JPH0611101A - Structure of combustion chamber in boiler - Google Patents

Structure of combustion chamber in boiler

Info

Publication number
JPH0611101A
JPH0611101A JP17029692A JP17029692A JPH0611101A JP H0611101 A JPH0611101 A JP H0611101A JP 17029692 A JP17029692 A JP 17029692A JP 17029692 A JP17029692 A JP 17029692A JP H0611101 A JPH0611101 A JP H0611101A
Authority
JP
Japan
Prior art keywords
combustion chamber
grate
combustion
boiler
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17029692A
Other languages
Japanese (ja)
Other versions
JP3140180B2 (en
Inventor
Yasuo Shimizu
保雄 清水
Hiroyuki Noya
博之 能谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP04170296A priority Critical patent/JP3140180B2/en
Priority to AU41615/93A priority patent/AU659320B2/en
Publication of JPH0611101A publication Critical patent/JPH0611101A/en
Application granted granted Critical
Publication of JP3140180B2 publication Critical patent/JP3140180B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To enable the manufacture of a boiler with large capacity, which has a combination of both stability of combustion on fire grates that can be easily used and rationality of suspended combustion in a boiler having therein the fire grates on which solid fuel such as biomass fuel and coal is burned. CONSTITUTION:In a boiler having therein fire grates 4a, 4b on which solid fuel such as biomass fuel and coal is burned, an intermediate partitioning wall 13 consisting of a group of water tubes is provided at the central part of combustion chambers 2, 2 and a group of nozzles 11 for supplying secondary air into the combustion chambers is disposed among the water tubes forming the intermediate partitioning wall.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は主にバガス、木屑、バー
ク等のバイオマス燃料や石炭等の固形燃料を燃焼させる
火格子を備えたボイラの燃焼室の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention mainly relates to improvement of a combustion chamber of a boiler equipped with a grate for burning a biomass fuel such as bagasse, wood chips, and bark, or a solid fuel such as coal.

【0002】[0002]

【従来の技術】近年、産業界ではエネルギー供給源の多
様化と脱石油を図ると云う観点から、バイオマスや石炭
をボイラの燃料として活用することが積極的に進められ
ている。例えば、製糖工場では、砂糖きびから糖分を絞
り取った後のかす(バガスと呼ばれている)をボイラの
燃料として利用することにより、工場全体の動力を賄っ
ている。また、木屑やバーク、もみがら等のバイオマス
も、燃焼による廃棄処理と熱エネルギーの回収を兼ね
て、ボイラの燃料として広く利用されている。このよう
に、バイオマスや石炭等の固形燃料の使用は、産業界の
脱石油に拍車をかけ、エネルギー問題の解決に多大の貢
献をするものである。
2. Description of the Related Art In recent years, from the viewpoint of diversifying energy sources and removing oil from the industrial world, utilization of biomass and coal as fuel for boilers has been actively promoted. For example, in a sugar factory, the power of the entire factory is covered by using the residue (called bagasse) after squeezing the sugar content from sugar cane as fuel for the boiler. Biomass such as wood chips, bark, and chaff is also widely used as a fuel for boilers, both for waste disposal by combustion and recovery of thermal energy. Thus, the use of solid fuels such as biomass and coal accelerates the removal of oil from the industrial world and makes a great contribution to solving energy problems.

【0003】尚、前記バイオマス燃料は揮発分が多く
固定炭素が少ないこと(固定炭素/揮発分=0. 2〜
0. 3)、灰分が少ないこと(1〜2%)、形状
(粒径)が不揃いなこと、硫黄分を含まず、大気を汚
染しないこと、水分を比較的多く含有すること30〜
60%)、嵩高いこと(見掛け比重150〜200k
g/m3 )、等の特徴を有している。又、その発熱量は
含有水分によって大きく異なり、概ね2000〜300
0kcal/kg程度であり、且つ燃焼特性は火床燃焼
をする瀝青炭に比べて着火性が良く、燃焼速度の早いこ
とが知られている。
The biomass fuel has a large amount of volatile matter and a small amount of fixed carbon (fixed carbon / volatile matter = 0.2 to 0.2).
0.3), low ash content (1-2%), irregular shape (particle size), no sulfur content, no air pollution, relatively high water content 30-
60%), bulky (apparent specific gravity 150-200k
g / m 3 ), etc. Moreover, the calorific value greatly varies depending on the water content, and is approximately 2000 to 300.
It is known that it is about 0 kcal / kg, and its combustion characteristics are better in ignitability and faster in combustion rate than bituminous coal that performs fire bed combustion.

【0004】ところで、前記バガスや石炭等の固形物を
燃料とするボイラは、一般に燃焼室の底部に移床式火格
子、固定式火格子、ダンピング式火格子の何れかを備え
ている。図9及び図10は燃焼室17の底部に移床式火
格子18を備えたボイラの燃焼室部分の一例を示すもの
であり、火格子18は燃焼室17の横幅Wとほぼ同一の
横幅寸法と、燃焼室17の奥行きLとほぼ同一の長さ寸
法を有している。また、火格子18の駆動方式には、燃
焼室17の奥部から前方部に向かって駆動される所謂逆
送方式が採用されており、燃焼室17の前部に於いて燃
焼が完結するように、その駆動速度が設定されている。
更に、燃焼に必要とする空気は、その70〜80%が一
次空気として、移床式火格子18の下部より燃焼室17
内へ供給され、残りが二次空気として、燃焼室17の前
壁と後壁の水管19の間に配設したノズル20から燃焼
室17内へ供給されている。尚、21は火格子用風箱、
22は二次空気用風箱、23は燃料供給口である。
By the way, a boiler that uses solid matter such as bagasse or coal as a fuel is generally equipped with any of a transfer type grate, a fixed type grate and a damping type grate at the bottom of a combustion chamber. 9 and 10 show an example of a combustion chamber portion of a boiler provided with a floor transfer type grate 18 at the bottom of the combustion chamber 17, and the grate 18 has a width dimension substantially the same as the width W of the combustion chamber 17. And has a length dimension substantially the same as the depth L of the combustion chamber 17. Further, as a drive system of the grate 18, a so-called reverse feeding system in which the combustion chamber 17 is driven from the inner part toward the front part is adopted, and combustion is completed at the front part of the combustion chamber 17. Is set to the drive speed.
Further, 70-80% of the air required for combustion is primary air, and the combustion chamber 17 from the lower part of the moving bed type grate 18
It is supplied to the inside of the combustion chamber 17, and the rest is supplied to the inside of the combustion chamber 17 as secondary air from the nozzle 20 arranged between the water pipes 19 on the front wall and the rear wall of the combustion chamber 17. In addition, 21 is a wind box for grate,
Reference numeral 22 is a secondary air wind box, and 23 is a fuel supply port.

【0005】前記図9及び図10のボイラに於いて、バ
ガスや石炭等を散布燃焼させた場合、粒子の大きな燃料
は火格子18上へ落下して火格子燃焼をし、また、粒子
の小さな燃料は燃焼室17内で所謂浮遊燃焼をする。而
して、従前のこの種のボイラでは、前述の如く火格子1
7の面積と燃焼室17の横断面積はほぼ同一となるよう
に設計されている。しかし、基本的には、前記火格子1
8の面積は火格子18上で燃える燃料量を基準にして、
また燃焼室17の面積や容積は浮遊燃焼をする燃料量を
基準にして夫々決定されるべきものであり、例えばバガ
ス燃料の場合には、全散布重量の30〜70%が火格子
18上へ到達することが判っているため、当該数値から
火格子18の必要面積を算出することが可能である。ま
た、前記燃焼室17の形状は、燃焼ガスの上昇速度より
決定される断面積との関係から、理想的な燃焼室形状が
選択されるべきものである。
In the boiler shown in FIGS. 9 and 10, when bagasse, coal, or the like is sprayed and burned, the fuel with large particles falls onto the grate 18 and undergoes grate combustion, and the fuel with small particles is also generated. The fuel undergoes so-called floating combustion in the combustion chamber 17. Thus, in the conventional boiler of this type, as described above, the grate 1
The area of 7 and the cross-sectional area of the combustion chamber 17 are designed to be substantially the same. However, basically, the grate 1
The area of 8 is based on the amount of fuel burned on the grate 18,
Further, the area and the volume of the combustion chamber 17 should be determined based on the amount of fuel that causes floating combustion. For example, in the case of bagasse fuel, 30 to 70% of the total sprayed weight is transferred to the grate 18. Since it is known that it will arrive, the required area of the grate 18 can be calculated from the numerical value. Further, the shape of the combustion chamber 17 should be selected as an ideal combustion chamber shape in consideration of the cross-sectional area determined by the rising speed of the combustion gas.

【0006】[0006]

【発明が解決しようとする課題】一方、近年砂糖黍等の
絞り加工技術が進歩し、その結果、絞り滓であるバガス
は荒い粒子よりも細かい粒子を多く含むに傾向にある。
従って、これ等のバガスを燃料とするボイラに於いては
火格子燃焼よりも浮遊燃焼をするバガス量が多くなって
きている。換言すれば、前述の火格子面積や燃焼室容積
及び燃焼室断面積の設計に於いて、火格子面積を小さく
すると共に燃焼室特にその横断面積を大きくし、更に燃
焼室内での浮遊燃焼を促進させる二次空気の供給方法に
工夫を加えることが必要とされている。
On the other hand, in recent years, drawing technology for sugar cane has progressed, and as a result, bagasse, which is a drawing slag, tends to contain more fine particles than coarse particles.
Therefore, in these boilers that use bagasse as a fuel, the amount of bagasse performing floating combustion is increasing more than that of grate combustion. In other words, in the design of the above-mentioned grate area, combustion chamber volume, and combustion chamber cross-sectional area, the grate area is made smaller and the combustion chamber, especially its cross-sectional area, is made larger, further promoting floating combustion in the combustion chamber. It is necessary to devise the method of supplying the secondary air.

【0007】また、最近のボイラ設備に於いては、ボイ
ラ設備の経済性や操業性を高めると共に保守の容易化を
図るため、ボイラ単機の出力は増大の一途を辿ってい
る。例えば、二胴水管型の自然循環式中低圧ボイラにお
いては、蒸発量の増大に伴って燃焼室の横幅Wを拡大
し、これによって必要な燃焼室容積を確保することが、
一般的な設計方法として確立されてきている。この方法
によれば、付属する蒸気ドラム内の蒸気室容積並びに熱
吸収のための伝熱面積も燃焼室の横幅Wに比例して増大
し、全体としてバランスのとれたボイラ設計条件を与え
ることになる。これに対して、燃焼室の奥行寸法Lは、
主として燃料散布時の到達距離により決定されるので、
燃焼室の横幅寸法Wを決定する場合程の自由度はなく、
燃料の種類にもよるが、ボイラ出力に応じて6〜7メー
トルの寸法が通常採用されている。尚、図11乃至図1
3は、従前の小容量から大容量に至る各種ボイラの燃焼
室の横断面の概略形状を示すものであり、矢印は二次空
気の供給孔を示すものである。
In recent boiler equipment, the output of a single boiler is increasing in order to improve the economical efficiency and operability of the boiler equipment and facilitate maintenance. For example, in a twin-hulled water tube type natural circulation type medium- and low-pressure boiler, it is possible to increase the lateral width W of the combustion chamber as the amount of evaporation increases, and thereby to secure a necessary combustion chamber volume.
It has been established as a general design method. According to this method, the volume of the steam chamber in the attached steam drum and the heat transfer area for heat absorption are also increased in proportion to the lateral width W of the combustion chamber, thereby providing a well-balanced boiler design condition. Become. On the other hand, the depth dimension L of the combustion chamber is
Since it is mainly determined by the distance reached when fuel is sprayed,
There is not as much freedom as when determining the width W of the combustion chamber,
Depending on the type of fuel, a size of 6 to 7 meters is usually adopted depending on the boiler output. 11 to 1
3 shows a schematic shape of a transverse section of a combustion chamber of various boilers from a conventional small capacity to a large capacity, and an arrow shows a secondary air supply hole.

【0008】一方、前記浮遊燃焼を促進させる上で最も
重要な二次空気の供給は、図11乃至図13に示す如く
燃焼室17の前・後壁や側壁に設けられた二次空気ノズ
ルを通じて行われている。しかし、燃焼室の横断面、と
りわけ横幅寸法Wが蒸発量の増大に伴って拡大されてい
ると、図13の点線の範囲で示す如く、燃焼室の中央部
分において充分な二次空気の供給が行われない領域が生
ずると云う問題がある。また、従来の設計に於いては、
燃焼室の横幅寸法Wと火格子の横幅とが概ね同一の寸法
となるように設計されているので、ボイラ出力の増大に
伴って火格子の横幅も拡大することになり、その結果、
火格子の製造上の限界によってボイラ出力の上限が制限
されると云う難点がある。
On the other hand, the most important secondary air supply for promoting the floating combustion is through the secondary air nozzles provided on the front and rear walls and side walls of the combustion chamber 17 as shown in FIGS. 11 to 13. Has been done. However, if the cross-section of the combustion chamber, especially the width W, is enlarged with an increase in the amount of evaporation, as shown in the range of the dotted line in FIG. 13, sufficient secondary air can be supplied in the central portion of the combustion chamber. There is a problem that some areas are not generated. In addition, in the conventional design,
Since the lateral width dimension W of the combustion chamber and the lateral width of the grate are designed to be substantially the same, the lateral width of the grate will also increase as the boiler output increases, and as a result,
There is a problem that the upper limit of the boiler output is limited by the manufacturing limit of the grate.

【0009】而して、一般の移床式火格子に於いては、
駆動部分の経済的な面からの製作上の制約により、火格
子一基当たりの横幅寸法は経済的設計範囲では約6メー
トルとされている。従って、これを上廻る横幅寸法Wの
燃焼室を備えたボイラにあっては、図14及び図15に
示す如く、火格子駆動軸を左右に分割して機械的に独立
せしめた機構とし、左右の軸端に設置された減速機25
a,25bを介して駆動機24a,24bにより両火格
子18a,18bを駆動する方式が実用化されている。
しかし、前記図14及び図15の方式は、独立した二台
の火格子18a,18bを単に左右に並べて設置しただ
けのものであり、設備費が高くつくだけでなく、火格子
の運転や保守にも手数がかかると云う難点がある。尚、
火格子の長手方向の寸法は、製作上の制約が横幅方向の
寸法に比較して相当緩やかであり、鎖車間の長さ寸法L
1 が8メートルに及ぶ長尺のものが実用化されている。
Thus, in a general transfer type grate,
Due to the economical manufacturing constraints of the drive part, the lateral width per grate is set to about 6 meters in the economical design range. Therefore, in a boiler equipped with a combustion chamber having a lateral width W exceeding this, as shown in FIGS. 14 and 15, the grate drive shaft is divided into left and right to be a mechanically independent mechanism. Speed reducer 25 installed at the shaft end of
A method of driving both grate 18a, 18b by a driving machine 24a, 24b via a, 25b has been put into practical use.
However, the method of FIGS. 14 and 15 is one in which two independent grate 18a and 18b are simply arranged side by side, and not only the equipment cost is high, but also the operation and maintenance of the grate. However, there is a drawback that it takes time. still,
The lengthwise dimension of the grate is considerably looser in terms of manufacturing restrictions than the widthwise dimension, and the length dimension L between chain wheels is L.
A long length of 1 up to 8 meters has been put to practical use.

【0010】上述の如く、ボイラの大容量化が進行して
燃焼室の横幅Wが13メートルにも達すると、火格子を
夫々独立せしめた駆動軸により左右から駆動させる方式
を採用したとしても、機械構造上に不都合な箇所が多く
発生して、火格子の製作が著しく困難になる。また、万
一火格子の駆動が可能であるとしても、火格子の設備費
が著しく高騰すると共に、運転や保守管理に手数を要す
るという問題がある。本発明は、バガスや石炭を燃料と
する火格子を備えたボイラに於ける上述の如き問題を解
決するために創作されたものであり、二次空気の供給方
法と火格子の移動方向に改良を加えることによって、従
来不可能とされていた蒸気発生量が300トン毎時を超
える大容量の火格子式ボイラの実現を可能とした、ボイ
ラ燃焼室の構造を提供するものである。
As described above, when the capacity of the boiler is increased and the lateral width W of the combustion chamber reaches 13 meters, even if the method of driving the grate from the left and right by independent drive shafts is adopted, Many inconvenient parts occur in the mechanical structure, which makes the production of the grate extremely difficult. Further, even if the grate could be driven, there are problems that the facility cost of the grate will increase significantly and that operation and maintenance will be troublesome. The present invention was created in order to solve the above problems in a boiler equipped with a grate that uses bagasse or coal as a fuel, and improved the secondary air supply method and the moving direction of the grate. The present invention provides a structure of a boiler combustion chamber that makes it possible to realize a large-capacity grate type boiler with a steam generation amount exceeding 300 tons per hour, which has been conventionally impossible.

【0011】[0011]

【課題を解決するための手段】上記の目的を達成するた
め、本発明に於いてはバガスや木屑、バーク等のバイオ
マス燃料や石炭等の固形燃料を燃焼させる火格子を備え
たボイラに於いて、前記燃焼室の中央部分に水管群から
成る中間仕切壁を設け、当該中間仕切壁を形成する水管
の間に、燃焼室内へ二次空気を供給するノズル群を配設
することを発明の基本構成として採用する。
In order to achieve the above object, the present invention provides a boiler equipped with a grate for burning biomass fuel such as bagasse, wood chips, and bark, or solid fuel such as coal. An intermediate partition wall composed of a water pipe group is provided in the central portion of the combustion chamber, and a nozzle group for supplying secondary air to the combustion chamber is arranged between the water pipes forming the intermediate partition wall. Adopt as a configuration.

【0012】即ち、より具体的には、本発明では、ボイ
ラ燃焼室の中央に、その下方部を燃焼室の前壁方向へ傾
斜せしめた仕切壁を設置することにより燃焼室を左右に
分割すると共に、左右夫々の燃焼室の下部に移床式火格
子を設ける。また、前記仕切壁は、横方向の強度を与え
るために約3000mmの間隔で隣合う裸管の水管同士
を金物で結び、燃焼ガスの通過を妨げることなしに燃焼
室内の輻射熱を吸収するために設置される伝熱管であ
り、内部はボイラ缶水が循環する。更に、仕切壁の下部
においては、左右に傾斜する水管から成る壁面を構成
し、水管ピッチ間に配列された二次空気ノズルより、炉
内へ向けて二次空気を供給する。加えて、左右の各燃焼
室の下方に設けられた火格子は、左右それぞれの燃焼室
の前壁側へ向かって別個の駆動機により駆動され、各燃
焼室の前壁側に於いて火格子上の燃料の燃焼が完結され
る。
More specifically, in the present invention, more specifically, the combustion chamber is divided into left and right by installing a partition wall in the center of the boiler combustion chamber, the lower part of which is inclined toward the front wall of the combustion chamber. At the same time, a transfer-type grate is provided at the bottom of each of the left and right combustion chambers. In addition, the partition wall connects adjacent water pipes of bare pipes at intervals of about 3000 mm with a metal object in order to provide lateral strength, and absorbs radiant heat in the combustion chamber without obstructing passage of combustion gas. It is a heat transfer tube installed, and boiler can water circulates inside. Further, in the lower part of the partition wall, a wall surface composed of water pipes inclined to the left and right is formed, and secondary air is supplied toward the inside of the furnace from secondary air nozzles arranged between the water pipe pitches. In addition, the grate provided below each of the left and right combustion chambers is driven by a separate driving device toward the front wall side of each of the left and right combustion chambers, and the grate is formed on the front wall side of each combustion chamber. The combustion of the above fuel is completed.

【0013】[0013]

【作用】燃料は、左右の燃焼室の前壁の上部より燃焼室
中央の仕切壁の方向へ向かって散布される。粒子の比較
的細かい燃料成分は、燃焼室内が高温状態にあるため含
有水分が即座に蒸発され、中央部仕切壁或いは燃料供給
口付近に配備された二次空気ノズルよりの二次空気の供
給を受け、浮遊状態で着火、燃焼を完結する。一方、比
較的粒子径の大きな燃料成分は、散布途上で炉内燃焼ガ
スにより、含有水分の一部が蒸発される。しかし、質量
が大きいため、燃焼ガスの上昇速度によっても浮遊状態
には到らず、火格子面上へ落下する。火格子面上へ落下
した粒子は、燃焼室よりの輻射熱を受けて更に水分の蒸
発が進行し、着火温度に達すると、火格子下部よりの一
次空気の供給を受けて燃焼を開始する。尚、各火格子の
移床速度は、火格子の終端部において火格子面上に堆積
した全ての燃料の燃焼が完了するように調節される。上
記の如く、燃料の粒子の大きさに応じて、浮遊燃焼と火
床燃焼の両燃焼が一つの燃焼室内に於いて同時に行われ
るが、本発明の燃焼室では、中央の仕切壁下部の傾斜面
に設置された二次空気ノズルから、二次空気が燃焼室の
横幅方向及び奥行き方向に対して均等に供給されるた
め、燃焼室内での浮遊燃焼が著しく促進される。
The fuel is sprayed from the upper portions of the front walls of the left and right combustion chambers toward the partition wall in the center of the combustion chambers. The fuel components with relatively fine particles have a high temperature inside the combustion chamber, so that the water content is immediately evaporated, and the secondary air is supplied from the secondary air nozzles installed in the central partition wall or near the fuel supply port. Ignite, complete ignition and combustion in a floating state. On the other hand, in the fuel component having a relatively large particle diameter, part of the water content is evaporated by the combustion gas in the furnace during the spraying. However, since it has a large mass, it does not reach the floating state even when the combustion gas rises and falls onto the grate surface. The particles that have fallen onto the grate surface receive radiant heat from the combustion chamber to further evaporate water, and when they reach the ignition temperature, they are supplied with primary air from the lower part of the grate and start to burn. The transfer speed of each grate is adjusted so that the combustion of all the fuel deposited on the grate surface at the end of the grate is completed. As described above, both floating combustion and fire bed combustion are simultaneously performed in one combustion chamber depending on the size of the fuel particles, but in the combustion chamber of the present invention, the inclination of the lower part of the central partition wall is increased. Since the secondary air is evenly supplied from the secondary air nozzles installed on the surface in the lateral direction and the depth direction of the combustion chamber, the floating combustion in the combustion chamber is significantly promoted.

【0014】[0014]

【実施例】以下、本発明の実施例を図面に基づいて詳細
に説明する。図1及び図2は本発明の実施例に係る燃焼
室構造を採用した水管ボイラの概略縦断正面図及び縦断
側面図であり、また、図3は図2のイーイ視断面図であ
る。図に於いて1は炉壁、2は燃焼室、2aは各燃焼室
の前壁、3はボイラ本体、4a,4bは移床式火格子、
5は火格子用風箱、6a,6bは燃料投入口、7は空気
予熱器、8は一次押込通風機、9は二次押込通風機、1
0は二次空気用風箱、11は空気吹込みノズル、12は
燃焼室側壁水管、13は燃焼室仕切壁、14a,14b
は燃料散布用二次空気供給孔、16a,16bは駆動機
である。尚、この水管ボイラの燃料にはバガスが使用さ
れている。
Embodiments of the present invention will now be described in detail with reference to the drawings. 1 and 2 are a schematic vertical sectional front view and a vertical sectional side view of a water tube boiler adopting a combustion chamber structure according to an embodiment of the present invention, and FIG. 3 is a cross-sectional view taken along the line II of FIG. In the figure, 1 is a furnace wall, 2 is a combustion chamber, 2a is a front wall of each combustion chamber, 3 is a boiler main body, 4a and 4b are transfer type grate,
5 is a grate wind box, 6a and 6b are fuel inlets, 7 is an air preheater, 8 is a primary forced draft fan, 9 is a secondary forced draft fan, 1
0 is a secondary air wind box, 11 is an air injection nozzle, 12 is a combustion chamber side wall water pipe, 13 is a combustion chamber partition wall, and 14a, 14b.
Is a secondary air supply hole for fuel distribution, and 16a and 16b are driving machines. Bagasse is used as the fuel for this water tube boiler.

【0015】前記炉壁1はフィン付水管若しくは裸水管
式の水冷壁となっており、その内壁面には多数の水管1
2が縦方向に一定のピッチで配列されている。また、前
記燃焼室2は移床式火格子4の上方空間を炉壁1ないし
後述する仕切壁13で囲むことによって形成されてお
り、ここで燃料が浮遊燃焼をする。
The furnace wall 1 is a finned water pipe or a bare water pipe type water cooling wall, and a large number of water pipes 1 are provided on the inner wall surface thereof.
2 are arranged in the vertical direction at a constant pitch. Further, the combustion chamber 2 is formed by surrounding an upper space of the transfer bed type grate 4 with a furnace wall 1 or a partition wall 13 which will be described later, in which the fuel undergoes floating combustion.

【0016】前記燃焼室2の中央部には、図4に示す如
き構造の裸水管を相互に結び合わせた仕切壁13が配置
されている。即ち、図4において13は燃焼室仕切壁、
13aは水管、13bは水管同士を連結する金物であ
り、図4からも明らかなように、当該仕切壁13は水管
径の約1. 5倍のピッチでもって配列されており、従っ
て燃焼ガスの通過を妨げることは一切無い。
At the center of the combustion chamber 2, there is arranged a partition wall 13 in which bare water pipes having the structure shown in FIG. 4 are connected to each other. That is, in FIG. 4, 13 is a combustion chamber partition wall,
Reference numeral 13a is a water pipe, and 13b is a metal piece for connecting the water pipes together. As is clear from FIG. 4, the partition walls 13 are arranged at a pitch of about 1.5 times the diameter of the water pipes, and therefore the combustion gas. There is no obstacle to the passage of.

【0017】当該燃焼室仕切壁13の下方部は図2に示
す如く、左右の燃焼室前壁2a,2a側へ向かって傾斜
されており、且つこの傾斜部分の傾斜角度αは、散布さ
れる燃料の安息角以上の角度に設定されている。即ち、
当該傾斜角度αは、傾斜壁面上へ落下した燃料が壁面に
沿って下方へ滑り落ちるような角度に設定されており、
具体的には、水平面に対して50°〜80°の角度αに
設定されている。また、当傾斜壁面部には二次空気用風
箱10が配設されており、当該風箱10からノズル11
へ二次空気が供給されている。
As shown in FIG. 2, the lower portion of the combustion chamber partition wall 13 is inclined toward the left and right combustion chamber front walls 2a, 2a, and the inclination angle α of this inclined portion is scattered. The angle of repose is equal to or greater than the angle of repose of the fuel. That is,
The inclination angle α is set to an angle such that the fuel dropped on the inclined wall surface slides down along the wall surface.
Specifically, the angle α is set to 50 ° to 80 ° with respect to the horizontal plane. Further, a secondary air wind box 10 is arranged on the inclined wall surface portion, and the secondary air wind box 10 is connected to the nozzle 11
Secondary air is being supplied to.

【0018】前記ノズル11は、仕切壁13の傾斜部分
の水管13aの間に、一定の間隔毎に図5に示す如き状
態で配設されており、二次空気用風箱10へ直結されて
いる。即ち、当該ノズル11は、二次空気を噴出するこ
とにより、仕切壁13の傾斜部分へ落下した質量の大き
な燃料粒子や灰分を移床式火格子4a,4b上へ均等に
散布すると共に、燃焼室2内の浮遊燃料粒子及び揮発分
に二次空気を与えて、浮遊燃焼を促進させるものであ
る。
The nozzles 11 are arranged between the water pipes 13a in the inclined portion of the partition wall 13 at regular intervals as shown in FIG. 5, and are directly connected to the secondary air box 10. There is. That is, the nozzle 11 sprays secondary air to evenly disperse the large-mass fuel particles and ash that have fallen to the inclined portion of the partition wall 13 onto the transfer-type grate 4a, 4b, and at the same time, burn the combustion. Secondary air is supplied to the floating fuel particles and volatile components in the chamber 2 to promote floating combustion.

【0019】図1及び図2に参照して、燃焼に必要な空
気は、押し込み通風機8から空気予熱器7及び風道15
を経て、夫々火格子用風箱5及び二次空気用風箱10へ
供給される。即ち、燃焼用空気の一部は、火格子用風箱
5から移床式火格子4a,4bへ供給されて一次空気と
して使用され、残りは二次押し込み通風機9にて更に昇
圧され、二次空気用風箱10へ供給された後、ノズル1
1から燃焼室2内へ噴出され、二次空気として使用され
る。燃料投入口6a,6bから供給された燃料(バガ
ス)は、燃料投入口6の近傍に配設した二次空気用ノズ
ル14a,14bにより燃焼室2内に吹き飛ばされ、一
部は移床式格子4a,4b上に散布される。そして、こ
こで、火格子用風箱5から移床火格子4a,4bへ供給
される一次空気によって火格子燃焼をし、灰となって移
床火格子4a,4b上から落下排出される。又、残りの
燃料は、ノズル11から燃焼室2内へ噴出される二次空
気により、燃焼室2内で浮遊燃焼をする。このとき、燃
焼室2内に散布された燃料のうち、一部は仕切壁13の
傾斜面部分へ落下して傾斜面上を滑降し、移床火格子4
a,4b上に不均一に堆積しようとするが、ノズル11
から燃焼室2内へ噴出される二次空気によって吹き飛ば
され、粒子の大きなものは移床火格子4a,4b上に均
等に再散布される。また、粒子の細かいものは、再浮遊
することになる。
Referring to FIGS. 1 and 2, the air required for combustion is supplied from the forced draft fan 8 to the air preheater 7 and the air passage 15.
And is supplied to the grate wind box 5 and the secondary air wind box 10, respectively. That is, a part of the combustion air is supplied from the grate wind box 5 to the transfer-type grate 4a, 4b to be used as primary air, and the rest is further pressurized by the secondary forced draft fan 9, After being supplied to the air box 10 for the next air, the nozzle 1
1 is ejected into the combustion chamber 2 and is used as secondary air. The fuel (bagasse) supplied from the fuel inlets 6a and 6b is blown into the combustion chamber 2 by the secondary air nozzles 14a and 14b arranged in the vicinity of the fuel inlet 6, and part of the fuel is a transfer bed lattice. It is sprayed on 4a and 4b. Then, here, the primary air supplied from the grate wind box 5 to the transfer floor grate 4a, 4b burns the grate to become ash, which is dropped and discharged from the transfer floor grate 4a, 4b. In addition, the remaining fuel performs floating combustion in the combustion chamber 2 by the secondary air ejected from the nozzle 11 into the combustion chamber 2. At this time, a part of the fuel scattered in the combustion chamber 2 falls to the inclined surface portion of the partition wall 13 and slides down on the inclined surface, and the transfer bed grate 4
Attempts to deposit non-uniformly on a and 4b, but the nozzle 11
Is blown off by the secondary air jetted into the combustion chamber 2 from the above, and the large particles are re-dispersed evenly on the transfer bed grate 4a, 4b. Also, fine particles will be resuspended.

【0020】燃焼室中間の仕切壁13に設けたノズル1
1から噴出する二次空気は、図6に示す如く、その噴出
位置が燃焼室2の中央部付近、即ち全燃焼室横断面積の
約1/2をカバー出来る位置にあるため、燃焼室2の中
央部まで、均一に二次空気が供給され燃料供給部の二次
空気供給と相俟って、燃焼室2内の浮遊燃料粒子及び揮
発分と十分に接触することになる。その結果、浮遊燃焼
が一層促進され、浮遊燃焼粒子及び揮発分が完全に燃焼
されることにより、排ガス成分中の煤塵量が減少すると
共に、未燃COの発生を抑制することができる。
Nozzle 1 provided on the partition wall 13 in the middle of the combustion chamber
As shown in FIG. 6, the secondary air ejected from No. 1 has its ejection position in the vicinity of the central portion of the combustion chamber 2, that is, at a position capable of covering about 1/2 of the total cross-sectional area of the combustion chamber. Secondary air is evenly supplied to the central portion, and in combination with the secondary air supply from the fuel supply unit, it is in sufficient contact with floating fuel particles and volatile components in the combustion chamber 2. As a result, the floating combustion is further promoted, and the floating combustion particles and the volatile components are completely burned, so that the amount of dust in the exhaust gas component is reduced and the generation of unburned CO can be suppressed.

【0021】また、本発明では、前記中間仕切壁13の
下部側を傾斜させて燃焼室2下部の横断面積を小さく
し、移床火格子4a,4bの面積を減少させている。そ
の結果、移床火格子4a,4b上の燃料層や灰層の厚み
が増大し、吹き抜け現象も防止されることになる。これ
によって、燃焼効率が向上すると共に、燃焼室2からの
輻射熱から移床火格子4a,4bが保護され、移床火格
子4a,4bの焼損を防止することができる。また、移
床火格子4a,4bの面積を減少させている為、一次空
気による移床火格子4a,4bの冷却効果も高められ、
移床火格子4a,4bの焼損をより一層効果的に防止す
ることができる。
Further, in the present invention, the lower side of the intermediate partition wall 13 is inclined to reduce the cross-sectional area of the lower portion of the combustion chamber 2 and to reduce the area of the transfer bed grate 4a, 4b. As a result, the thickness of the fuel layer and the ash layer on the transfer grate 4a, 4b is increased, and the blow-through phenomenon is prevented. This improves the combustion efficiency, protects the transfer bed grate 4a, 4b from the radiant heat from the combustion chamber 2, and prevents the transfer bed grate 4a, 4b from burning. Further, since the area of the transfer grate 4a, 4b is reduced, the cooling effect of the transfer grate 4a, 4b by the primary air can be enhanced,
Burning of the transfer grate 4a, 4b can be prevented more effectively.

【0022】更に、本発明では図6に示す如く、両火格
子4a,4bは、中央の仕切壁13側から両燃焼室の前
壁側へ向かって燃焼物を移動させる方向に駆動されてい
る。即ち、従来の図15に示すようなボイラに於いて
は、左又は右の燃焼室に設置される一台の火格子の火床
幅は燃焼室の横幅Wに支配されていた。しかし、本発明
では図7に示す如く火格子の火床幅を燃焼室2の奥行き
寸法Lとほぼ同一の寸法とする事が出来、しかも、仕切
壁13に設けたノズル11による浮遊燃焼促進のための
二次空気供給機能を採用することにより、火格子長さを
従来よりも大幅に短縮することが可能となる。
Further, in the present invention, as shown in FIG. 6, both grate 4a and 4b are driven in the direction of moving the combustion products from the central partition wall 13 side toward the front wall side of both combustion chambers. . That is, in the conventional boiler as shown in FIG. 15, the width of the fire bed of one grate installed in the left or right combustion chamber is dominated by the lateral width W of the combustion chamber. However, in the present invention, as shown in FIG. 7, the fire bed width of the grate can be made substantially the same as the depth dimension L of the combustion chamber 2, and the floating combustion is promoted by the nozzle 11 provided in the partition wall 13. By adopting a secondary air supply function for this, the length of the grate can be significantly shortened compared to the conventional one.

【0023】又、燃焼室2の奥行き寸法Lが大きくて火
格子4a,4bの設計上不都合が生じる場合には、図8
に示す如く火格子4a,4bを前・後に分割して4a
1,4a2,4b1,4b2とし、個別の駆動機16a
1,16a2,16b1,16b2で駆動する事によ
り、更に大容量のボイラ用火格子とする事が可能とな
り、従来製作上の制限により不可能とされていた火格子
を備えた大容量ボイラの製作が可能となる。即ち、火格
子燃焼の安全性と浮遊燃焼の合理性の両者を兼ね備えた
特徴ある大容量ボイラの製作が可能となる。
Further, when the depth dimension L of the combustion chamber 2 is large and the design inconvenience of the grate 4a, 4b occurs, FIG.
The grate 4a, 4b is divided into front and rear as shown in
1, 4a2, 4b1 and 4b2, and individual driving machines 16a
By driving with 1, 16a2, 16b1, 16b2, it becomes possible to make a grate for a larger capacity boiler, and the production of a large capacity boiler equipped with a grate, which was previously impossible due to manufacturing restrictions. Is possible. In other words, it is possible to manufacture a characteristic large-capacity boiler that has both the safety of grate combustion and the rationality of floating combustion.

【発明の効果】上述の通り、本発明に係るボイラ燃焼室
の構造は、燃焼室の中間部に仕切壁による輻射伝熱面を
配置する構成としているため、燃焼室内での火炎による
輻射伝熱量を増加させることができる。また、仕切壁の
構成要素である水冷壁の下部側を、燃焼室下部に位置す
る火床側へ傾斜させることにより、燃焼室の横断面積を
順次小さくすると共に、仕切壁の傾斜部分の水管の間に
燃焼室へ二次空気を噴出するノズル群を配設する構成と
しているため、火格子の面積を減少できると共に、炉壁
の傾斜部分に落下する燃料粒子や灰分を火格子上へ均一
に散布することができる。その結果、火格子上の燃料層
や灰層の厚みが増大して吹き抜け現象が防止され、これ
によって燃焼効率が向上すると共に、燃焼室からの輻射
熱から火格子が保護され、火格子の焼損も防止される。
然も、火格子の面積を減少できる為、一次空気による火
格子の冷却効果も高められ、移床火格子の焼損をより一
層防止することができる。更に、中間仕切壁下部の二次
空気噴出孔は、燃焼室中央部の近傍に設けられており、
燃焼室横断面積の約1/2の範囲が二次空気によって完
全にカバーされるため、浮遊燃焼が著しく促進されて燃
焼室内の浮遊燃料粒子及び揮発分の完全燃焼が可能とな
る。その結果、排ガスの成分中の煤塵量が減少し、CO
の発生を抑制することができる。加えて、本発明では両
火格子の移床方向を中央の仕切壁側から両燃焼室の前壁
側へ向かう方向としているため、駆動軸を燃焼室の奥行
きLとほぼ同一の長さとする事が出来、機械的強度と経
済的な範囲で選定することが可能になると共に、従来不
可能とされていた蒸発量毎時300トン以上のストーカ
焚ボイラの実現が可能となる。上述の如く、本件発明は
火格子を装備するボイラの安全性や使い易さ、浮遊燃焼
の合理性等を兼ね備えた大容量ボイラの実現を可能とす
るものであり、優れた実用的効用を奏するものである。
As described above, in the structure of the boiler combustion chamber according to the present invention, the radiant heat transfer surface by the partition wall is arranged in the middle portion of the combustion chamber, so the radiant heat transfer amount by the flame in the combustion chamber. Can be increased. Also, by inclining the lower side of the water cooling wall, which is a component of the partition wall, toward the fire bed located in the lower part of the combustion chamber, the cross-sectional area of the combustion chamber is gradually reduced, and the water pipe of the inclined part of the partition wall is Since a group of nozzles for ejecting secondary air to the combustion chamber is arranged between them, the area of the grate can be reduced and the fuel particles and ash falling on the inclined part of the furnace wall are evenly distributed on the grate. Can be sprayed. As a result, the thickness of the fuel layer and ash layer on the grate is increased to prevent blow-through phenomenon, which improves combustion efficiency, protects the grate from radiant heat from the combustion chamber, and prevents burnout of the grate. To be prevented.
However, since the area of the grate can be reduced, the effect of cooling the grate by the primary air can be enhanced, and the burnout of the transfer bed grate can be further prevented. Further, the secondary air ejection hole in the lower part of the intermediate partition wall is provided near the center of the combustion chamber,
Since the secondary air completely covers the range of about 1/2 of the cross-sectional area of the combustion chamber, the floating combustion is significantly promoted, and the complete combustion of the floating fuel particles and volatile components in the combustion chamber is possible. As a result, the amount of soot and dust in the components of the exhaust gas is reduced and CO
Can be suppressed. In addition, in the present invention, since the transfer direction of both grate is the direction from the central partition wall side to the front wall side of both combustion chambers, the drive shaft should have substantially the same length as the depth L of the combustion chambers. In addition to being able to make a selection within a mechanical strength and economical range, it is possible to realize a stoker-fired boiler with an evaporation amount of 300 tons or more per hour, which has been impossible in the past. As described above, the present invention enables the realization of a large-capacity boiler that combines the safety and ease of use of a boiler equipped with a grate, the rationality of floating combustion, and the like, and exhibits excellent practical utility. It is a thing.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るボイラ燃焼室を備えたボイラ設備
の縦断面概要図である。
FIG. 1 is a schematic vertical sectional view of a boiler equipment including a boiler combustion chamber according to the present invention.

【図2】図1のイーイ視断面概要図である。FIG. 2 is a schematic cross-sectional view taken along the line E-I of FIG.

【図3】図2のイーイ視断面概要図である。FIG. 3 is a schematic cross-sectional view taken along line E-I of FIG.

【図4】中間仕切壁の一部を示す斜面図である。FIG. 4 is a perspective view showing a part of an intermediate partition wall.

【図5】ノズル11の取付状態を示す説明図である。FIG. 5 is an explanatory view showing a mounting state of the nozzle 11.

【図6】ノズル11からの二次燃焼用空気の噴射状態を
示す説明図である。
FIG. 6 is an explanatory diagram showing an injection state of secondary combustion air from a nozzle 11.

【図7】火格子の横幅寸法と燃焼室の奥行寸法Lとの関
係を示す説明図である。
FIG. 7 is an explanatory diagram showing a relationship between a width dimension of the grate and a depth dimension L of the combustion chamber.

【図8】火格子の横幅寸法と燃焼室の奥行寸法Lとの関
係を示す他の例の説明図である。
FIG. 8 is an explanatory diagram of another example showing the relationship between the width dimension of the grate and the depth dimension L of the combustion chamber.

【図9】従前の火格子を備えた且つバイオマス燃料を用
いるボイラ燃焼室の概略説明図である。
FIG. 9 is a schematic explanatory view of a boiler combustion chamber including a conventional grate and using a biomass fuel.

【図10】図9のB−B視断面概要図である。FIG. 10 is a schematic cross-sectional view taken along the line BB of FIG. 9.

【図11】従前の少容量ボイラの燃焼室の平面形状を示
すものである。
FIG. 11 shows a plan view of a combustion chamber of a conventional small capacity boiler.

【図12】従前の中容量ボイラの燃焼室の平面形状を示
すものである。
FIG. 12 shows a plan view of a combustion chamber of a conventional medium capacity boiler.

【図13】従前の大容量ボイラの燃焼室の平面形状を示
すものである。
FIG. 13 shows a planar shape of a combustion chamber of a conventional large capacity boiler.

【図14】従前の複数の火格子を並置した大容量のボイ
ラの燃焼室の縦断面概要図である。
FIG. 14 is a schematic vertical sectional view of a combustion chamber of a large-capacity boiler in which a plurality of conventional grate is juxtaposed.

【図15】図14のB−B視断面概要図である。FIG. 15 is a schematic cross-sectional view taken along line BB of FIG.

【符号の説明】[Explanation of symbols]

1は炉壁、2は燃焼室、2aは各燃焼室の前壁、3はボ
イラ本体、4a,4bは移床式火格子、5は火格子用風
箱、6a,6bは燃料投入口、7は空気予熱器、8は一
次押込通風機、9は二次押込通風機、10は二次空気用
風箱、11は空気吹込みノズル、12は燃焼室側壁水
管、13は燃焼室仕切壁、14は燃料散布用二次空気供
給孔、15は風道、16は火格子駆動機、17は減速
機。
Reference numeral 1 is a furnace wall, 2 is a combustion chamber, 2a is a front wall of each combustion chamber, 3 is a boiler body, 4a and 4b are transfer type grate, 5 is a grate wind box, 6a and 6b are fuel inlets, 7 is an air preheater, 8 is a primary forced draft fan, 9 is a secondary forced draft fan, 10 is a secondary air box, 11 is an air blowing nozzle, 12 is a combustion chamber side wall water pipe, and 13 is a combustion chamber partition wall. , 14 is a secondary air supply hole for fuel distribution, 15 is an air passage, 16 is a grate drive, and 17 is a speed reducer.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 バガスや木屑、バーク等のバイオマス燃
料や石炭等の固形燃料を燃焼させる火格子を備えたボイ
ラに於いて、前記燃焼室の中央部分に水管群から成る中
間仕切壁を設け、当該中間仕切壁を形成する水管の間
に、両側の各燃焼室内へ二次空気を供給するノズル群を
配設したことを特徴とするボイラ燃焼室の構造。
1. A boiler equipped with a grate for burning a biomass fuel such as bagasse, wood chips, bark or the like, or a solid fuel such as coal or the like, wherein an intermediate partition wall composed of a water pipe group is provided in a central portion of the combustion chamber, A structure of a boiler combustion chamber, characterized in that a group of nozzles for supplying secondary air to the respective combustion chambers on both sides is arranged between water pipes forming the intermediate partition wall.
【請求項2】 中間仕切壁の両側の各燃焼室の下方に、
中間仕切壁側より各燃焼室の前壁側方向へ燃焼物を移動
せしめる火格子を配設して成る請求項1に記載のボイラ
燃焼室の構造。
2. Below each combustion chamber on both sides of the intermediate partition,
The structure of the boiler combustion chamber according to claim 1, further comprising: a grate for moving the combustion products from the side of the intermediate partition wall toward the front wall of each combustion chamber.
【請求項3】 中間仕切壁を燃焼ガスの流通を実質的に
妨げない構成とすると共に、当該中間仕切壁の下方部を
各燃焼室の前壁側へ傾斜させる構成とした請求項1又は
請求項2に記載のボイラ燃焼室の構造。
3. The method according to claim 1, wherein the intermediate partition wall is configured so as not to substantially prevent the flow of combustion gas, and the lower portion of the intermediate partition wall is inclined toward the front wall side of each combustion chamber. Item 2. The structure of the boiler combustion chamber according to Item 2.
【請求項4】 各燃焼室の前壁側から、中間仕切壁側へ
向けて燃料を供給するようにした請求項1、請求項2又
は請求項3に記載のボイラ燃焼室の構造。
4. The structure of the boiler combustion chamber according to claim 1, wherein the fuel is supplied from the front wall side of each combustion chamber toward the intermediate partition wall side.
JP04170296A 1992-06-29 1992-06-29 boiler Expired - Fee Related JP3140180B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP04170296A JP3140180B2 (en) 1992-06-29 1992-06-29 boiler
AU41615/93A AU659320B2 (en) 1992-06-29 1993-06-29 Construction of the combustion chambers of a boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04170296A JP3140180B2 (en) 1992-06-29 1992-06-29 boiler

Publications (2)

Publication Number Publication Date
JPH0611101A true JPH0611101A (en) 1994-01-21
JP3140180B2 JP3140180B2 (en) 2001-03-05

Family

ID=15902337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04170296A Expired - Fee Related JP3140180B2 (en) 1992-06-29 1992-06-29 boiler

Country Status (2)

Country Link
JP (1) JP3140180B2 (en)
AU (1) AU659320B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004347270A (en) * 2003-05-23 2004-12-09 Mitsubishi Heavy Ind Ltd Combustion device and method
CN105674232A (en) * 2014-11-19 2016-06-15 武汉江河长能源科技有限公司 Clean and efficient biomass micron fuel high-temperature industrial boiler

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102425776A (en) * 2011-11-07 2012-04-25 始兴县富溢锅炉制造有限公司 Steam boiler with biomass particles as fuel
CN103411206B (en) * 2013-08-12 2015-07-22 上海应用技术学院 Chain grate boiler with two staggering secondary air spray pipe layers and limestone spray pipe system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2517025A1 (en) * 1981-11-25 1983-05-27 Fives Cail Babcock INSTALLATION OF SOLID FUEL BOILER
DE3444049A1 (en) * 1984-12-03 1986-06-26 Martin GmbH für Umwelt- und Energietechnik, 8000 München STEAM OR HOT WATER BOILERS

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004347270A (en) * 2003-05-23 2004-12-09 Mitsubishi Heavy Ind Ltd Combustion device and method
CN105674232A (en) * 2014-11-19 2016-06-15 武汉江河长能源科技有限公司 Clean and efficient biomass micron fuel high-temperature industrial boiler
CN105674232B (en) * 2014-11-19 2017-11-24 武汉江河长能源科技有限公司 A kind of biomass micron fuel hot industry boiler of clean and effective

Also Published As

Publication number Publication date
AU659320B2 (en) 1995-05-11
AU4161593A (en) 1994-01-13
JP3140180B2 (en) 2001-03-05

Similar Documents

Publication Publication Date Title
CN201688552U (en) Assembled water tube boiler by burning biomass
CN102330993B (en) Composite structure for high-temperature spiral secondary air and arch in biomass fuel chain boiler
CN202303465U (en) High-performance combustor
JP2005300022A (en) Combustion apparatus of solid fuel
JPH06193814A (en) Biomass burner structure
CA1252340A (en) Particle fuel diversion structure with dome-shaped cavity
EP0046248B1 (en) Improvements in or relating to furnaces
CN201437986U (en) Special waste fluidized bed incinerator
JP3140180B2 (en) boiler
RU2632637C1 (en) Furnace unit with augmented fluidized bed reactor
KR20060090250A (en) Gasification boiler for solid fuels, in particular for bales of straw, with optimised exhaust gas values
CN201568954U (en) Suspension-lamination composite CWS (coal water slurry) combustion boiler
CN108343968A (en) A kind of combined fire grate incinerator
CN102818247A (en) Efficient steam boiler for gasification and combined combustion of pulverized coal
RU86705U1 (en) LOW TEMPERATURE VORTEX FURNACE
CA1059835A (en) Furnace design for pulverized coal and stoker firing
RU2244873C2 (en) Furnace for burning wood wastes in fluidized bed
CN201462808U (en) Coal-fired boiler
CN102425785A (en) Biomass combustion equipment with double fire grates
JP3243848U (en) Liquid slag discharge boiler with tangential combustion method
CN108916860A (en) A kind of continuous type novel biomass grate-firing boiler
RU198069U1 (en) Solid fuel low temperature swirl furnace
CN202281241U (en) Combined structure of high-temperature spiral secondary air and furnace arches in biomass fuel chain-grate boiler
JP3243843U (en) Opposite combustion liquid slag discharge boiler
JPH0776611B2 (en) Boiler combustion chamber furnace wall structure

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20081215

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20091215

LAPS Cancellation because of no payment of annual fees