JPH06109666A - X-ray diffraction probe - Google Patents

X-ray diffraction probe

Info

Publication number
JPH06109666A
JPH06109666A JP27768792A JP27768792A JPH06109666A JP H06109666 A JPH06109666 A JP H06109666A JP 27768792 A JP27768792 A JP 27768792A JP 27768792 A JP27768792 A JP 27768792A JP H06109666 A JPH06109666 A JP H06109666A
Authority
JP
Japan
Prior art keywords
ray
rays
ray diffraction
window
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27768792A
Other languages
Japanese (ja)
Inventor
Hitohiro Isobe
仁博 礒部
Kazuhiko Aoki
一彦 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Fuel Industries Ltd
Original Assignee
Nuclear Fuel Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Fuel Industries Ltd filed Critical Nuclear Fuel Industries Ltd
Priority to JP27768792A priority Critical patent/JPH06109666A/en
Publication of JPH06109666A publication Critical patent/JPH06109666A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To make X-ray diffraction measurement possible even in a spatially small place by integrating an X-ray source, an X-ray guide means and an X-ray detector into a radioactive ray shielding hollow container equipped with an X-ray transmitting window at an intermediate part in a lengthwise direction. CONSTITUTION:An X-ray source 3 for emitting X-rays which are incident to a region to be measured at a predetermined incident angle is provided at an end of a lengthwise direction of a probe body 1, while an X-ray detector 8 is provided on the other end so that they are integrated into a hollow container. The X-ray source 3 emits electrons from an electron gun 6 connected to a high voltage cable 6 in a vacuum chamber 4, and the electrons are made to collide against a predetermined target 7 to have X-rays generated. The X-rays pass through a Be window 9 and while being led by a glass-made X-ray guide tube 10 pass through a window 2 to be emitted to a region to be measured, and diffraction X-rays which have been diffracted are detected by the X-ray detector 8. Thus an X-ray diffraction probe with the X-ray source 3 and the X-ray detector 8 integrated allows X-ray diffraction to be performed even in a spatially small place such as an inner face of a thin tube.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はX線回折プローブに関す
るものであり、特に例えば金属製円管内側等の狭い空間
における測定材料の疲労に伴う物性をX線回折の測定に
より検出し、疲労損傷評価を行うためのX線回折プロー
ブに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray diffraction probe, and in particular, the physical properties associated with fatigue of a measurement material in a narrow space such as the inside of a metal circular tube are detected by X-ray diffraction measurement to determine fatigue damage. The present invention relates to an X-ray diffraction probe for performing evaluation.

【0002】[0002]

【従来の技術】非破壊検査は、材料や構造物の材質,強
度,形状等の健全性を、その物理的性質を利用して破壊
することなく評価する検査方法であり、種々の方法が実
用化されている。例えば、次に示す検査方法がある。
2. Description of the Related Art Nondestructive inspection is an inspection method for evaluating the soundness of materials and structures such as material, strength, and shape without destroying them by utilizing their physical properties. Has been converted. For example, there are the following inspection methods.

【0003】1.放射線探傷…物体内に空洞のようなク
ラックが存在するとクラック部を透過した放射線(X
線,γ線等)と健全部を透過した放射線とに強度の差が
あらわれることを利用して、検査体の背後に放射線の感
光フィルムを配置し、クラックの形状を映像写真フィル
ム上に撮影して、その被験材の健全性を調べる。
1. Radiation flaw detection: When a crack like a cavity exists in an object, the radiation (X
Rays, γ rays, etc.) and the radiation that has passed through the sound area have a difference in intensity, so a radiation sensitive film is placed behind the inspection body and the shape of the crack is photographed on a video photographic film. And examine the soundness of the test material.

【0004】2.超音波探傷 (a) パルス反射法…極めて短い超音波パルスを被験材内
に入射させ、被験材内のクラックによる反射エコーを受
信して、その位置や大きさ等を知る。 (b) 透過法…連続波又はパルスの高周波駆動電圧を送信
探触子に加え、被験材を透過した超音波を受信探触子で
再び高周波電圧に変えて観測する。 (c) 共振法…周波数が連続的に変化する駆動電圧を超音
波探触子に印加して、被験材の厚さにより共振した定常
波を測定し、被験材の厚さを測定する。
2. Ultrasonic flaw detection (a) Pulse reflection method: An extremely short ultrasonic pulse is injected into the test material, and the echo reflected by a crack in the test material is received to know the position, size, etc. (b) Transmission method: A continuous wave or pulsed high frequency drive voltage is applied to the transmitting probe, and the ultrasonic wave transmitted through the test material is converted into a high frequency voltage again by the receiving probe and observed. (c) Resonance method: A driving voltage whose frequency changes continuously is applied to the ultrasonic probe, and a standing wave resonating with the thickness of the test material is measured to measure the thickness of the test material.

【0005】3.渦電流探傷…コイルより発生した交流
磁場の強さと渦電流の発生分布状態との関係より、クラ
ックを検知する。尚、一般的に検出感度は超音波法より
も低いが、特定のクラックに対しては感度がよいため、
超音波検査の補助手段として用いられる。
3. Eddy current flaw detection: Detects cracks based on the relationship between the strength of the AC magnetic field generated from the coil and the eddy current generation distribution state. Incidentally, the detection sensitivity is generally lower than the ultrasonic method, but since it is good for specific cracks,
Used as an auxiliary means for ultrasonic examination.

【0006】4.浸透探傷…高い透過性を有し、着色又
は蛍光を発生する浸透材を用いて欠陥を検出する。一般
に素材の表面割れ等の検査に有効である。
4. Penetrant flaw detection: A defect is detected using a penetrant that has high transparency and emits color or fluorescence. Generally, it is effective for inspecting surface cracks of materials.

【0007】ところで、原子力発電所の蒸気発生器の細
管などの探傷のため、従来より発生後の傷を検査する手
段として前述の渦電流又は超音波を利用した検査プロー
ブがあるが、超音波がうまく届かなかったり、傷の形態
によっては渦電流が流れ難く、万全なものではなかっ
た。また、これらはあくまで発生した傷を検査するもの
であり、発生前に傷に至る物性の変化を検出することは
できなかった。
By the way, because of the flaw detection of a thin tube of a steam generator of a nuclear power plant, there is a conventional inspection probe using eddy current or ultrasonic waves as a means for inspecting the damage after the generation. It was not perfect because it did not reach well and eddy currents were difficult to flow depending on the shape of the scratch. Further, these are only for inspecting the scratches that have occurred, and it was not possible to detect changes in the physical properties leading to the scratches before they occurred.

【0008】一般に材料が疲労破壊に至るまでの期間の
大半は、クラック発生以前の結晶格子レベルでの微視的
な関係に占められている。
Generally, most of the period until the material undergoes fatigue fracture is occupied by a microscopic relationship at the crystal lattice level before crack initiation.

【0009】[0009]

【発明が解決しようとする課題】そこで、被験材にX線
を照射して所定の回折角のX線回折強度を求め、別に予
め求めておいた同様なX線回折強度と所定の応力作用時
間後の前記被験材の前記回折角のX線回折強度との比較
データと照合することにより、クラックが発生する以前
の金属等の被験材の疲労損傷を評価する評価方法が提案
された(特願平4−47710号)。
Therefore, the test material is irradiated with X-rays to obtain the X-ray diffraction intensity at a predetermined diffraction angle, and the similar X-ray diffraction intensity and the predetermined stress action time which are previously determined separately. An evaluation method for evaluating fatigue damage of a test material such as a metal before cracking was proposed by collating it with comparison data with the X-ray diffraction intensity of the diffraction angle of the test material later (Japanese Patent Application No. 4-47710).

【0010】しかしながら、従来のX線回折装置は主に
実験室レベルで用いられているため、その寸法・重量が
大きく、実機プラント等に適用することは困難であっ
た。また、X線発生装置と回折X線検出装置などは別個
に揃えられており、更に、現場適用型のX線回折装置に
ついても、一部商品化されてはいるものの、その測定系
の寸法はかなり大きく、狭い空間内における測定は不可
能であるほか、原子力発電所のプラント機器のように放
射線が存在する環境下での測定にも不向きであった。
However, since the conventional X-ray diffractometer is mainly used at the laboratory level, its size and weight are large and it is difficult to apply it to an actual plant. In addition, the X-ray generator and the diffracted X-ray detector are separately prepared, and the X-ray diffractometer of the field application type is also partially commercialized. It is quite large and cannot be measured in a narrow space, and it is also unsuitable for measurement in an environment where radiation is present, such as plant equipment of a nuclear power plant.

【0011】即ち、X線回折は物質の分析、材料の強度
評価等に広く用いられているが、従来のX線回折測定系
は寸法が大きいため、実機構造部の狭い空間における測
定は不可能で、また放射線存在下での測定にも不向きで
あった。
That is, although X-ray diffraction is widely used for analyzing substances, evaluating the strength of materials, etc., the conventional X-ray diffraction measuring system has a large size, so it is impossible to measure in a narrow space of the actual machine structure. It was also unsuitable for measurements in the presence of radiation.

【0012】そこで、本発明は、例えば細管内等の空間
的制約のある場所でのX線回折測定を、放射線存在下に
おいても可能にするX線回折プローブを得ることを目的
とする。
Therefore, an object of the present invention is to obtain an X-ray diffraction probe that enables X-ray diffraction measurement in a space-constrained place such as in a narrow tube even in the presence of radiation.

【0013】[0013]

【課題を解決するための手段】本発明に係るX線回折プ
ローブでは、外部に被測定領域を画定するために長手方
向の中間部にX線透過窓を設けた放射線遮断中空容器
と、前記中空容器内の長手方向の一端部に設けられたX
線源と、該X線源からのX線を前記被測定領域に所定の
入射角度で入射するように前記X線源から前記窓まで案
内するX線ガイド手段と、前記中空容器内の長手方向の
他端部に設けられ、前記被測定領域から生じる回折X線
を前記窓を通して検出するX線検出器とを備えたもので
ある。
In an X-ray diffraction probe according to the present invention, there is provided a radiation shielding hollow container having an X-ray transmission window at an intermediate portion in the longitudinal direction for defining an area to be measured, and the hollow container. X provided at one longitudinal end in the container
A radiation source, X-ray guide means for guiding the X-rays from the X-ray source to the window from the X-ray source so that the X-rays from the X-ray source are incident on the measured region at a predetermined incident angle; And an X-ray detector for detecting diffracted X-rays generated from the measured region through the window.

【0014】[0014]

【作用】本発明においては、外部に被測定領域を画定す
るために長手方向の中間部にX線透過窓を設けた放射線
遮断中空容器と;前記中空容器内の長手方向の一端部に
設けられたX線源と;該X線源からのX線を前記被測定
領域に所定の入射角度で入射するように前記X線源から
前記窓まで案内するX線ガイド手段と;前記中空容器内
の長手方向の他端部に設けられ、前記被測定領域から生
じる回折X線を前記窓を通して検出するX線検出器とを
備えたものである。
According to the present invention, there is provided a radiation shielding hollow container having an X-ray transmission window provided at an intermediate portion in the longitudinal direction for defining an area to be measured, and the radiation shielding hollow container is provided at one end in the longitudinal direction in the hollow container. An X-ray source; an X-ray guide means for guiding the X-rays from the X-ray source to the measurement area at a predetermined incident angle from the X-ray source to the window; An X-ray detector which is provided at the other end in the longitudinal direction and detects diffracted X-rays generated from the measured region through the window.

【0015】即ち、X線源とX線検出器とを長手方向の
中間部にX線透過窓を設けた放射線遮断中空容器内に一
体化させたX線回折プローブにより、従来よりX線検査
が不可能であった細管内面等の空間的に狭い場所でも、
放射線存在下においても、X線回折測定を実施すること
が可能となる。
That is, an X-ray inspection is conventionally performed by an X-ray diffraction probe in which an X-ray source and an X-ray detector are integrated in a radiation shielding hollow container provided with an X-ray transmission window at an intermediate portion in the longitudinal direction. Even in a narrow space, such as the inner surface of a thin tube, which was impossible.
X-ray diffraction measurement can be performed even in the presence of radiation.

【0016】従って、被験材にX線を照射して所定の回
折角のX線回折強度を求め、別に予め求めておいた同様
なX線回折強度と所定の応力作用時間後の前記被験材の
前記回折角のX線回折強度との比較データと照合するこ
とにより、クラックが発生する以前の金属等の被験材の
疲労損傷を評価することができる。
Therefore, the test material was irradiated with X-rays to obtain the X-ray diffraction intensity at a predetermined diffraction angle, and the similar X-ray diffraction intensity previously determined separately and the test material after the predetermined stress action time were obtained. By comparing with the comparison data of the diffraction angle with the X-ray diffraction intensity, it is possible to evaluate the fatigue damage of the test material such as metal before the crack is generated.

【0017】このため、回折X線から金属格子の歪み状
態を把握し、材料がクラックに至る前の早期健全性検査
を行うことができる。しかも、放射線が存在する原子力
発電所の蒸気発生機の細管や、その他、小型のプローブ
でしか検査できない部位の検査に有効である。
Therefore, it is possible to grasp the strain state of the metal lattice from the diffracted X-rays and perform an early soundness inspection before the material cracks. Moreover, it is effective for inspecting thin tubes of steam generators of nuclear power plants where radiation is present, and other parts that can be inspected only by a small probe.

【0018】尚、本発明のX線回折プローブは、放射線
遮断中空容器を用いたものであるため、放射線下での使
用も可能となるだけでなく、X線源から発生するX線の
遮蔽となる。
Since the X-ray diffraction probe of the present invention uses the radiation shielding hollow container, it can be used not only under radiation but also as a shield against X-rays generated from the X-ray source. Become.

【0019】また、本発明のX線回折プローブでは、X
線源からのX線を前記被測定領域に所定の入射角度で入
射するように前記X線源から前記窓まで案内するX線ガ
イド手段を備えている。
Further, in the X-ray diffraction probe of the present invention, X
X-ray guide means for guiding the X-rays from the X-ray source to the window so that the X-rays are incident on the measured region at a predetermined incident angle.

【0020】これは具体的には、X線源と中空容器の透
過窓との間に障害物が介在しない単なる空間(通路)で
よく、更に好ましくは、この空間(通路)をガラス製や
金属製のチューブで覆ってもよい。この場合には、入射
X線の発散を押さえ、X線回折プロファイルのS/N比
を向上することができる。また、場合によっては、X線
反射ミラー等で所望の入射角度を得てもよい。
Specifically, this may be a simple space (passage) in which no obstacle is present between the X-ray source and the transmission window of the hollow container, and more preferably, this space (passage) is made of glass or metal. You may cover with a tube made from. In this case, the divergence of incident X-rays can be suppressed and the S / N ratio of the X-ray diffraction profile can be improved. Further, depending on the case, a desired incident angle may be obtained with an X-ray reflection mirror or the like.

【0021】尚、用いられるX線源としては、真空室内
に配置された電子銃より出射される電子ビームが、同じ
く真空室内に配置されたターゲットに衝突することによ
り、X線を発生する一般的なX線源が使用可能である。
この時、ターゲット材料の選択により、各種特性X線あ
るいは白色X線を得ることが可能となる。
As an X-ray source used, an electron beam emitted from an electron gun placed in a vacuum chamber collides with a target also placed in the vacuum chamber to generate X-rays. Any X-ray source can be used.
At this time, various characteristic X-rays or white X-rays can be obtained by selecting the target material.

【0022】このターゲットより発生したX線は、Be
窓を通過し、孔から被測定試料の表面に至り、被測定試
料で生じた回折X線は前記窓から検出器に至って検出さ
れる。この際に、窓から検出器までの通路に前述と同様
に窓から検出器まで案内するX線ガイド手段を備えても
よい。これにより、回折X線の発散を押さえ、X線回折
プロファイルのS/N比を向上することができる。
X-rays generated from this target are Be
The diffracted X-rays passing through the window, reaching the surface of the sample to be measured from the hole, and generated in the sample to be measured are detected from the window to the detector. At this time, an X-ray guide means for guiding from the window to the detector may be provided in the passage from the window to the detector as described above. Thereby, the divergence of diffracted X-rays can be suppressed and the S / N ratio of the X-ray diffraction profile can be improved.

【0023】また、回折角度θについては、測定対象と
なる回折面に応じて、プローブ設計時に決定する。例え
ば、蒸気発生機の細管の場合には、プローブを細長い形
状にするため約20°ぐらいの回折角で反射してくる回
折X線を捕らえるようにするとよい。回折X線は、結晶
格子の格子定数や結晶面により、種々の波長や回折角の
ものが生じる。
The diffraction angle θ is determined at the time of designing the probe in accordance with the diffraction surface to be measured. For example, in the case of a thin tube of a steam generator, it is advisable to capture diffracted X-rays reflected at a diffraction angle of about 20 ° in order to make the probe elongated. Diffracted X-rays have various wavelengths and diffraction angles depending on the lattice constant of the crystal lattice and the crystal plane.

【0024】更に、検出器は回折されたX線を検出し
て、X線回折強度と所定の応力作用時間後の前記被験材
の前記回折角のX線回折強度とを比較するものであれば
よい。この場合、目的に応じて、位置敏感(1次元)型
検出器やポイント型検出器等をを用いてもよい。
Further, if the detector detects the diffracted X-rays and compares the X-ray diffraction intensity with the X-ray diffraction intensity at the diffraction angle of the test material after a predetermined stress action time. Good. In this case, a position-sensitive (one-dimensional) type detector, a point type detector, or the like may be used depending on the purpose.

【0025】この位置敏感型検出器は、検出素子が1次
元(又は2次元)状に多数並べてあって広い範囲の角度
の回折X線を一度に検出できるものである。このため、
X線検出器に位置敏感型検出器を用いると、迅速にX線
回折を実施することが可能となる。尚、位置敏感型検出
器としては、3×12mm□程度の既存のものが使用さ
れる。
This position-sensitive detector has a large number of detecting elements arranged in a one-dimensional (or two-dimensional) form and can detect diffracted X-rays in a wide range of angles at once. For this reason,
If a position-sensitive detector is used as the X-ray detector, it becomes possible to rapidly perform X-ray diffraction. As the position sensitive detector, an existing one having a size of 3 × 12 mm □ is used.

【0026】これに対して、ポイント型は検出器は点状
のため、ある範囲の角度を検出するには回転機構を必要
とする。本X線回折プローブでは小型化のため、回転機
構等の付属機構はなるべくなら設けない方がよい。しか
しながら、ある角度の回折X線を検出しておけば材質評
価ができる場合にはポイント型でもよい。
On the other hand, since the point type detector has a point shape, a rotating mechanism is required to detect an angle in a certain range. In order to reduce the size of the present X-ray diffraction probe, it is better not to provide an auxiliary mechanism such as a rotation mechanism if possible. However, the point type may be used if the material can be evaluated by detecting the diffracted X-rays at a certain angle.

【0027】[0027]

【実施例】図1は本発明のX線回折プローブの一実施例
の構成を模式的に示す正面図であ、り、図2は図1の平
面図である。図では、原子力発電所の蒸気発生機の細管
Tに用いるX線回折プローブを示している。
1 is a front view schematically showing the construction of an embodiment of an X-ray diffraction probe of the present invention, and FIG. 2 is a plan view of FIG. In the figure, an X-ray diffraction probe used for a thin tube T of a steam generator of a nuclear power plant is shown.

【0028】図に示す通り、プローブ本体1は、両端を
閉じた鉛円管製の中空容器であり、蒸気発生器の細管T
の内径約20mmに対して、約15mmφ×約150m
m長の外形を有している。本体1内の長手方向の中間部
には、外部の被測定領域を規定する窓2が穿設されてい
る。窓2の形状は入射X線が被測定領域面に当たるので
あれば、丸又は角窓など種々の形状が用いられる。
As shown in the figure, the probe main body 1 is a hollow container made of a lead tube whose both ends are closed, and a thin tube T of a steam generator.
15mmφ x 150m for the inner diameter of 20mm
It has a contour of m length. A window 2 that defines an external measured region is formed in the middle of the main body 1 in the longitudinal direction. As for the shape of the window 2, various shapes such as a round window or a square window can be used as long as the incident X-ray hits the surface of the measurement area.

【0029】本体1内の長手方向の一端部には、前記窓
2を通して被測定領域に所定の入射角度で入射するX線
を発生するX線源3が設けられている。X線源3は真空
室4内に高圧ケーブル5に接続された電子銃6から電子
を出射し、これを所定のターゲット7に当てて、X線を
発生させるものである。
An X-ray source 3 is provided at one longitudinal end of the main body 1 for generating X-rays which are incident on the measured region through the window 2 at a predetermined incident angle. The X-ray source 3 emits electrons from an electron gun 6 connected to a high-voltage cable 5 in a vacuum chamber 4, hits a predetermined target 7 and generates X-rays.

【0030】真空室4は、ガラス、鉛、セラミックなど
で構成可能で、内部には検査する材料に最も好ましいX
線を発生させるターゲット7を設けておく。ターゲット
7を冷却する冷却水は循環式になっている。高圧ケーブ
ル5は電子銃6とターゲット7の間に数kV〜数十kV
の電圧をかけるものである。
The vacuum chamber 4 can be made of glass, lead, ceramics or the like, and the inside X is most preferable for the material to be inspected.
A target 7 for generating a line is provided. The cooling water for cooling the target 7 is of a circulation type. The high voltage cable 5 is several kV to several tens of kV between the electron gun 6 and the target 7.
The voltage is applied.

【0031】更に、本体1内の長手方向の他端部には、
X線検出器8が設けられている。従って、X線源3から
発生したX線はBe窓9を通過し、窓2を通って被測定
領域へ出射される。この被測定領域から回折された回折
X線は窓2を通ってX線検出器8で検出される。
Furthermore, at the other longitudinal end of the main body 1,
An X-ray detector 8 is provided. Therefore, the X-ray generated from the X-ray source 3 passes through the Be window 9 and is emitted to the measurement area through the window 2. Diffracted X-rays diffracted from the measured region pass through the window 2 and are detected by the X-ray detector 8.

【0032】尚、X線源3から発生したX線をX線源3
から窓2に導き、更に、被測定領域から回折されたX線
を窓2からX線検出器8に導くガラス製のX線ガイドチ
ューブ10が設けられている。また、X線検出器8のリ
ード線11は測定領域等を避けるためプローブの側面に
這わせて手元側へ引っ張ってくる。
The X-rays generated from the X-ray source 3 are converted into the X-ray source 3
A glass X-ray guide tube 10 that guides the X-rays diffracted from the measured region to the X-ray detector 8 is provided. Further, the lead wire 11 of the X-ray detector 8 is pulled along the side surface of the probe so as to avoid the measurement region and the like and pulled toward the operator.

【0033】また、プローブ本体1の先端には凸状の挿
入子12が、本体1の周囲にはブラシ13が設けられて
いて、蒸気発生器の細管Tへの挿入性や中心位置決めを
良好にしている。
A probe-like inserter 12 is provided at the tip of the probe main body 1, and a brush 13 is provided around the main body 1 to improve the insertability of the steam generator into the thin tube T and the center positioning. ing.

【0034】図3はX線回折プローブの本発明の別の実
施例の構成を模式的に示す正面図である。尚、図におい
て、前記各図と同一の記号は同一又は相当の部位を示
す。図に示すように、X線源3’はX線の発生効率を向
上させるために、真空室4’内の高圧ケーブル5’に接
続された電子銃6’の向きを軸方向とし、励起電子流を
ターゲット7’に直角に衝突させたものである。
FIG. 3 is a front view schematically showing the construction of another embodiment of the present invention of the X-ray diffraction probe. In the drawings, the same symbols as those in the above drawings indicate the same or corresponding parts. As shown in the figure, in order to improve the X-ray generation efficiency, the X-ray source 3 ′ uses the electron gun 6 ′ connected to the high voltage cable 5 ′ in the vacuum chamber 4 ′ as the axial direction, and the excitation electron The flow is made to collide with the target 7'at a right angle.

【0035】更に、図4はX線回折プローブの本発明の
更に別の実施例の構成を模式的に示す正面図である。図
4も図3と同様に、X線の発生効率を向上させるために
電子銃6”をターゲット7”に直角に衝突させたもので
ある。
Further, FIG. 4 is a front view schematically showing the constitution of still another embodiment of the present invention of the X-ray diffraction probe. Similarly to FIG. 3, FIG. 4 also shows the electron gun 6 ″ colliding with the target 7 ″ at a right angle in order to improve the X-ray generation efficiency.

【0036】図に示すように、真空室4”内の高圧ケー
ブル5”に接続された電子銃6”の向きを軸方向とし、
励起電子流をターゲット7”に直角に衝突させる。その
際に、被測定領域への入射角を所望の入射角にするため
に、X線ミラー14によって所望の入射角度にするもの
である。
As shown in the drawing, the direction of the electron gun 6 "connected to the high voltage cable 5" in the vacuum chamber 4 "is the axial direction,
The excited electron flow is made to collide with the target 7 ″ at a right angle. At this time, in order to make the incident angle on the measured region a desired incident angle, the X-ray mirror 14 makes a desired incident angle.

【0037】これによって、図3に示したプローブより
も電子銃6”の回りの配置が楽である等の効果を奏す
る。尚、X線ミラー14及びX線検出器8は可動にして
測定対象となる回折面に応じて所定の入射角度及び回折
角度に設定することも可能である。
As a result, the arrangement around the electron gun 6 "is easier than that of the probe shown in Fig. 3. The X-ray mirror 14 and the X-ray detector 8 are movable and the object to be measured. It is also possible to set a predetermined incident angle and a predetermined diffraction angle according to the diffractive surface.

【0038】以上のようなX線回折プローブを用いて、
被験材にX線を照射して所定の回折角のX線回折強度を
求め、別に予め求めておいた同様なX線回折強度と所定
の応力作用時間後の前記被験材の前記回折角のX線回折
強度との比較データと照合することにより、クラックが
発生する以前の金属等の被験材の疲労損傷を評価するこ
とができる。
Using the X-ray diffraction probe as described above,
The test material is irradiated with X-rays to obtain the X-ray diffraction intensity at a predetermined diffraction angle, and the X-ray diffraction intensity of the test material after the predetermined X-ray diffraction intensity and the predetermined stress action time are obtained separately. By comparing with the comparison data with the line diffraction intensity, it is possible to evaluate the fatigue damage of the test material such as metal before the crack is generated.

【0039】具体的な操作は、次の通りである。 1.疲労損傷評価を実施する対象の被験材に対して、あ
る応力作用時間(疲労回数、使用時間等)における所定
の回折角のX線回折ピークを測定する。
The specific operation is as follows. 1. An X-ray diffraction peak having a predetermined diffraction angle at a certain stress application time (number of times of fatigue, usage time, etc.) is measured for a test material to be subjected to fatigue damage evaluation.

【0040】2.得られたX線回折ピークの強度(ピー
ク高さ又はピーク面積)を測定し、その値を応力作用時
間に対してプロットする。
2. The intensity (peak height or peak area) of the obtained X-ray diffraction peak is measured, and the value is plotted against the stress action time.

【0041】3.前述の1と2を繰り返すことにより、
応力作用時間に対するX線回折強度の関係を表す曲線
(疲労損傷曲線)が得られ、この疲労損傷曲線に基づき
疲労損傷度を把握することが可能である。
3. By repeating the above 1 and 2,
A curve (fatigue damage curve) representing the relationship between the stress action time and the X-ray diffraction intensity is obtained, and the fatigue damage degree can be grasped based on this fatigue damage curve.

【0042】4.疲労損傷度評価としては、例えば次の
方法がある。 (a) 疲労損傷度評価として、応力作用時間(例えば、疲
労回数)NA,NB の時に測定したX線回折強度をIA,I
B とする。 (b) ここでX線回折強度の応力作用時間に対する変化率
(ΔI/ΔN)は次式のようになる。尚、疲労損傷評価
を実施する間隔(ΔN)については、予め求めた疲労損
傷曲線より、必要な間隔を定める。 (ΔI/ΔN)=(IB −IA )/(NB −NA ) (c) この変化率は、例えば最低強度を示す作用時間NC
以前では負、最低強度を示す作用時間NC では0、最低
強度を示す作用時間NC 以降では正となる。 (d) 故に変化率(ΔI/ΔN)の正負の判定で、疲労損
傷曲線のどの領域にあるかが解り、この疲労損傷曲線よ
り、疲労破壊時の応力作用時間Nf に至るまでの余寿命
(疲労損傷度)が求まる。
4. For example, the following methods can be used to evaluate the degree of fatigue damage. (a) As the fatigue damage degree evaluation, the X-ray diffraction intensities measured at the stress action time (for example, the number of times of fatigue) N A , N B are I A , I
Let's call it B. (b) Here, the change rate (ΔI / ΔN) of the X-ray diffraction intensity with respect to the stress action time is as follows. Regarding the interval (ΔN) at which the fatigue damage evaluation is performed, the necessary interval is determined from the fatigue damage curve obtained in advance. (ΔI / ΔN) = (I B -I A) / (N B -N A) (c) The change rate, duration of action showing the example minimum strength N C
Negative Previously, 0 the action time N C indicating the minimum intensity becomes positive in action time N C after showing the minimum intensity. (d) Therefore, by judging whether the rate of change (ΔI / ΔN) is positive or negative, it is possible to know which region of the fatigue damage curve is present, and from this fatigue damage curve, the remaining life until the stress action time N f at fatigue fracture is reached. (Fatigue damage degree) can be obtained.

【0043】5.この疲労損傷曲線は、被験材の材質,
加工度,疲労条件等により関係するが、予め必要な疲労
条件で疲労損傷曲線を基準化しておけば、この基準化さ
れた疲労損傷曲線に基づき、被験材の材質,加工度,疲
労条件等が異なる場合についても、被験時の疲労損傷度
及び疲労余寿命が求められることがある。即ち、例えば
必要に応じて応力作用時間を疲労破壊時の応力作用時間
で割った比や、縦軸のX線回折強度を初期値のX線回折
強度で割った比を用いることにより、負荷応力が異なる
場合等についても疲労損傷曲線は一本の曲線で表わすこ
とが可能となる。
5. This fatigue damage curve is
Although it depends on the workability and fatigue conditions, if the fatigue damage curve is standardized in advance under the required fatigue conditions, the material, workability, fatigue condition, etc. of the test material will be based on this standardized fatigue damage curve. The fatigue damage degree and fatigue life expectancy at the time of the test may be required for different cases. That is, for example, if necessary, by using a ratio obtained by dividing the stress action time by the stress action time at the time of fatigue failure or a ratio obtained by dividing the X-ray diffraction intensity on the vertical axis by the initial value of the X-ray diffraction intensity, The fatigue damage curve can be represented by a single curve even when the values are different.

【0044】以上のように、X線源とX線検出器を一体
化させたX線回折プローブにより、従来X線検査が不可
能であった細管内面等の空間的に狭い場所でもX線回折
を実施することが可能となる。
As described above, with the X-ray diffraction probe in which the X-ray source and the X-ray detector are integrated, the X-ray diffraction can be performed even in a spatially narrow place such as the inner surface of a thin tube where the conventional X-ray inspection was impossible. Can be carried out.

【0045】[0045]

【発明の効果】本発明は以上説明したとおり、X線源と
X線検出器とを長手方向の中間部にX線透過窓を設けた
放射線遮断中空容器内に一体化させたX線回折プローブ
により、従来よりX線検査が不可能であった細管内面等
の空間的に狭い場所でも、放射線存在下においても、X
線回折測定を実施することが可能となる。
As described above, the present invention is an X-ray diffraction probe in which an X-ray source and an X-ray detector are integrated in a radiation shielding hollow container provided with an X-ray transmission window at an intermediate portion in the longitudinal direction. Therefore, even in a spatially narrow place such as the inner surface of a thin tube where X-ray inspection has not been possible conventionally, or even in the presence of radiation, X
It becomes possible to carry out a line diffraction measurement.

【0046】従って、被験材にX線を照射して所定の回
折角のX線回折強度を求め、別に予め求めておいた同様
なX線回折強度と所定の応力作用時間後の前記被験材の
前記回折角のX線回折強度との比較データと照合するこ
とにより、クラックが発生する以前の金属等の被験材の
疲労損傷を評価することができる。
Therefore, the test material was irradiated with X-rays to obtain the X-ray diffraction intensity at a predetermined diffraction angle, and the similar X-ray diffraction intensity previously determined separately and the test material after the predetermined stress action time were obtained. By comparing with the comparison data of the diffraction angle with the X-ray diffraction intensity, it is possible to evaluate the fatigue damage of the test material such as metal before the crack is generated.

【0047】このため、回折X線から金属格子の歪み状
態を把握し、材料がクラックに至る前の早期健全性検査
を行うことができる。しかも、放射線が存在する原子力
発電所の蒸気発生機の細管や、その他、小型のプローブ
でしか検査できない部位の検査に有効である。
Therefore, the strain state of the metal lattice can be grasped from the diffracted X-rays, and an early soundness inspection can be performed before the material cracks. Moreover, it is effective for inspecting thin tubes of steam generators of nuclear power plants where radiation is present, and other parts that can be inspected only by a small probe.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のX線回折プローブの一実施例の構成を
模式的に示す正面図である。
FIG. 1 is a front view schematically showing the configuration of an example of an X-ray diffraction probe of the present invention.

【図2】図1の平面図である。FIG. 2 is a plan view of FIG.

【図3】本発明のX線回折プローブの別の実施例の構成
を模式的に示す正面図である。
FIG. 3 is a front view schematically showing the configuration of another embodiment of the X-ray diffraction probe of the present invention.

【図4】本発明のX線回折プローブの更に別の実施例の
構成を模式的に示す正面図である。
FIG. 4 is a front view schematically showing the configuration of still another embodiment of the X-ray diffraction probe of the present invention.

【符号の説明】[Explanation of symbols]

1…プローブ本体、 2…窓、 3,3’,3”…X線源、 4,4’,4”…真空室、 5,5’,5”…高圧ケーブル、 6,6’,6”…電子銃、 7,7’,7”…ターゲット、 8…X線検出器、 9…Be窓、 10…X線ガイドチューブ、 11…リード線、 12…挿入子、 13…ブラシ、 14…X線ミラー、 1 ... Probe body, 2 ... Window, 3, 3 ', 3 "... X-ray source, 4, 4', 4" ... Vacuum chamber, 5, 5 ', 5 "... High-voltage cable, 6, 6', 6" ... Electron gun, 7, 7 ', 7 "... Target, 8 ... X-ray detector, 9 ... Be window, 10 ... X-ray guide tube, 11 ... Lead wire, 12 ... Insertor, 13 ... Brush, 14 ... X Line mirror,

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 外部に被測定領域を画定するために長手
方向の中間部にX線透過窓を設けた放射線遮断中空容器
と、 前記中空容器内の長手方向の一端部に設けられたX線源
と、 該X線源からのX線を前記被測定領域に所定の入射角度
で入射するように前記X線源から前記窓まで案内するX
線ガイド手段と、 前記中空容器内の長手方向の他端部に設けられ、前記被
測定領域から生じる回折X線を前記窓を通して検出する
X線検出器とを備えたことを特徴とするX線回折プロー
ブ。
1. A radiation shielding hollow container provided with an X-ray transmission window at an intermediate portion in the longitudinal direction for defining an area to be measured to the outside, and an X-ray provided at one longitudinal end in the hollow container. Source and X for guiding the X-ray from the X-ray source from the X-ray source to the window so that the X-ray from the X-ray source is incident on the measured region at a predetermined incident angle.
An X-ray, comprising: a ray guide means; and an X-ray detector which is provided at the other end of the hollow container in the longitudinal direction and detects the diffracted X-ray generated from the measured region through the window. Diffraction probe.
JP27768792A 1992-09-24 1992-09-24 X-ray diffraction probe Pending JPH06109666A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27768792A JPH06109666A (en) 1992-09-24 1992-09-24 X-ray diffraction probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27768792A JPH06109666A (en) 1992-09-24 1992-09-24 X-ray diffraction probe

Publications (1)

Publication Number Publication Date
JPH06109666A true JPH06109666A (en) 1994-04-22

Family

ID=17586906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27768792A Pending JPH06109666A (en) 1992-09-24 1992-09-24 X-ray diffraction probe

Country Status (1)

Country Link
JP (1) JPH06109666A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004325246A (en) * 2003-04-24 2004-11-18 Toshiba Corp Defect inspection apparatus
CN113049616A (en) * 2019-12-26 2021-06-29 北航(四川)西部国际创新港科技有限公司 Nondestructive testing method and system for internal cracks of thermal barrier coating

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004325246A (en) * 2003-04-24 2004-11-18 Toshiba Corp Defect inspection apparatus
CN113049616A (en) * 2019-12-26 2021-06-29 北航(四川)西部国际创新港科技有限公司 Nondestructive testing method and system for internal cracks of thermal barrier coating

Similar Documents

Publication Publication Date Title
Ditchburn et al. NDT of welds: state of the art
McGonnagle Nondestructive testing
US7583788B2 (en) Measuring device for the shortwavelength x ray diffraction and a method thereof
US9810666B2 (en) Device and method for nondestructive inspection of tubular products, especially on site
US8438929B2 (en) Phased array ultrasonic inspection system for turbine and generator rotor bore
US4680470A (en) Method and apparatus for crack detection and characterization
Boopathy et al. Review on non-destructive testing of composite materials in aircraft applications
US5272746A (en) Method of evaluating a degree of fatigue in a structural material
WO2011046148A1 (en) Non-destructive examination method and device
JPH06109666A (en) X-ray diffraction probe
JP2003194740A (en) Heat exchanger tube and inspection device for heat exchanger tube group
Poranski et al. X-ray backscatter tomography: NDT potential and limitations
JP3091856B2 (en) How to evaluate the fatigue of structural materials
JP3853522B2 (en) X-ray fluorescence inspection equipment
RU2736816C1 (en) Laser method of determining technical condition of ammunition and elements thereof
Kenderian et al. A general overview of some nondestructive evaluation (NDE) techniques for materials characterization
JP3787347B2 (en) Heat transfer tube group inspection device
Mudge Non-destructive Testing of Welded Joints
WO1994018540A1 (en) Sensing probe
JP2007240253A (en) Device and method for detecting crack
JPS6186649A (en) Ultrasonic-wave flaw detector
US5253276A (en) Dual-longitudinal-mode ultrasonic testing
Wycherly et al. Current patents
JPH01244344A (en) Apparatus for measuring x-ray absorbing spectrum
JPS60158374A (en) Method and device for detecting and characterizing abnormality on structure

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19990330