JPH06112132A - Organometal vapor growth device - Google Patents

Organometal vapor growth device

Info

Publication number
JPH06112132A
JPH06112132A JP25514592A JP25514592A JPH06112132A JP H06112132 A JPH06112132 A JP H06112132A JP 25514592 A JP25514592 A JP 25514592A JP 25514592 A JP25514592 A JP 25514592A JP H06112132 A JPH06112132 A JP H06112132A
Authority
JP
Japan
Prior art keywords
substrate
gas
gas supply
supply nozzle
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25514592A
Other languages
Japanese (ja)
Inventor
Youji Yamada
羊治 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP25514592A priority Critical patent/JPH06112132A/en
Publication of JPH06112132A publication Critical patent/JPH06112132A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a device capable of preventing the generation of a film defect due to the dust of a reaction product and a device capable of excellently forming a film, to which a doping element is doped uniformly and sufficiently. CONSTITUTION:In a device, an angle alpha1 formed by the axis of an organometallic gas supply nozzle 2 and a substrate 1 carried in the horizontal direction to the underside (a film forming surface) of the substrate 1 satisfies 0 deg.<alpha1<90 deg., and an edge section not faced oppositely to the substrate l of the opening section 21 of the nozzle is arranged so as to be recessed from a surface vertical to the substrate 1 passing through an edge section oppositely faced to the substrate 1. It is more preferable that a dust reservoir section 22 is mounted to the nozzle. A uniformly doped film can be obtained in a device, in which a plurality of the nozzles having separately different angles formed by the nozzle axis and the substrate are installed and the same position of the substrate 1 can be supplied simultaneously with a plurality of kinds of gases.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、有機金属気相成長装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metalorganic vapor phase epitaxy apparatus.

【0002】[0002]

【従来の技術】有機金属気相成長法(MOCVD法)に
おいて、成膜する基板上へのガス供給法としては、従
来、図3の要部説明図に示すように反応室5内の基板ホ
ルダー4上に水平に装着された基板1の成膜面にガスを
垂直に吹きつけて点線矢印のように流すバーティカル型
と、図4の要部説明図に示すように反応室5内の基板ホ
ルダー4に垂直に装着された基板1の成膜面に沿って点
線矢印のようにガスを流すバレル型とが多用されてき
た。しかしながら、これらの方法では均一な膜厚に成膜
することが難しく、また、基板上への塵埃の付着,有機
金属ガス反応生成物の粉塵の付着などにより膜欠陥が発
生し、それらの結果として、膜の大面積化が難しいとい
う問題があった。このような問題の改善策として、図5
の要部説明図に示すように、反応性ガスを満たした反応
室5内で基板1を水平方向に矢印Aのように搬送しなが
ら、基板1の下面にガス供給ノズル2から有機金属ガス
を点線矢印のように垂直に吹きつけて成膜する方法が知
られている。
2. Description of the Related Art In the metal organic chemical vapor deposition method (MOCVD method), as a method of supplying a gas onto a substrate on which a film is to be formed, a substrate holder in a reaction chamber 5 has conventionally been used as shown in FIG. 4, a vertical type in which a gas is vertically blown to the film-forming surface of the substrate 1 mounted horizontally on the substrate 1 and flowed as indicated by a dotted arrow, and a substrate holder in the reaction chamber 5 as shown in an explanatory view of main parts of FIG. A barrel type in which gas is caused to flow along the film forming surface of the substrate 1 mounted vertically on the substrate 4 as shown by a dotted arrow has been widely used. However, it is difficult to form a film with a uniform film thickness by these methods, and film defects occur due to the adhesion of dust on the substrate, the adhesion of dust of the reaction product of the organometallic gas, and the like. However, there is a problem that it is difficult to increase the area of the film. As a remedy for such a problem, FIG.
As shown in the explanatory view of the main part of FIG. 1, while transporting the substrate 1 in the reaction chamber 5 filled with the reactive gas in the horizontal direction as shown by the arrow A, the organometallic gas is supplied from the gas supply nozzle 2 to the lower surface of the substrate 1. A method is known in which a film is sprayed vertically as indicated by a dotted arrow.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上述の
反応性ガス雰囲気中で基板を水平方向に搬送しながら、
基板下面に有機金属ガスを垂直に吹きつける方法におい
ても、有機金属ガス反応生成物の粉塵による膜欠陥の問
題を十分に解決するには至っていない。これは、反応室
内側壁,上壁および基板ホルダーに堆積した反応生成物
が剥がれて生じた粉塵がガス供給ノズル内に落ち込み、
ノズルからのガス吹き出しにより舞い上がり、基板下面
(成膜面)に付着するためである。
However, while the substrate is transported horizontally in the above-mentioned reactive gas atmosphere,
Even in the method of vertically spraying the organometallic gas onto the lower surface of the substrate, the problem of film defects due to dust of the organometallic gas reaction product has not been sufficiently solved. This is because the reaction product accumulated on the side wall of the reaction chamber, the upper wall, and the substrate holder is peeled off, and the dust generated falls into the gas supply nozzle.
This is because the gas blows up from the nozzle and adheres to the lower surface of the substrate (film forming surface).

【0004】また、前述のように、基板下面に有機金属
ガスを垂直に吹きつける方法の場合、図6の要部説明図
に示すように、ガス供給ノズル2より吹き出したガスが
点線矢印のように基板1の下面で反射するため、成膜に
使われるガスの使用効率向上が難しくなる。すなわち、
反応がガス供給量に依存する段階においては、ガス流量
(流速)を増大させることにより成膜速度を速くするこ
とが図られるが、流速を速くすると基板で反射するガス
分量が増えるために、基板上で反応せず排気されるガス
分量が増え、期待するほど使用効率が向上しないことに
なる。
Further, as described above, in the case of the method of vertically spraying the organic metal gas onto the lower surface of the substrate, the gas blown out from the gas supply nozzle 2 is shown by a dotted arrow as shown in the explanatory view of the main part of FIG. Moreover, since the light is reflected on the lower surface of the substrate 1, it is difficult to improve the use efficiency of the gas used for film formation. That is,
In the stage where the reaction depends on the gas supply amount, the film formation rate can be increased by increasing the gas flow rate (flow rate). However, increasing the flow rate increases the amount of gas reflected by the substrate, The above reaction does not react and the amount of gas exhausted increases, resulting in less efficient use than expected.

【0005】前記のような反応生成物の粉塵の付着とガ
ス使用効率の問題を解決するには、バレル型に見られる
ように基板に対してガスの流れを水平にすればよいが、
図7の要部説明図に示すように、基板1を基板ホルダー
4およびマスク6で固定する場合には、ガスの流れと基
板表面との間に微妙な空間が生じ、成膜効率を低下させ
ることになる。
In order to solve the problems of dust adhesion of the reaction product and gas use efficiency as described above, it is sufficient to make the gas flow horizontal with respect to the substrate as seen in the barrel type.
As shown in the principal part explanatory view of FIG. 7, when the substrate 1 is fixed by the substrate holder 4 and the mask 6, a delicate space is generated between the gas flow and the substrate surface, and the film formation efficiency is reduced. It will be.

【0006】また、第一の有機金属ガスを用いてMOC
VD法で成膜中に別の有機金属ガスを流して膜中にこの
別の金属をドーピングして、所要の機能性膜を成膜する
ことも行われているが、この場合、上述の基板を水平方
向に搬送しながら基板下面に有機金属ガスを垂直に吹き
つける方法では、図8の要部説明図に示すように、ガス
供給ノズル2で第一の有機金属ガスを吹き出させてこの
ガスと反応性ガスが基板1上で反応を起こした後で(母
体となる膜7がある程度成膜された後で)、ガス供給ノ
ズル2a,ノズル2b・・・で次々と別の有機金属ガス
を吹き出して反応を起こさせてこれらの有機金属をドー
ピングさせることになるので、ドーピング元素が膜中に
均一に、また、十分に拡散されないという問題があっ
た。この問題は、ドーピングすべき元素が増え、2番目
以降のガス供給ノズルの位置が第一の有機金属ガスのノ
ズルから離れれば離れるほど深刻となる。これを解決す
る方法としては、第一の有機金属ガスとドーピングに用
いる有機金属ガスとを混合して、一つのノズルから吹き
出させることが最も有効であるが、混合することにより
有機金属ガス間で反応が起きる場合には、この手段は採
ることができない。
Further, the MOC is obtained by using the first organometallic gas.
In the VD method, another metal-organic gas is caused to flow during film formation to dope the other metal into the film to form a desired functional film. In this case, the above-mentioned substrate is used. In the method of vertically spraying the organometallic gas onto the lower surface of the substrate while transporting the gas in the horizontal direction, the first organometallic gas is blown out by the gas supply nozzle 2 as shown in the explanatory view of the main part of FIG. After the reactive gas reacts on the substrate 1 (after the base film 7 is formed to some extent), another organometallic gas is sequentially supplied by the gas supply nozzle 2a, the nozzle 2b, .... There is a problem that the doping element is not uniformly and sufficiently diffused in the film, because the organic metal is doped by being blown out to cause a reaction. This problem becomes more serious as the number of elements to be doped increases and the positions of the second and subsequent gas supply nozzles move away from the first organometallic gas nozzle. As a method of solving this, it is most effective to mix the first organic metal gas and the organic metal gas used for doping and blow it out from one nozzle. If a reaction occurs, this measure cannot be taken.

【0007】この発明は、上述の点に鑑みてなされたも
のであって、反応生成物の粉塵がガス供給ノズル内に落
ち込み、その粉塵がガスと共に吹き出して成膜中に基板
表面に付着して膜欠陥が発生するのを防止することので
きる有機金属気相成長装置を提供することを解決しよう
とする第一の課題とする。また、第一の有機金属ガスに
より成膜される膜中に別の有機金属ガスによるドーピン
グ元素を均一に十分にドーピングさせることのできる有
機金属気相成長装置を提供することを解決しようとする
第二の課題とする。
The present invention has been made in view of the above points, and the dust of the reaction product falls into the gas supply nozzle, and the dust is blown out together with the gas and adheres to the substrate surface during film formation. A first problem to be solved is to provide an organometallic vapor phase epitaxy apparatus capable of preventing a film defect from occurring. Another object of the present invention is to provide a metal-organic vapor phase epitaxy apparatus capable of uniformly and sufficiently doping a doping element with another metal-organic gas into a film formed with the first metal-organic gas. The second issue.

【0008】[0008]

【課題を解決するための手段】上記の第一の課題は、こ
の発明によれば、反応性ガスの満たされた反応室内で水
平方向に搬送される基板の下面にガス供給ノズルで有機
金属ガスを供給してこの基板の下面に機能性膜を成膜す
る有機金属気相成長装置において、ガス供給ノズルの軸
と基板の下面とのなす角度α1 が0°<α1 <90°で
あり、かつ、ガス供給ノズルのガス吹き出し口の基板に
対向していない縁部が基板に対向している縁部を通る基
板に垂直な面よりも引っ込んでいる構成の有機金属気相
成長装置とすることによって解決される。
According to the present invention, the above-mentioned first object is to use an organometallic gas on a lower surface of a substrate which is horizontally conveyed in a reaction chamber filled with a reactive gas by a gas supply nozzle. In the metal-organic vapor phase epitaxy apparatus for supplying a gas to form a functional film on the lower surface of the substrate, the angle α 1 formed by the axis of the gas supply nozzle and the lower surface of the substrate is 0 ° <α 1 <90 °. In addition, the metal-organic vapor phase epitaxy apparatus has a configuration in which an edge portion of the gas outlet of the gas supply nozzle that does not face the substrate is retracted from a plane that passes through the edge portion that faces the substrate and is perpendicular to the substrate. Will be solved by

【0009】このとき、さらに、ガス供給ノズルのガス
吹き出し口の向きを基板の搬送方向と反対の方向とし、
装置の真空排気口を基板の搬送方向と反対側に設け、か
つ、基板搬送速度可変機構を設けた装置とすると、ガス
の使用効率,生産性の向上を図ることが可能となるので
好ましい。また、ガス供給ノズルまたはガス供給ノズル
へのガス配管ラインの途中に有機金属ガスの反応生成物
粉塵の溜まり部を設けるとより好適である。
At this time, further, the direction of the gas outlet of the gas supply nozzle is opposite to the substrate carrying direction,
It is preferable to provide a vacuum exhaust port of the apparatus on the side opposite to the substrate transport direction and to provide a substrate transport speed varying mechanism, since it is possible to improve gas use efficiency and productivity. Further, it is more preferable to provide a reservoir for the reaction product dust of the organometallic gas in the middle of the gas supply nozzle or the gas piping line to the gas supply nozzle.

【0010】また、上記の第二の課題は、前記の第一の
課題を解決できる有機金属気相成長装置において、ガス
供給ノズルの軸と基板の下面とのなす角度α1 がそれぞ
れ異なるガス供給ノズルを複数個設け基板の同一箇所に
同時に複数種のガスを供給することができる有機金属気
相成長装置とすることによって解決される。
The second problem is that in the metal-organic vapor phase epitaxy apparatus capable of solving the first problem, the gas supply nozzles have different angles α 1 between the axis of the gas supply nozzle and the lower surface of the substrate. This can be solved by using a metal-organic vapor phase epitaxy apparatus that is provided with a plurality of nozzles and can simultaneously supply a plurality of types of gases to the same location on a substrate.

【0011】[0011]

【作用】水平方向に搬送される基板の成膜面である下面
とガス供給ノズルの軸とがなす角度α1 を0°<α1
90°とし、かつ、ガス供給ノズルのガス吹き出し口の
基板に対向していない縁部が基板に対向している縁部を
通る基板に垂直な面よりも引っ込んでいる構成としたこ
とにより、反応室側壁,上壁から剥離して落ちてくる反
応生成物の粉塵がノズル内に落ち込むことを防ぐことが
でき、反応生成物の粉塵による膜欠陥の発生を防ぐこと
が可能となる。特に基板が大型になるほど従来技術との
差が大きくなり有効である。α1 が0に近ければ近いほ
ど効果的である。また、ガス供給ノズルのガス吹き出し
口の向きを基板の搬送方向と反対の方向とし、装置の真
空排気口を基板の搬送方向と反対側に設けると、ガスの
流れが基板面に平行な層流となり、ガス吹きつけ位置で
反応せずに残っていたガスが基板後方で反応して成膜に
寄与するのでガスの使用効率が良くなる。その際、基板
搬送速度が一定であると、基板搬送方向において基板後
方の膜厚が基板前方の膜厚より厚くなるが、この現象は
基板搬送速度を可変できる機構を付設し、ガス吹きつけ
位置での基板搬送速度を基板の前方より後方に向かって
適度に加速していくことによって避けることができ、こ
れは、さらに生産性とガスの使用効率を向上させること
になるので好ましい。
[Function] The angle α 1 formed by the lower surface, which is the film forming surface of the substrate conveyed in the horizontal direction, and the axis of the gas supply nozzle is 0 ° <α 1 <
The reaction is performed at 90 ° and the edge of the gas outlet of the gas supply nozzle that does not face the substrate is recessed from the plane perpendicular to the substrate that passes through the edge that faces the substrate. It is possible to prevent the dust of the reaction product separated from the chamber side wall and the upper wall from falling into the nozzle, and it is possible to prevent the generation of a film defect due to the dust of the reaction product. In particular, the larger the substrate, the greater the difference from the prior art, which is effective. The closer α 1 is to 0, the more effective it is. Also, if the gas outlet of the gas supply nozzle is oriented in the direction opposite to the substrate transport direction and the vacuum exhaust port of the device is installed on the opposite side of the substrate transport direction, the gas flow will be parallel to the substrate surface. Therefore, the gas remaining unreacted at the gas blowing position reacts behind the substrate and contributes to film formation, so that the gas use efficiency is improved. At that time, if the substrate transport speed is constant, the film thickness behind the substrate becomes thicker than the film thickness in front of the substrate in the substrate transport direction. However, this phenomenon is accompanied by a mechanism that can change the substrate transport speed. This can be avoided by moderately accelerating the substrate transfer speed in the rearward direction from the front side of the substrate, which is preferable because it further improves productivity and gas use efficiency.

【0012】上述のような装置としても、有機金属ガス
の反応生成物の粉塵がノズル内に落下してくるのを完全
に無くすことは難しく、極僅かであるにしろ粉塵がノズ
ル内に落下してきて、これがガスの流れにのって吹き出
されて膜欠陥を発生させる。このため、ノズル内または
ノズルへのガス配管ライン内にガスの流れる通路から外
れた粉塵溜まり部を設け、落下してきた粉塵をここに溜
めて、ガスの流れにのらないようにしてしまうとよい。
さらに、この場合、ガス流量,反応室内成膜圧力を適切
に選んで粉塵溜まり部下部を外部に開口可能とし、ノズ
ル内へ落下してくる粉塵を開口部より外部へ放出できる
ようにすると、粉塵溜まり部内清掃回数を減らすことが
でき、装置の稼働性がよくなるので望ましい。
Even with the apparatus as described above, it is difficult to completely prevent the dust of the reaction product of the organometallic gas from falling into the nozzle, and even a very small amount of dust falls into the nozzle. Then, this is blown out along with the gas flow to generate a film defect. For this reason, it is advisable to provide a dust collecting portion outside the passage through which the gas flows in the nozzle or in the gas piping line to the nozzle, and collect the falling dust here so that it does not get into the gas flow. .
Further, in this case, if the gas flow rate and the film formation pressure in the reaction chamber are appropriately selected so that the lower part of the dust reservoir can be opened to the outside, and the dust falling into the nozzle can be discharged to the outside from the opening, This is desirable because the number of times of cleaning inside the reservoir can be reduced and the operability of the device improves.

【0013】次に、上記の装置において、ガス供給ノズ
ルの軸と基板の下面とのなす角度α 1 がそれぞれ異なる
ガス供給ノズルを複数個設け基板の同一箇所に同時に複
数種のガスを供給することができるような構成とする
と、膜中にドーピング元素を均一に含んだ機能性膜を良
好に成膜することができる。すなわち、このような装置
を用いると、一つのノズルから母体となる膜を成膜する
ガスを吹き出して基板上で反応させながら、その反応を
起こしているところへ他のノズルからドーピング元素を
反応生成するガスを吹き出させて反応させることがで
き、膜中にドーピング元素を均一に十分ドーピングする
ことが可能となる。
Next, in the above apparatus, the gas supply nozzle
Angle α between the axis of the 1Are different
Providing multiple gas supply nozzles at the same location on the substrate simultaneously
Configured so that several types of gas can be supplied
And a functional film containing a doping element uniformly in the film
The film can be formed favorably. That is, such a device
When used, the base film is formed from one nozzle.
While blowing gas to react on the substrate, the reaction
Doping element from another nozzle to where it is awake
The gas produced by the reaction can be blown out and reacted.
The film, the doping element is uniformly and sufficiently doped.
It becomes possible.

【0014】[0014]

【実施例】以下、この発明の実施例を、図面を参照しな
がら説明する。 実施例1 図1は、この発明の第一の課題を解決するための一実施
例のMOCVD装置の要部説明図を示す。反応性ガスの
満たされた反応室内(図示はしてない)で、矢印Aのよ
うに水平方向に搬送される基板1の下面に対して、ガス
吹き出し口である開口部21が長方形のガス供給ノズル
2が、開口部21を矢印Aと反対方向に向け、開口部2
1の長方形の長手方向の一辺の縁部を基板1の下面に平
行とし、その軸と基板1の下面とのなす角度α1 が45
°となるように配置されている。そうして、開口部21
は基板1の下面に対して、開口部21の長方形の長手方
向の基板1に対向する一辺の縁部を通り基板1の下面に
垂直な架空の平面Xと開口部の形成する架空の平面Yと
がなす角β1 が15°となるよう傾いて開口している。
すなわち、開口部21の長方形の長手方向の一辺の縁部
に対して開口部21の他の縁部は基板1の下面よりの距
離に応じて面Xよりも引っ込んでいることになる。3は
ガス供給ノズル2に有機金属ガスを供給するガス配管で
あり、ガス供給ノズル2とガス配管3との連結部で点線
矢印で示すガスの流れより外れたガス供給ノズル2の下
の部分22が反応生成物の粉塵の粉塵溜まり部を形成し
ている。また、この装置では、図示はしてないが、反応
室の排気口は基板の搬送方向とは逆の部位に設けられて
おり、さらに、基板の搬送速度の可変機構が付設されて
いて、必要に応じて搬送速度を変えることが可能であ
る。
Embodiments of the present invention will be described below with reference to the drawings. Embodiment 1 FIG. 1 is an explanatory view of essential parts of a MOCVD apparatus of an embodiment for solving the first problem of the present invention. In a reaction chamber (not shown) filled with a reactive gas, an opening 21 as a gas outlet has a rectangular gas supply to the lower surface of the substrate 1 conveyed in the horizontal direction as shown by an arrow A. The nozzle 2 directs the opening 21 in the direction opposite to the arrow A,
1 has one longitudinal edge parallel to the lower surface of the substrate 1, and the angle α 1 between the axis and the lower surface of the substrate 1 is 45.
It is arranged so that it becomes °. Then, the opening 21
Is an imaginary plane X which is perpendicular to the lower surface of the substrate 1 and an imaginary plane Y which passes through the edge of the rectangular side of the opening 21 facing the substrate 1 in the longitudinal direction with respect to the lower surface of the substrate 1. The opening is inclined so that the angle β 1 formed by and becomes 15 °.
That is, the other edge of the opening 21 is retracted from the surface X according to the distance from the lower surface of the substrate 1 with respect to the edge of one side of the rectangular shape of the opening 21 in the longitudinal direction. Reference numeral 3 denotes a gas pipe for supplying an organometallic gas to the gas supply nozzle 2, and a portion 22 below the gas supply nozzle 2 which is deviated from a gas flow indicated by a dotted arrow at a connecting portion between the gas supply nozzle 2 and the gas pipe 3. Form a dust accumulation portion of the reaction product dust. Also, in this apparatus, although not shown, the exhaust port of the reaction chamber is provided in a portion opposite to the substrate transport direction, and further, a mechanism for varying the substrate transport speed is additionally provided, which is required. It is possible to change the transport speed according to the above.

【0015】上述のような装置を用いて、発光層をMO
CVDで形成してEL素子を作製した。透明電極を形成
した大きさ200mm×150mmの基板を用い、反応
性ガス硫化水素H2 Sを満たした反応室内で透明電極を
下面として基板を水平方向に搬送しながら、下面に有機
金属ガスDMZn(ジメチル亜鉛:Zn(CH3 2
を吹きつけて発光層を成膜し、続いて、その上に電極を
形成してEL素子とする。このようにして作製した10
個のサンプルについて、成膜後の発光層面の粉塵付着に
よる膜欠陥の数、およびエージング工程での製品特性の
良否を調べた。なお、この場合は、基板の搬送は一定速
度で行った。
The light emitting layer is MO
An EL device was prepared by forming by CVD. Using a substrate having a size of 200 mm × 150 mm on which a transparent electrode is formed, the substrate is horizontally transported with the transparent electrode as the lower surface in a reaction chamber filled with the reactive gas hydrogen sulfide H 2 S, and the organic metal gas DMZn ( Dimethyl zinc: Zn (CH 3 ) 2 )
Is sprayed to form a light emitting layer, and then an electrode is formed thereon to form an EL element. 10 produced in this way
For each sample, the number of film defects due to dust adhesion on the light emitting layer surface after film formation and the quality of product characteristics in the aging process were examined. In this case, the substrate was transported at a constant speed.

【0016】その結果を表1に示す。The results are shown in Table 1.

【0017】[0017]

【表1】 [Table 1]

【0018】比較例1 比較のために、発光層の成膜に関して、有機金属ガスの
ガス供給ノズルを従来の図5に示したような基板に対し
て垂直なノズルに変えたこと以外は実施例1と同様にし
てEL素子を作製し、この比較例1の10個のサンプル
について同様に膜欠陥の数およびエージング工程での製
品特性の良否を調べた。その結果を表2に示す。
Comparative Example 1 For comparison, an example of forming a light emitting layer was changed except that the gas supply nozzle of the organometallic gas was changed to a nozzle vertical to the substrate as shown in FIG. EL devices were produced in the same manner as in Example 1, and the number of film defects and the quality of product characteristics in the aging process were examined for the 10 samples of Comparative Example 1. The results are shown in Table 2.

【0019】[0019]

【表2】 [Table 2]

【0020】表1および表2より、実施例1においては
比較例1よりも膜欠陥が非常に少なくなっており、その
結果、エージング工程で特性不良となる製品が大幅に減
少して良品率が30パーセントから70パーセントと向
上していることが判る。この発明の効果は明がである。 実施例2 図2は、この発明の第二の課題を解決するための一実施
例のMOCVD装置の要部縦断面図を示すもので、図1
に示した装置に、さらに、図1に示したガス供給ノズル
と同一構造で別の有機金属ガスを吹き出すガス供給ノズ
ル2aが付加されている。図1に示した装置と同じ部位
には同一符号が付してある。ガス供給ノズル2aの軸と
基板1のなす角度α2 は30°、開口部21aは開口部
21aの基板の下面に平行な長方形の長手方向の一辺の
縁部を通り基板1の下面に垂直な架空の平面Xa と開口
部の形成する架空の平面Ya とのなす角β2 が30°と
なるように傾いて開口しており、ガス供給ノズル2aは
その吹き出すガスが基板上のガス供給ノズル2から吹き
出すガスが吹きつけられる場所と同じ場所に吹きつけら
れるように相対的に配置されている。
From Tables 1 and 2, the film defects in Example 1 are much smaller than those in Comparative Example 1. As a result, the number of products having characteristic defects in the aging process is significantly reduced and the non-defective rate is high. It can be seen that it has improved from 30% to 70%. The effect of the present invention is obvious. Embodiment 2 FIG. 2 is a longitudinal sectional view of a main part of an MOCVD apparatus according to an embodiment for solving the second problem of the present invention.
Further, a gas supply nozzle 2a having the same structure as the gas supply nozzle shown in FIG. 1 and blowing another organometallic gas is added to the apparatus shown in FIG. The same parts as those of the device shown in FIG. 1 are designated by the same reference numerals. The angle α 2 formed by the axis of the gas supply nozzle 2a and the substrate 1 is 30 °, and the opening 21a passes through the edge of one side in the longitudinal direction of the rectangle parallel to the lower surface of the substrate of the opening 21a and is perpendicular to the lower surface of the substrate 1. The angle β 2 formed by the imaginary plane X a and the imaginary plane Y a formed by the opening is inclined and opened so that the gas supplied from the gas supply nozzle 2 a supplies gas onto the substrate. The nozzles 2 are relatively arranged so that the gas blown out from the nozzle 2 is blown to the same place as it is blown.

【0021】上述のような装置を用い、適当な元素をド
ーピングされた膜を発光層とするEL素子を作製する。
反応性ガスとしてのH2 Sの満たされた反応室内で、実
施例1と同様な基板を透明電極を下面として水平方向に
搬送しながら、ガス供給ノズル2からDMZnを,ガス
供給ノズル2aからBCPM(ビスメチルシクロペンタ
ジエニルマンガン:Mn(CH3 5 4 2 )を同時
に同じ場所に吹きつけて反応させ、Mnのドーピングさ
れたZnS膜を成膜した。この場合、基板搬送方向前部
から後部へ向かっての膜厚をより均一となるようにする
ために、基板の搬送速度を基板後部がガス吹き出し位置
に近づくにつれて速くなるように変化させながら成膜を
行った。続いて、その上に電極を形成してEL素子とし
た。
Using the apparatus as described above, an EL element having a film doped with an appropriate element as a light emitting layer is manufactured.
In a reaction chamber filled with H 2 S as a reactive gas, the same substrate as in Example 1 was horizontally transported with the transparent electrode as the lower surface, while DMZ was supplied from the gas supply nozzle 2 and BCPM was supplied from the gas supply nozzle 2a. (bis-methyl cyclopentadienyl manganese: Mn (CH 3 C 5 H 4) 2) were simultaneously reacted by spraying in the same location, thereby forming a doped ZnS film of Mn. In this case, in order to make the film thickness from the front part to the rear part in the substrate transfer direction more uniform, the film formation is performed while changing the transfer speed of the substrate so that it becomes faster as the rear part of the substrate approaches the gas blowing position. I went. Then, an electrode was formed on it to obtain an EL device.

【0022】比較例2 比較のために、発光層の成膜に関して、成膜用の有機金
属ガスのガス供給ノズル2およびドーピング用の有機金
属ガスのガス供給ノズル2aを従来の図8に示したよう
な基板に対して垂直なノズルに変え、かつ、基板の搬送
速度を一定としたこと以外は実施例2と同様にしてEL
素子を作製した。
Comparative Example 2 For comparison, regarding the film formation of the light emitting layer, the gas supply nozzle 2 of the organometallic gas for film formation and the gas supply nozzle 2a of the organometallic gas for doping are shown in FIG. 8 of the prior art. EL elements were prepared in the same manner as in Example 2 except that the nozzles were changed to those perpendicular to the substrate and the substrate transport speed was kept constant.
A device was produced.

【0023】これら実施例2および比較例2の素子につ
いて、発光層の膜厚方向のドーピング元素の均一性と拡
散性を走査型電子顕微鏡(SEM)で調べた。その結果
を図9の線図に示す。図9において、横軸は発光層断面
の基板側から膜表面に向かっての位置を示し、縦軸はS
EMで調べたドーピング元素の強度を示す。図9に見ら
れるように、実施例2は比較例2よりもドーピング元素
が多量に均一に分布している。このことより、この発明
の装置を用いて、反応性ガスの満たされた反応室内で、
ガス供給ノズル2から第一の有機金属ガスを吹き出して
反応させ成膜を行いながら同時に同じ場所に第二のガス
供給ノズル2aから別の第二の有機金属ガスを吹き出し
て反応させて生成したドーピング元素を膜中にドーピン
グすることにより、ドーピング元素が均一に十分な量で
ドーピングされた膜を得ることが可能となることは明ら
かである。
For the devices of Example 2 and Comparative Example 2, the uniformity and diffusivity of the doping element in the thickness direction of the light emitting layer were examined by a scanning electron microscope (SEM). The result is shown in the diagram of FIG. In FIG. 9, the horizontal axis represents the position of the cross section of the light emitting layer from the substrate side toward the film surface, and the vertical axis represents S.
The intensity of the doping element examined by EM is shown. As can be seen from FIG. 9, the doping element in Example 2 is more uniformly distributed than in Comparative Example 2 in a large amount. From this, using the apparatus of the present invention, in a reaction chamber filled with a reactive gas,
Doping produced by blowing out a first organic metal gas from the gas supply nozzle 2 to cause a reaction to form a film and simultaneously blowing out another second organic metal gas from the second gas supply nozzle 2a to cause a reaction at the same location. It is apparent that doping the element into the film makes it possible to obtain a film in which the doping element is uniformly and sufficiently doped.

【0024】また、これらの素子の輝度─電圧特性を調
べた。その結果を図10の線図に示す。図10に見られ
るように、実施例2の素子は比較例2の素子に比して輝
度が平均で20cd/m2 向上している。これはドーピ
ング元素が発光層の膜内に均一に多量にドーピングされ
たことによるものであり、この発明の効果は明らかであ
る。
Also, the luminance-voltage characteristics of these devices were examined. The result is shown in the diagram of FIG. As can be seen in FIG. 10, the luminance of the device of Example 2 is improved by 20 cd / m 2 on average as compared with the device of Comparative Example 2. This is because the doping element was uniformly and heavily doped in the film of the light emitting layer, and the effect of the present invention is clear.

【0025】上述の実施例1においては、ガス供給ノズ
ル2の軸と基板1とのなす角度α1を45°,開口部2
1の長方形の長手方向の基板1に平行に対向する一辺の
縁部を通り基板1の下面に垂直な架空の平面Xと開口部
の形成する架空の平面Yとがなす角β1 を15°とした
が、これに限定されるものではなく、0°<α1 <90
°,0°<β1 の範囲内で同様に有効である。また、実
施例2のα2 ,β2 は0°<α1 <α2 <90°,0°
<β2 の範囲内で同様に有効である。さらに、ドーピン
グ元素が1種類でなくn種類の場合には、ドーピング元
素用のガス供給ノズルをn本とし、0°<αn <αn-1
<・・・<α2 <α1 <90°,0°<β1,β2,・・
・,βn-1 ,βn とすればよい。
In the first embodiment described above, the angle α 1 formed by the axis of the gas supply nozzle 2 and the substrate 1 is 45 °, and the opening 2 is formed.
The angle β 1 formed by an imaginary plane X perpendicular to the lower surface of the substrate 1 and an imaginary plane Y formed by the opening is 15 °. However, the present invention is not limited to this, and 0 ° <α 1 <90
It is also effective within the range of ° and 0 ° <β 1 . Further, α 2 and β 2 of Example 2 are 0 ° <α 12 <90 °, 0 °
It is similarly effective within the range of <β 2 . Furthermore, when the number of doping elements is not one but n, the number of gas supply nozzles for the doping elements is n, and 0 ° <α nn-1
<... <α 21 <90 °, 0 ° <β 1, β 2, ...
, Β n-1 , and β n .

【0026】[0026]

【発明の効果】この発明によれば、水平方向に搬送され
る基板の下面にガス供給ノズルで有機金属ガスを供給し
てこの基板の下面に機能性膜を成膜する有機金属気相成
長装置において、ガス供給ノズルの軸と基板の下面との
なす角度α1 が0°<α1 <90°であり、かつ、ガス
供給ノズルのガス吹き出し口の基板に対向していない縁
部が基板に対向している縁部を通る基板に垂直な面より
も引っ込んでいる装置とする。このような装置を用いる
ことにより、ガス反応生成物の粉塵による膜欠陥の少な
い良好な膜を成膜することが可能となる。このとき、ガ
ス供給ノズルのガス吹き出し口の向きを基板の搬送方向
と反対の方向とし、装置の真空排気口を基板の搬送方向
と反対側に設けた構成とするとガスの使用効率が向上す
る効果が得られて好適である。また、基板搬送速度可変
機構を設けると膜厚をより均一に成膜することができて
好適である。さらにまた、ガス供給ノズルまたはガス供
給ノズルへのガス配管ラインの途中に有機金属ガスの反
応生成物粉塵の溜まり部を設けることにより、膜欠陥の
発生をより少なくすることができて好適である。
According to the present invention, the metal-organic vapor phase epitaxy apparatus for forming a functional film on the lower surface of a substrate by supplying the metal-organic gas to the lower surface of the substrate transported in the horizontal direction by a gas supply nozzle. In, the angle α 1 between the axis of the gas supply nozzle and the lower surface of the substrate is 0 ° <α 1 <90 °, and the edge of the gas outlet of the gas supply nozzle that does not face the substrate is the substrate. The device is recessed more than the plane perpendicular to the substrate passing through the facing edges. By using such an apparatus, it becomes possible to form a good film with few film defects due to dust of gas reaction products. At this time, if the direction of the gas outlet of the gas supply nozzle is opposite to the substrate transport direction and the vacuum exhaust port of the apparatus is provided on the side opposite to the substrate transport direction, the gas use efficiency is improved. Is obtained, which is preferable. Further, it is preferable to provide a substrate transfer speed varying mechanism because the film thickness can be more uniformly formed. Furthermore, it is preferable to provide a reservoir for the dust of the reaction product of the organometallic gas in the middle of the gas supply nozzle or the gas piping line to the gas supply nozzle, because it is possible to further reduce the occurrence of film defects.

【0027】また、上述の装置において、さらに、ガス
供給ノズルの軸と基板の下面とのなす角度α1 が異なる
ガス供給ノズルを複数個設け基板の同一箇所に同時に複
数種のガスを供給することができる構成とすると、一種
あるいは多種類のドーピング元素が均一に十分にドーピ
ングされた膜を成膜することが可能となる。このような
装置を用いることにより、例えば、特性良好で輝度の高
いEL素子を得ることが可能となる。
Further, in the above apparatus, a plurality of gas supply nozzles having different angles α 1 between the axis of the gas supply nozzle and the lower surface of the substrate are provided, and a plurality of kinds of gases are simultaneously supplied to the same location on the substrate. With such a configuration, it is possible to form a film in which one or many kinds of doping elements are uniformly and sufficiently doped. By using such a device, for example, an EL element having good characteristics and high brightness can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第一の課題を解決するための装置の
一実施例の要部説明図
FIG. 1 is an explanatory view of a main part of an embodiment of an apparatus for solving the first problem of the present invention.

【図2】この発明の第二の課題を解決するための装置の
一実施例の要部説明図
FIG. 2 is an explanatory view of a main part of an embodiment of an apparatus for solving the second problem of the present invention.

【図3】従来のバーティカル型の装置の一例の要部説明
FIG. 3 is an explanatory view of main parts of an example of a conventional vertical type device.

【図4】従来のバレル型の装置の一例の要部説明図FIG. 4 is an explanatory view of a main part of an example of a conventional barrel type device.

【図5】従来の基板水平搬送型の装置の要部説明図FIG. 5 is an explanatory view of a main part of a conventional substrate horizontal transfer type device.

【図6】図5の装置における基板でのガスの反射を示す
要部説明図
FIG. 6 is an explanatory view of a main part showing gas reflection on a substrate in the apparatus of FIG.

【図7】図5の装置における基板の基板ホルダーへの取
り付け状態を示す要部説明図
7 is an explanatory view of a main part showing a mounting state of a substrate on a substrate holder in the apparatus of FIG.

【図8】図5の装置においてドーピング元素をドーピン
グするためにさらにガス供給ノズルを付設した一例を示
す要部説明図
8 is an explanatory view of a main part showing an example in which a gas supply nozzle is additionally provided for doping a doping element in the apparatus of FIG.

【図9】膜断面のSEMによるドーピング元素の分布状
態を示す線図
FIG. 9 is a diagram showing a distribution state of doping elements by SEM of a film cross section.

【図10】EL素子サンプルの輝度─電圧特性を示す線
FIG. 10 is a diagram showing luminance-voltage characteristics of EL element samples.

【符号の説明】[Explanation of symbols]

1 基板 2 ガス供給ノズル 2a ガス供給ノズル 3 ガス配管 4 基板ホルダー 5 反応室 6 マスク 7 膜 21 開口部 21a 開口部 22 粉塵溜まり部1 Substrate 2 Gas Supply Nozzle 2 a Gas Supply Nozzle 3 Gas Pipe 4 Substrate Holder 5 Reaction Chamber 6 Mask 7 Membrane 21 Opening 21 a Opening 22 Dust Collecting Part

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】反応性ガスの満たされた反応室内で水平方
向に搬送される基板の下面にガス供給ノズルで有機金属
ガスを供給してこの基板の下面に機能性膜を成膜する有
機金属気相成長装置において、ガス供給ノズルの軸と基
板の下面とのなす角度α1 が0°<α1 <90°であ
り、かつ、ガス供給ノズルのガス吹き出し口の基板に対
向していない縁部が基板に対向している縁部を通る基板
に垂直な面よりも引っ込んでいることを特徴とする有機
金属気相成長装置。
1. An organic metal for forming a functional film on the lower surface of the substrate by supplying an organic metal gas to the lower surface of the substrate horizontally conveyed in a reaction chamber filled with the reactive gas with a gas supply nozzle. In the vapor phase growth apparatus, the angle α 1 between the axis of the gas supply nozzle and the lower surface of the substrate is 0 ° <α 1 <90 °, and the edge of the gas outlet of the gas supply nozzle that does not face the substrate. A metal-organic vapor phase epitaxy apparatus characterized in that a portion is recessed from a surface perpendicular to the substrate passing through an edge portion facing the substrate.
【請求項2】ガス供給ノズルのガス吹き出し口の向きを
基板の搬送方向と反対の方向とし、反応室の真空排気口
を基板の搬送方向と反対側に設けたことを特徴とする請
求項1記載の有機金属気相成長装置。
2. The gas outlet of the gas supply nozzle is oriented in the direction opposite to the substrate transport direction, and the vacuum exhaust port of the reaction chamber is disposed on the side opposite to the substrate transport direction. The organic metal vapor phase growth apparatus described.
【請求項3】基板搬送速度可変機構を設けたことを特徴
とする請求項2記載の有機金属気相成長装置。
3. A metal-organic vapor phase epitaxy apparatus according to claim 2, further comprising a substrate transfer speed varying mechanism.
【請求項4】ガス供給ノズルまたはガス供給ノズルへの
ガス配管ラインの途中に有機金属ガスの反応生成物粉塵
の溜まり部を設けたことを特徴とする請求項1ないし3
のうちのいずれかに記載の有機金属気相成長装置。
4. The gas supply nozzle or a gas pipe line to the gas supply nozzle is provided with a reservoir for the dust of the reaction product of the organometallic gas.
The metal-organic chemical vapor deposition apparatus according to any one of the above.
【請求項5】ガス供給ノズルの軸と基板の下面とのなす
角度α1 がそれぞれ異なるガス供給ノズルを複数個設け
基板の同一箇所に同時に複数種のガスを供給することが
できることを特徴とする請求項1ないし4のうちのいず
れかに記載の有機金属気相成長装置。
5. A plurality of gas supply nozzles having different angles α 1 between the axis of the gas supply nozzle and the lower surface of the substrate are provided, and a plurality of kinds of gases can be simultaneously supplied to the same position on the substrate. The metal-organic vapor phase epitaxy apparatus according to any one of claims 1 to 4.
JP25514592A 1992-09-25 1992-09-25 Organometal vapor growth device Pending JPH06112132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25514592A JPH06112132A (en) 1992-09-25 1992-09-25 Organometal vapor growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25514592A JPH06112132A (en) 1992-09-25 1992-09-25 Organometal vapor growth device

Publications (1)

Publication Number Publication Date
JPH06112132A true JPH06112132A (en) 1994-04-22

Family

ID=17274713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25514592A Pending JPH06112132A (en) 1992-09-25 1992-09-25 Organometal vapor growth device

Country Status (1)

Country Link
JP (1) JPH06112132A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013506761A (en) * 2009-10-02 2013-02-28 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド Non-orthogonal geometry for improved coating on substrates

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013506761A (en) * 2009-10-02 2013-02-28 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド Non-orthogonal geometry for improved coating on substrates

Similar Documents

Publication Publication Date Title
US5714010A (en) Process for continuously forming a large area functional deposited film by a microwave PCVD method and an apparatus suitable for practicing the same
FI61859B (en) SAETT ATT BILDA ETT ENHETLIGT OEVERDRAG AV METALL ELLER EN METALLFOERENING PAO YTAN AV ETT GLASUNDERLAG OCH ANORDNING FOER ATT BILDA ETT DYLIKT OEVERDRAG
US4832981A (en) Method and apparatus for forming non-single crystal layer
US4857139A (en) Method and apparatus for forming a layer
US5514217A (en) Microwave plasma CVD apparatus with a deposition chamber having a circumferential wall comprising a curved moving substrate web and a microwave applicator means having a specific dielectric member on the exterior thereof
US4328261A (en) Metallizing semiconductor devices
JP2930960B2 (en) Atmospheric pressure chemical vapor deposition apparatus and method
US5669976A (en) CVD method and apparatus therefor
JP2601127B2 (en) Plasma CVD equipment
US5009923A (en) Method of forming diamond film
US9096929B2 (en) System and method for deposition of a material on a substrate
KR100326488B1 (en) Plasma Chemical Vapor Deposition
GB2041983A (en) Metallising semiconductor devices
JPH06112132A (en) Organometal vapor growth device
JPH11200052A (en) Chemical vapor phase growth apparatus
JPH05311425A (en) Device for producing semiconductor device
JP2882738B2 (en) Carrier for plate and film forming method using the same
JPH02115359A (en) Formation of compound thin film and device therefor
JP3169243B2 (en) Continuous formation method of deposited film
JPH06163424A (en) Gas feeding method in organic metal vapor-growth method
JPH07330488A (en) Plasma cvd apparatus
JPH0590176A (en) Apparatus for continuously forming functional deposited film
Katz et al. Formation of TiNx ohmic contacts to InGaAs/InP by means of a load-locked integrated process
KR950008842B1 (en) Apparatus for producing semiconductors
JPH06104194A (en) Continuous forming method and depositing system for functional deposited film