣山形状フィン群の放熱及び熱吸収効率を向上させ
るための対流発生手段と対流制御手段をそれらに併設す
る。
(3) Kenzan-shaped heat sink, and a group of heat absorption fins when the object to be cooled is a Kenyama-shaped heat absorption element,
A convection generation means and a convection control means for improving the heat radiation and heat absorption efficiency of the Kenzan-shaped fin group, etc.

【0013】上述の3手段を併用実施することが従来の
筐体冷却装置を使用する機器筐体の内部温度上昇防止手
段に於ける問題点の全てを解決するための基本的な手段
となる。この基本的な手段の適用構造例は図1に例示し
てあり、その詳細については第1実施例にて述べる。
The combined use of the above-mentioned three means is a basic means for solving all the problems in the conventional means for preventing the internal temperature rise of the equipment case using the case cooling device. An example of the application structure of this basic means is illustrated in FIG. 1, and the details thereof will be described in the first embodiment.

【0014】[0014]

【作用】(1)l字形状ピン群を有する剣山型ヒートシ
ンクを放熱部として適用するものとすると受熱平板10
0mm×100mm,フインの高さ40mm、のヒート
シンク1個のみで300Wの放熱能力を発揮せしめるこ
とができる。従って放熱能力500Wの筐体冷却装置を
構成するには放熱部として小型のヒートシンク2個を使
用するのみで良いことになり、筐体冷却装置の筐体の機
器筐体の外部に露出する部分は、対流発生手段のファン
を除いてほぼ高さ60mm長さ250mm幅150mm
で良いことになり、容積比で五分の一程度になり小型
化軽量化は極めて顕著なものとなる。
(1) When the sword-shaped heat sink having the l-shaped pin group is applied as the heat radiating portion, the heat receiving flat plate 10
Only one heat sink of 0 mm × 100 mm and fin height of 40 mm can exhibit the heat radiation capacity of 300 W. Therefore, in order to construct a case cooling device with a heat dissipation capacity of 500 W, it is only necessary to use two small heat sinks as a heat dissipation part, and the part of the case cooling device case exposed to the outside of the device case is Except for the fan of the convection generating means, the height is approximately 60 mm, the length is 250 mm, and the width is 150 mm.
The volume ratio is reduced to about one-fifth, and miniaturization and weight reduction are extremely remarkable.

【0015】(2)筐体壁またはセパレータパネルが薄
肉で熱伝導性が良好な材質である場合にはこれを介在せ
しめて相互接着された被冷却体と剣山型ヒートシンクの
間の接触熱抵抗に対する影響は極めて少ない。筐体壁ま
たはセパレータパネルの材質がアルミニウム(熱伝導率
λ=228W/m℃)としその厚さを1mmとし、接着
面積が100mm×200mmの場合の介在アルミニウ
ムによる増加熱抵抗はR=2.193×10−4℃/W
と極めて少なく、無視しても良い程度の熱抵抗値であ
る。
(2) When the casing wall or the separator panel is made of a material having a thin wall and good thermal conductivity, the contact thermal resistance between the object to be cooled and the sword-shaped heat sink bonded to each other with the material interposed therebetween is The impact is extremely small. The material of the casing wall or the separator panel is aluminum (thermal conductivity λ = 228 W / m ° C.), its thickness is 1 mm, and the increased thermal resistance due to the intervening aluminum when the adhesive area is 100 mm × 200 mm is R = 2.193. × 10 -4 ° C / W
The thermal resistance value is extremely small and can be ignored.

【0016】(3)剣山形状フィン群はヒートシンクに
高性能を与えるが、フィン群が高密度である為、自然対
流条件では高性能を発揮せしめることが出来ない。従っ
て剣山形状ヒートシンクには強制対流発生手段の併設が
不可欠となる。また剣山形状ヒートシンクはフィンに直
行する強制対流による放熱より、フィンに平行する強制
対流による放熱のほうが格段に性能が良好になる場合が
多く、対流制御が適切である場合は熱輸送能力は1.5
〜2.0倍にも向上する。従って適切な対流制御手段を
併設することも剣山形状ヒートシンクには不可欠であ
る。
(3) The Kenzan-shaped fin group gives high performance to the heat sink, but the fin group has a high density, and therefore cannot exhibit high performance under natural convection conditions. Therefore, it is indispensable to install a forced convection generating means for the Kenzan-shaped heat sink. In the case of a Kenzan-shaped heat sink, the performance of heat dissipation by forced convection parallel to the fins is often much better than that of heat dissipation by forced convection perpendicular to the fins. If convection control is appropriate, heat transfer capacity is 1. 5
~ 2.0 times improved. Therefore, it is indispensable for the sword-shaped heat sink to have an appropriate convection control means.

【0017】[0017]

【実施例】第1実施例 図1は本発明の機器筐体内部温度降下手段の基本構造及
び第一実施例、第2実施例に共通の説明図である。1は
密閉機器筐体の筐体外部Cと筐体内部Hの間を気密に隔
絶する筐体壁である。筐体壁1の所定の部分の内壁面に
は被冷却体3の放熱面3−3が接着されてあつて、筐体
壁1の同一部分の、被冷却体3の放熱面3−3の接着面
に正しく対応する外壁面には、剣山形状ヒートシンク2
の受熱平板2−2の受熱面2−4が接着されてある。被
冷却体3の放熱面3−3と剣山形状ヒートシンク2の受
熱平板2−2の受熱面2−4とはほぼ同一形状で且つほ
ぼ同一面積になっている。また筐体壁1に於ける、少な
くも放熱面3−3と受熱面2−4とが接着されてある部
分は薄肉で熱伝導性の良好な金属例えばアルミニウム薄
板の如きもので形成されてある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First Embodiment FIG. 1 is an explanatory view common to the basic structure of the device housing internal temperature lowering means and the first and second embodiments. Reference numeral 1 denotes a housing wall that hermetically separates a housing outside C and a housing inside H of the sealed device housing. The heat radiation surface 3-3 of the cooled body 3 is adhered to the inner wall surface of a predetermined portion of the housing wall 1, and the heat radiation surface 3-3 of the cooled body 3 of the same portion of the housing wall 1 is bonded. On the outer wall that correctly corresponds to the adhesive surface, the sword-shaped heat sink 2
The heat receiving surface 2-4 of the heat receiving flat plate 2-2 is adhered. The heat radiating surface 3-3 of the cooled body 3 and the heat receiving surface 2-4 of the heat receiving flat plate 2-2 of the sword-shaped heat sink 2 have substantially the same shape and substantially the same area. Further, in the housing wall 1, at least the portion where the heat radiating surface 3-3 and the heat receiving surface 2-4 are bonded is formed of a thin metal having good heat conductivity, such as an aluminum thin plate. .

【0018】2−6は強制対流発生手段で一般には軸流
ファンが用いられ、これにより発生する低温強制対流2
−7により剣山形状ヒートシンク2の剣山形状フィン群
2−1の放熱能力は増強せしめられる。ファンの配置は
強制対流を吹き込むよう配置される場合も、ファンの空
気吸引により強制対流を発生せしめるように配置される
場合もある。
Reference numeral 2-6 denotes a forced convection generating means, which is generally an axial flow fan, and the low temperature forced convection generated by this 2
By -7, the heat dissipation capability of the sword-shaped fin group 2-1 of the sword-shaped heat sink 2 is enhanced. The fan may be arranged so as to blow forced convection, or may be arranged so as to generate forced convection by air suction of the fan.

【0019】2−5は対流制御手段であって、一般には
金属板で形成されてあり、強制対流が熱交換に寄与しな
い方向に散逸することを防いだり、対流の流れ方向を制
御して熱交換能率を向上せしめる。図1に於ては対流を
フィン群に直交するよう制御している例が示されてある
が、その流れ方向にはフィン群に平行する流れもありま
た斜交する流れの場合もある。また大きな断面積の多量
の対流を小さな断面積に絞って流速を増加せしめてフィ
ン群内に導入し、フィン群の放熱能力を大幅に強化せし
める場合もある。従って対流制御手段の形状としては夫
々の制御目的に対応して多種多様な形状が採用される。
2-5 is a convection control means, which is generally formed of a metal plate, prevents forced convection from escaping in a direction that does not contribute to heat exchange, and controls the flow direction of convection to control the heat flow. Improves exchange efficiency. Although FIG. 1 shows an example in which convection is controlled so as to be orthogonal to the fin group, the flow direction may be parallel to the fin group or oblique. In some cases, a large amount of convection having a large cross-sectional area is narrowed down to a small cross-sectional area to increase the flow velocity and introduce it into the fin group to significantly enhance the heat dissipation capability of the fin group. Therefore, as the shape of the convection control means, a wide variety of shapes are adopted corresponding to the respective control purposes.

【0020】このような実施例は被冷却体からヒートシ
ンクに至る熱輸送の熱抵抗を極めて小さく押さえ、剣山
形状ヒートシンクの優れた放熱特性を有効に活用するこ
とにより、密閉機器筐体内の被冷却体の熱量を筐体壁を
介して筐体外に効率よく放出せしめる。このような冷却
方式は屈曲型セパレータパネルにより機器筐体内の空気
を冷却する方式やヒートパイプの熱輸送により筐体内外
空気の熱量を交換する間接冷却方式に比較して遥かに効
率的に被冷却体を冷却することが出来る。
In such an embodiment, the thermal resistance of heat transport from the object to be cooled to the heat sink is kept extremely small, and the excellent heat dissipation characteristics of the sword-shaped heat sink are effectively utilized, so that the object to be cooled in the enclosure housing is sealed. It is possible to efficiently dissipate the amount of heat of the outside of the housing through the housing wall. Such a cooling method is much more efficiently cooled than the method of cooling the air inside the equipment housing with a bent separator panel or the indirect cooling method of exchanging the heat quantity of the air inside and outside the housing by heat transfer of a heat pipe. Can cool the body.

【0021】第2実施例 この実施例に於ては密閉機器筐体内の部品群中の主要発
熱部品は被冷却体3として筐体壁1の内壁面に接着され
る。主要発熱部品が複数の場合は被冷却体3は複数とな
り、又これに対応して筐体壁1の外壁面に接着される剣
山形状ヒートシンクも複数となる。このように構成され
てあるから機器筐体内の発熱量の大部分は筐体壁1を介
して剣山形状ヒートシンク2から機器筐体外に排出され
る。部品群中の残余の部品群が発生する少量の発熱は、
図1には示されていないが機器筐体内の所定の部分に設
けられてある強制対流発生手段により引き起こされる強
制対流により機器筐体内壁面の熱吸収能力が増大され、
機器筐体の全筐体壁を貫通して筐体の全外壁面から排出
される。
Second Embodiment In this embodiment, the main heat-generating component in the component group in the enclosure housing is bonded to the inner wall surface of the enclosure wall 1 as the cooled object 3. When there are a plurality of main heat-generating components, there are a plurality of objects to be cooled 3, and correspondingly, there are also a plurality of sword-shaped heat sinks bonded to the outer wall surface of the housing wall 1. With this configuration, most of the heat generated inside the device housing is discharged from the blade-shaped heat sink 2 to the outside of the device housing through the housing wall 1. The small amount of heat generated by the remaining parts in the parts group
Although not shown in FIG. 1, the heat absorption capacity of the inner wall surface of the equipment casing is increased by the forced convection caused by the forced convection generating means provided in a predetermined portion inside the equipment casing,
It passes through all the housing walls of the equipment housing and is discharged from all the outer wall surfaces of the housing.

【0022】第3実施例 第3実施例では機器筐体の内部温度降下手段として密閉
筐体内の空気を冷却する方式が採用される。従って被冷
却体としては剣山形状熱吸収素子4が用いられる。剣山
形状熱吸収素子4は剣山形状フィン群4−1と放熱平板
4−2とからなる。強制対流発生手段4−6により発生
した高温強制対流4−7の熱量は剣山形状フィン群4−
1により吸収され、放熱平板4−2から筐体壁1を貫流
して、剣山形状ヒートシンク2を介して機器筐体外に排
出される。機能的には異なるが剣山形状熱吸収素子4と
剣山形状ヒートシンク2とは全く同じ構造である。
Third Embodiment In the third embodiment, a method of cooling the air in the closed casing is adopted as the internal temperature lowering means of the equipment casing. Therefore, the Kenzan-shaped heat absorbing element 4 is used as the object to be cooled. The sword-shaped heat absorbing element 4 includes a sword-shaped fin group 4-1 and a heat dissipation plate 4-2. The amount of heat of the high temperature forced convection 4-7 generated by the forced convection generating means 4-6 is the Kenyama-shaped fin group 4-.
1 is absorbed by the heat radiating plate 1, flows through the housing wall 1 from the heat radiating plate 4-2, and is discharged to the outside of the device housing through the sword-shaped heat sink 2. Although functionally different, the sword-shaped heat absorbing element 4 and the sword-shaped heat sink 2 have exactly the same structure.

【0023】熱吸収能力を増加せしめるために剣山形状
熱吸収素子4にも対流制御手段4−5が併設される。こ
の対流制御手段4−5も剣山形状ヒートシンク2の対流
制御手段2−5と同様な構造及び機能に構成される。
Convection control means 4-5 is also provided on the sword-shaped heat absorbing element 4 in order to increase the heat absorbing capacity. This convection control means 4-5 also has the same structure and function as the convection control means 2-5 of the sword-shaped heat sink 2.

【0024】第4実施例 本実施例は図3及び図4に例示の如く上述の機器筐体内
部温度降下手段が着脱可能なユニットとして構成されて
ある実施例である。図4に於て筐体壁1の所定の部分に
は所定の面積及び所定の形状の開口部1−1が設けられ
てあり、この開口部1−1には着脱することの自在なセ
パレータパネル5が気密に装着されてある。このセパレ
ータパネル5は機器筐体内外の対流空気の相互間を気密
に遮断分離するセパレータであって、熱伝導性の良好な
金属の薄板で形成されてある。セパレータパネル5の筐
体外の空気の対流と接触する面には剣山形状ヒートシン
ク2が接着されてあり、これに併設して強制対流発生手
段2−6及び対流制御手段2−5が配設されてある。ま
たセパレータパネル5の筐体内の空気の対流と接触する
面に於ける、剣山形状ヒートシンク2が接着されてある
位置に正確に対応する位置にには、被冷却体3または剣
山形状熱吸収素子4が接着されてあり、接着体が剣山形
状熱吸収素子4である場合にはそれに併設して強制対流
発生手段4−6及び対流制御手段4−5が配設されてあ
る。
Fourth Embodiment This embodiment is an embodiment in which the above-mentioned temperature lowering means of the equipment casing is constructed as a detachable unit as illustrated in FIG. 3 and FIG. In FIG. 4, a predetermined portion of the housing wall 1 is provided with an opening 1-1 having a predetermined area and a predetermined shape, and the opening 1-1 is a detachable separator panel. 5 is attached airtightly. The separator panel 5 is a separator for airtightly separating and separating the convective air inside and outside the equipment casing, and is formed of a thin metal plate having good heat conductivity. On the surface of the separator panel 5 that contacts the air convection outside the housing, a sword-shaped heat sink 2 is adhered, and a forced convection generating means 2-6 and a convection control means 2-5 are provided adjacent to this. is there. Further, in the surface of the separator panel 5 that contacts the air convection in the housing, at a position that exactly corresponds to the position where the sword-shaped heat sink 2 is adhered, the cooled object 3 or the sword-shaped heat absorbing element 4 is provided. In the case where the bonded body is the sword-shaped heat absorbing element 4, the forced convection generating means 4-6 and the convection control means 4-5 are provided in parallel with it.

【0025】これらセパレータパネル、剣山形状ヒート
シンク、被冷却体(または剣山形状熱吸収素子)、強制
対流発生手段及び対流制御手段の組合わせ構造体は全体
として機器筐体内部温度降下ユニットとして構成されて
ある。図3及び図4に於てはこの機器筐体内部温度降下
ユニットは対流制御手段を兼ねた対流制御筐体10の中
に格納されてある。
The combined structure of the separator panel, the sword-shaped heat sink, the body to be cooled (or the sword-shaped heat absorbing element), the forced convection generating means and the convection control means is constructed as a temperature drop unit inside the equipment casing as a whole. is there. In FIGS. 3 and 4, the temperature lowering unit inside the equipment housing is housed in the convection control housing 10 which also serves as the convection control means.

【0026】本実施例においては剣山形状ヒートシンク
2の受熱平板2−2、剣山形状熱吸収素子4の放熱平板
4−2、のいずれかかの平板を大きくすることによりセ
パレータパネル5を兼ねさせることも出来る。又はセパ
レータパネル5に直接剣山形状フィン群を搭載して形成
することにより、剣山形状ヒートシンク2の受熱平板2
−2、剣山形状熱吸収素子4の放熱平板4−2、を省略
することも出来る。
In this embodiment, either the heat-receiving flat plate 2-2 of the sword-shaped heat sink 2 or the heat-dissipating flat plate 4-2 of the sword-shaped heat-absorbing element 4 is made larger to serve also as the separator panel 5. You can also Alternatively, by forming the sword-shaped fins directly on the separator panel 5, the heat-receiving flat plate 2 of the sword-shaped heat sink 2 can be formed.
-2, the heat dissipation flat plate 4-2 of the Kenzan-shaped heat absorption element 4 can be omitted.

【0027】[0027]

【発明の効果】以上の如く構成された機器筐体内部温度
降下手段を適用することにより、従来の機器筐体内部温
度降下手段を適用した場合に比較して、その温度降下性
能を大幅に改善することが出来るだけでなく、密閉機器
筐体の小型化軽量化にも寄与するところがきい。又従来
の筐体冷却装置のごとき機器筐体内部温度降下ユニット
として適用する場合はユニットの性能を向上させ、大幅
な小型化軽量化を可能ならしめる。更にこの機器筐体内
部温度降下ユニットは如何なる配設姿勢でも性能が変化
しないので、機器設計の自由度が大きくなる利点があ
る。更に大きな利点としてはユニットの清掃に際してユ
ニットの総てを分解する必要がなく、放熱用剣山形状ヒ
ートシンク2のみを取り外して清掃すれば良く、清掃に
要する時間を数分の一に減少せしめることが出来る。
By applying the temperature lowering means inside the equipment casing configured as described above, the temperature lowering performance is greatly improved as compared with the case where the conventional temperature lowering means inside the equipment casing is applied. Not only can it be done, but it can also contribute to the miniaturization and weight reduction of the sealed equipment housing. Further, when it is applied as a temperature lowering unit inside a device case such as a conventional case cooling device, the performance of the unit is improved, and the size and weight can be greatly reduced. Further, since the performance of the temperature lowering unit inside the equipment casing does not change in any arrangement posture, there is an advantage that the degree of freedom in equipment design is increased. As a further great advantage, it is not necessary to disassemble all of the units when cleaning the units, and it is sufficient to remove only the radiating blade-shaped heat sink 2 for cleaning, and the time required for cleaning can be reduced to a fraction. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の機器筐体内部温度降下手段の基本構造
及び第1実施例及び第2実施例の説明図である。
FIG. 1 is an explanatory view of a basic structure of a device casing internal temperature lowering means of the present invention, and a first embodiment and a second embodiment.

【図2】本発明の機器筐体内部温度降下手段の第3実施
例の説明図である。
FIG. 2 is an explanatory view of a third embodiment of the temperature lowering means inside the equipment casing of the present invention.

【図3】本発明の機器筐体内部温度降下手段の第4実施
例の1例の説明図である。
FIG. 3 is an explanatory diagram of an example of a fourth embodiment of the temperature lowering means inside the equipment casing of the present invention.

【図4】本発明の機器筐体内部温度降下手段の第4実施
例の他の例の説明図である。
FIG. 4 is an explanatory view of another example of the fourth embodiment of the temperature lowering means inside the equipment casing of the present invention.

【図5】従来の機器筐体内部温度降下手段である筐体冷
却装置の構造の一例を示す説明図である。
FIG. 5 is an explanatory diagram showing an example of the structure of a conventional casing cooling device that is a temperature lowering means inside the device casing.

【図6】従来の機器筐体内部温度降下手段である筐体冷
却装置の構造の他の一例を示す説明図である。
FIG. 6 is an explanatory view showing another example of the structure of a conventional casing cooling device that is a temperature lowering means inside the device casing.

【符号の説明】[Explanation of symbols]

1 筐体壁 1−1 開口部 2 剣山形状ヒートシンク 2−5 対流制御手段 2−6 強制対流発生手段 2−7 低温対流 3 被冷却体 4 剣山形状熱吸取素子 4−5 対流制御手段 4−6 強制対流発生手段 4−7 高温対流 5 セパレータパネル 7 屈曲型セパレータパネル 8 ヒートパイプ群 9 セパレータパネル 10 対流制御筐体 C 筐体外部 H 筐体内部 DESCRIPTION OF SYMBOLS 1 Housing wall 1-1 Opening 2 Kenzan-shaped heat sink 2-5 Convection control means 2-6 Forced convection generation means 2-7 Low temperature convection 3 Cooled body 4 Kenzan-shaped heat absorption element 4-5 Convection control means 4-6 Forced convection generating means 4-7 High temperature convection 5 Separator panel 7 Bent type separator panel 8 Heat pipe group 9 Separator panel 10 Convection control case C Case outside H Case inside

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 薄肉金属板からなる受熱平板の放熱面に
剣山形状フィン群が形成されてあり、筐体内に配設され
てある被冷却体の放熱面に接着された受熱平板の受熱面
から吸収した被冷却体の熱量を、剣山形状フィン群から
対流外気中に放熱して被冷却体を冷却せしめる剣山形状
ヒートシンクを有効に適用することによって、密閉機器
筐体の内部温度を効果的に降下せしめる温度降下手段で
あって、剣山形状ヒートシンクの受熱面と被冷却体の放
熱面とはほぼ同一形状同一面積であり、それらは対象機
器の筐体壁の所定の部分を挟持して、被冷却体は筐体壁
の内壁面に、剣山形状ヒートシンクは筺体壁の外壁面
に、相互に対応して且つ可能な限り近接して接着されて
あり、更にこの密閉機器筺体の筐体壁に於ける少なくも
被冷却体及び剣山形状ヒートシンクが内外に接着される
部分は、熱伝導性の良好な金属の薄板で形成されてあ
り、更に剣山形状ヒートシンクにはその放熱能力を増大
せしめる為の強制対流発生手段と対流制御手段とが併設
されてあることを特徴とする機器筐体内部温度降下手
段。
1. A heat-receiving flat plate made of a thin metal plate is provided with fin-shaped fins on the heat-radiating surface, and the heat-receiving flat plate is adhered to the heat-radiating surface of an object to be cooled arranged in the housing. Effectively applying the Kenyama-shaped heat sink that radiates the absorbed heat of the cooled object to the convection outside air from the Kenyama-shaped fin group to cool the cooled object, effectively lowering the internal temperature of the sealed device housing. This is a means for lowering the temperature, in which the heat-receiving surface of the sword-shaped heat sink and the heat-dissipating surface of the object to be cooled have almost the same shape and area, and they sandwich a predetermined part of the housing wall of the target device to cool it. The body is bonded to the inner wall surface of the housing wall, and the sword-shaped heat sink is bonded to the outer wall surface of the housing wall so as to correspond to each other and as close as possible to each other, and further, on the housing wall of the sealed device housing. At least the object to be cooled and the shape of the sword The part where the heat sink is bonded inside and outside is formed of a thin metal plate with good thermal conductivity, and the sword-shaped heat sink is equipped with a forced convection generation means and a convection control means to increase its heat dissipation capability. The temperature lowering means inside the equipment casing is characterized by being provided.
【請求項2】 密閉機器筐体の筐体壁の所定の部分の内
壁に接着される被冷却体は当該機器の部品群における主
要発熱部品であり、残余の部品群が発生する少量の熱量
は筐体内の所定の部分に設けられてある強制対流発生手
段により、密閉筐体の全壁面を介して筐体外に貫流放熱
されることを特徴とする請求項1に記載の機器筐体内部
温度降下手段。
2. The object to be cooled, which is adhered to the inner wall of a predetermined portion of the housing wall of the hermetically sealed equipment housing, is the main heat-generating component in the component group of the device, and the small amount of heat generated by the remaining component group is 2. The temperature drop inside the equipment housing according to claim 1, wherein the forced convection generating means provided in a predetermined portion in the housing radiates heat to the outside of the housing through all wall surfaces of the hermetically sealed housing. means.
【請求項3】 密閉機器筐体の筐体壁に接着配接されて
ある被冷却体は剣山形状フィン群により機器内の対流空
気中から熱量を吸収しその放熱面から熱量を排出する剣
山形状熱吸収素子であり、この剣山形状熱吸収素子には
その熱吸収能力を増大させる為の強制対流発生手段と対
流制御手段とが併設されてあることを特徴とする請求項
1に記載の機器筐体内部温度降下手段。
3. The sealed object housing has a body to be cooled, which is adhered and attached to the housing wall, which absorbs heat from convective air in the equipment and discharges heat from the radiating surface by means of a group of fins. 2. The device casing according to claim 1, wherein the device is a heat absorption element, and a forced convection generation means and a convection control means for increasing the heat absorption capacity are provided in parallel with the sword-shaped heat absorption element. Means for lowering body temperature.
【請求項4】 密閉機器筐体の筐体壁の所定の部分には
所定の面積で所定の形状の開口部が設けられてあり、こ
の開口部には着脱することの自在なセパレータパネルが
装着されてあり、このセパレータパネルは機器筐体の内
外の対流空気を相互に且つ機密に遮断分離するセパレー
タであって、熱伝導性の良好な金属の薄板で形成されて
あり、セパレータパネルの筐体外空気の対流と接触する
面には剣山形状ヒートシンクが接着されてあり、これに
併設して強制対流発生手段及び対流制御手段が装着され
てあり、筐体内空気の対流と接触する面に於ける剣山形
状ヒートシンクが接着されてある位置に正確に対応する
位置には、被冷却体または剣山形状熱吸収素子が接着さ
れてあり、剣山形状熱吸収素子が接着されてある場合に
はこれに併設して強制対流発生手段と対流制御手段が装
着されてあり、それらセパレータパネル、剣山形状ヒー
トシンク、被冷却体(または剣山形状熱吸収素子)、強
制対流発生手段及び対流制御手段、の組合わせ構造体は
全体として機器筐体内部温度降下ユニットとして構成さ
れてあることを特徴とする請求項1に記載の機器筐体内
部温度降下手段。
4. An opening of a predetermined shape having a predetermined area is provided in a predetermined portion of a housing wall of the hermetically sealed equipment housing, and a detachable separator panel is mounted in the opening. This separator panel is a separator that shields convective air inside and outside the equipment casing from each other and secretly, and is formed of a thin metal plate having good thermal conductivity. A sword-shaped heat sink is adhered to the surface that comes into contact with the air convection, and a forced convection generating means and a convection control means are attached to the heat sink in parallel with it. An object to be cooled or a sword-shaped heat absorbing element is adhered at a position that exactly corresponds to the position where the stencil-shaped heat sink is adhered. strength The control convection generating means and the convection control means are mounted, and the combined structure of the separator panel, the sword-shaped heat sink, the cooled object (or the sword-shaped heat absorbing element), the forced convection generation means and the convection control means is the whole. The device housing internal temperature lowering unit according to claim 1, which is configured as a device housing internal temperature lowering unit.
JP29756792A 1992-09-28 1992-09-28 Equipment case inner temperature lowering means Pending JPH06112383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29756792A JPH06112383A (en) 1992-09-28 1992-09-28 Equipment case inner temperature lowering means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29756792A JPH06112383A (en) 1992-09-28 1992-09-28 Equipment case inner temperature lowering means

Publications (1)

Publication Number Publication Date
JPH06112383A true JPH06112383A (en) 1994-04-22

Family

ID=17848225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29756792A Pending JPH06112383A (en) 1992-09-28 1992-09-28 Equipment case inner temperature lowering means

Country Status (1)

Country Link
JP (1) JPH06112383A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4659989B2 (en) * 2001-02-15 2011-03-30 帝人ファーマ株式会社 Medical oxygen concentrator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4659989B2 (en) * 2001-02-15 2011-03-30 帝人ファーマ株式会社 Medical oxygen concentrator

Similar Documents

Publication Publication Date Title
US7613001B1 (en) Heat dissipation device with heat pipe
US20100032141A1 (en) cooling system utilizing carbon nanotubes for cooling of electrical systems
JP2005018926A (en) Cooling structure of disk storage device
JP4720688B2 (en) Electronic control unit cooling system
JP3364764B2 (en) Sealed equipment housing cooling device
JP2006245356A (en) Cooling apparatus of electronic device
JP2003110072A (en) Heat pipe type heat sink
JP2001015969A (en) Cooling apparatus
JPH10125836A (en) Heat sink cooling apparatus
JPH10270616A (en) Apparatus for radiating heat of electronic components
JPH06112383A (en) Equipment case inner temperature lowering means
JP2003188327A (en) Heat dissipating module
JP3042541B2 (en) Heat pipe type cooler
JP2001339020A (en) Semiconductor module
JPH08125366A (en) Device for cooling electronic part
JPH06291480A (en) Electronic circuit module
JP3261820B2 (en) Heating element mounting board
JPH1187586A (en) Cooling structure for multi-chip module
JP4229738B2 (en) Heat pipe type heat dissipation unit
JP4422390B2 (en) Electronic device cooling device
JP2005251916A (en) Cooling structure of electronic apparatus case
JP3454761B2 (en) Cooling apparatus and cooling method for electronic equipment
JP2000315880A (en) Circuit-accommodating body
JP4324364B2 (en) Heat dissipation device
JPH08125367A (en) Device for cooling electronic part