JPH06109528A - Sound sorece searching system - Google Patents

Sound sorece searching system

Info

Publication number
JPH06109528A
JPH06109528A JP25603992A JP25603992A JPH06109528A JP H06109528 A JPH06109528 A JP H06109528A JP 25603992 A JP25603992 A JP 25603992A JP 25603992 A JP25603992 A JP 25603992A JP H06109528 A JPH06109528 A JP H06109528A
Authority
JP
Japan
Prior art keywords
microphone
sound
sound source
microphones
scan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25603992A
Other languages
Japanese (ja)
Other versions
JP3144442B2 (en
Inventor
Mitsuo Nakano
光雄 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP25603992A priority Critical patent/JP3144442B2/en
Publication of JPH06109528A publication Critical patent/JPH06109528A/en
Application granted granted Critical
Publication of JP3144442B2 publication Critical patent/JP3144442B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To embody a sound source searching system having higher detection accuracy by providing two scan microphones, one reference microphone, and an operating means for locating a sound source. CONSTITUTION:Scan microphones M1, M2 are arranged with respect to a plane to which a sound source S belongs, i.e., a reproducing plane, and the scan microphones M1, M2 are moved horizontally on front and rear measuring planes MF, MR by means of a microphone traverse system TVS. Sound pressure outputs from the scan microphones M1, M2 and a fixed reference microphone M3 are amplified through amplifiers A1-A3. The sound pressure outputs thus amplified are then subjected to data conversion through A/D converters C1-C3 and further subjected to frequency region conversion through fast Fourier transform units FFT1-FFT3. Acoustic holography operation is then carried out at a holography operating section HD. In other words, the scan microphones M1, M2 are moved in parallel with the sound source S and sound pressure data of one scan microphone is expressed in terms of sound pressure data at the position of the other scan microphone assuming that the sound data has come from the direction of reproducing point and then the difference is subjected to weighting thus obtaining a synthesized sound pressure data. This operation is performed over the entire measuring plane thus locating the sound source.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は音源探索方式に関し、特
に車両のエンジン等における騒音発生源の位置及び大き
さを探索するための装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sound source search system, and more particularly to a device for searching the position and size of a noise generating source in a vehicle engine or the like.

【0002】[0002]

【従来の技術】従来より音源を探索する方式としては種
々提案されているが、その内の一つとして、音源方向に
対して前後に2本の走査マイクを6〜50mm程度の固定
間隔を置いて音源の近接音場に設け且つ両走査マイクを
平行移動させて行く間のマイク出力を得ることにより、
その音源の音響インテンシティを求める方式(『音響イ
ンテンシティ方式』)がある。
2. Description of the Related Art Conventionally, various methods for searching a sound source have been proposed. One of them has two scanning microphones arranged at a fixed interval of about 6 to 50 mm in front of and behind the sound source. Is installed in the near field of the sound source and the microphone output is obtained while moving both scanning microphones in parallel,
There is a method for obtaining the sound intensity of the sound source (“sound intensity method”).

【0003】この方式では、単位面積を単位時間に流れ
る音響エネルギーとして音源を捕らえ、両走査マイクの
計測音圧の平均値をp(t) 、粒子速度(音速に比例した
値であり単位距離当たりの位相の変化を示す)をu(t)
とすると、両者の積の時間的平均値として次の式(1) に
示されるベクトル量を計測することにより、このベクト
ル量が最大となる両走査マイクの延長線上に音源が位置
することを探索するものである。
In this system, a sound source is captured as acoustic energy flowing in a unit time in a unit time, and the average value of the sound pressures measured by both scanning microphones is p (t), and the particle velocity (a value proportional to the speed of sound, per unit distance. U (t)
Then, by measuring the vector quantity shown in the following equation (1) as the time average of the product of both, it is found that the sound source is located on the extension line of both scanning microphones where this vector quantity becomes maximum. To do.

【0004】[0004]

【数1】 [Equation 1]

【0005】尚、粒子速度u(t) は位相の変化を表して
いる。
The particle velocity u (t) represents a change in phase.

【0006】この様な音響インテンシティ法による音源
探索方式は各走査マイク計測点での計測結果が互いに独
立しているので相関関係がなく、従って音源の指向がマ
イクの延長線方向と平行でない時には正しい探索ができ
なくなってしまうという問題がある。
In such a sound source search method based on the sound intensity method, since the measurement results at the scanning microphone measurement points are independent from each other, there is no correlation. Therefore, when the direction of the sound source is not parallel to the extension line direction of the microphone. There is a problem that a correct search cannot be performed.

【0007】また、上記の音響インテンシティ法より以
前から『音響ホログラフィ法』による音源探索方式が研
究されており、音源から一定距離だけ離れた計測面内を
走査する1本のマイクと、もう一つ適当な位置に固定さ
れている参照マイクとの2本のマイク出力信号の音圧強
度及び位相を求めて音源を探索しようとするものであ
る。
Further, a sound source search method based on the "acoustic holography method" has been studied before the sound intensity method described above, and one microphone for scanning a measurement surface at a certain distance from the sound source and another The sound source is searched for by obtaining the sound pressure intensity and the phase of the two microphone output signals with the reference microphone fixed at one appropriate position.

【0008】これをもう少し詳しく説明すると、この方
式では図5に概略的に示すようにマイクM1を計測面M
F上において水平及びに垂直方向に走査することにより
それぞれの位置でのマイク出力を得ることが出来るが、
これらのマイク出力と参照マイクの音圧出力とを考慮す
ると共にこれらのマイク出力を得るための基礎となる音
波の伝播式の逆伝播式を示す下記の再生式(2) 、
Explaining this in a little more detail, in this method, as shown schematically in FIG.
By scanning horizontally and vertically on F, you can get the microphone output at each position.
The following reproduction formula (2) showing the back propagation formula of the sound wave propagation formula which is the basis for obtaining these microphone outputs while considering these microphone outputs and the sound pressure output of the reference microphone,

【0009】[0009]

【数2】 [Equation 2]

【0010】により、マイクM1から再生された再生面
(音源面)RF上の一点R(x,y,0)の複素体積速
度振幅Q(x,y,0)が求められる。但し、上記の式
(2) におけるrは計測面MF上の一点P(x,y,zo
)と再生面RF上の一点R(x,y,0)との距離を
示している。尚、式(2) におけるP(x,y,zo )は
マクM1から出力される複素音圧を示している。
Thus, the complex volume velocity amplitude Q (x, y, 0) of one point R (x, y, 0) on the reproduction surface (sound source surface) RF reproduced from the microphone M1 is obtained. However, the above formula
R in (2) is a point P (x, y, zo on the measurement plane MF.
) And a point R (x, y, 0) on the reproduction surface RF. Incidentally, P (x, y, zo) in the equation (2) represents the complex sound pressure output from the mac M1.

【0011】そして、マイクM1が計測面MF上を水平
・垂直方向に走査された時に各マイク位置の出力によっ
て得られる再生面RF上の一点Rの複素体積速度振幅Q
(x,y,0)は全て加算され、この再生面RF上の点
Rを再生面RF上の全ての点に取り且つ同様に計測面M
Fからの全ての複素体積速度振幅Q(x,y,0)を加
算することにより、最も振幅Qが大きい点が音源として
探索されることになる。
Then, when the microphone M1 scans the measurement surface MF in the horizontal and vertical directions, the complex volume velocity amplitude Q of one point R on the reproduction surface RF obtained by the output of each microphone position.
(X, y, 0) are all added, and the points R on the reproduction surface RF are taken as all the points on the reproduction surface RF and similarly the measurement surface M
By adding all the complex volume velocity amplitudes Q (x, y, 0) from F, the point with the largest amplitude Q is searched as the sound source.

【0012】この点を更に具体的に説明したものが図6
及び図7であり、まず図6(a)においては、再生面R
F上の再生点Rを音源Sとして再生した場合には、この
図の様にマイクM1のマイク位置M1−1で拾われた音
を再生したものとマイク位置M1−2で拾われた音を再
生したものはそれぞれ音波の伝播路と逆伝播路が等距離
になり位相が同じになるので、図7(a)に示す様に再
生されたベクトル(例えばQ1〜Q3)の合成ベクトル
の絶対値は、再生面RF上の再生点Rを音源Sにとった
場合、即ち音源Sの位置において最大となる。
FIG. 6 shows this point more specifically.
7 and FIG. 7, first, in FIG. 6A, the reproduction surface R
When the reproduction point R on F is reproduced as the sound source S, a sound picked up at the microphone position M1-1 of the microphone M1 and a sound picked up at the microphone position M1-2 are reproduced as shown in this figure. In the reproduced one, the sound wave propagation path and the back propagation path are equidistant and have the same phase. Therefore, as shown in FIG. 7A, the absolute value of the composite vector of the reproduced vectors (for example, Q1 to Q3). Is maximum when the reproduction point R on the reproduction surface RF is the sound source S, that is, at the position of the sound source S.

【0013】一方、図6(b)に示すように音源Sから
少しずれた再生面RF上の位置に再生点Rを再生した場
合には、図示のようにマイク位置M1−1では伝播路よ
り再生時の逆伝播路の方が長くなり、またマイク位置M
1−2では伝播路より再生時の逆伝播路の方が短くな
る。
On the other hand, when the reproduction point R is reproduced at a position on the reproduction surface RF which is slightly deviated from the sound source S as shown in FIG. 6 (b), the microphone position M1-1 as shown in FIG. The back propagation path becomes longer during playback, and the microphone position M
In 1-2, the back propagation path during reproduction is shorter than the propagation path.

【0014】従って、マイク位置M1−1で拾われた音
を再生したものと、マイク位置M1−2で拾われた音を
再生したものとは位相にずれが生じるので、図7(b)
に示すようにこの再生点Rにおける合成ベクトル(Q1
〜Q3)は図7(a)に示す合成ベクトルより小さいも
のとなる。
Therefore, there is a phase shift between the reproduced sound picked up at the microphone position M1-1 and the reproduced sound picked up at the microphone position M1-2.
As shown in, the composite vector (Q1
To Q3) are smaller than the combined vector shown in FIG.

【0015】この様にして再生点Rを再生面RF上で多
数設定することより、再生点が音源位置に相当するとき
には図7(a)に示すように最大の合成ベクトルとり、
それ以外の位置では同図(b)に示すように小さい合成
ベクトルとなるので、前者において音源探索が得られた
ことになる。
By thus setting a large number of reproduction points R on the reproduction surface RF, when the reproduction point corresponds to the sound source position, the maximum combined vector is obtained as shown in FIG.
At other positions, the combined vector becomes small as shown in FIG. 7B, so that the sound source search is obtained in the former case.

【0016】[0016]

【発明が解決しようとする課題】上記の様な音響ホログ
ラフィ方式を用いた音源探索の場合には、図7に示した
ように、同図(a)に示す場合と、同図(b)に示す場
合との差が小さく、音源探索の検出精度が低いという問
題があった。
In the case of the sound source search using the acoustic holography method as described above, as shown in FIG. 7, the case shown in FIG. 7A and the case shown in FIG. There is a problem that the difference from the case shown is small and the detection accuracy of the sound source search is low.

【0017】また、最近では『近距離音響ホログラフィ
法』による音源探索方式も研究されており、これは音波
が音源から直線的に拡散するモードと音源から横方向に
も伝播して近距離で減衰してしまうモードがあることに
着目して後者の音波も探索の対象に含めるものである
が、この場合には音源と測定面との距離を1λから2λ
以内に収めなければならず、音源が発熱装置(例えばエ
ンジンのマニホールド)の場合には近接した距離にマイ
クを設置することが出来ず計測に適さない。
Recently, a sound source search method based on the "near-field acoustic holography method" has been studied. This is a mode in which sound waves are linearly diffused from the sound source and propagated laterally from the sound source and attenuated at a short distance. The latter sound wave is also included in the search target, paying attention to the fact that there is a mode that causes
If the sound source is a heat generating device (for example, an engine manifold), the microphone cannot be installed at a close distance, which is not suitable for measurement.

【0018】更には、音響インテンシティ法の応用例と
して、2本の走査マイクに加えて1本の参照マイクを用
い、計測面より後方に伝播して行く音波の振動モードや
放射される音波の指向性及び音圧レベルを予測する『近
接粒子速度法』が在るが、これは音源探索を行うもので
はなく利用することはできない。
Further, as an application example of the sound intensity method, in addition to two scanning microphones, one reference microphone is used, and the vibration mode of the sound wave propagating backward from the measurement surface and the emitted sound wave There is a "proximity particle velocity method" that predicts directivity and sound pressure level, but this method does not perform sound source search and cannot be used.

【0019】従って本発明は上記のような音響ホログラ
フィ法を改良することにより、より検出精度の高い音源
探索方式を実現する事を目的とする。
Therefore, it is an object of the present invention to realize a sound source search method with higher detection accuracy by improving the above acoustic holography method.

【0020】[0020]

【課題を解決するための手段】上記の目的を達成するた
め、本発明に係る音源探索方式では、音源に対して前後
に配列された少なくとも2本の走査マイクと、両走査マ
イクを同時に平行移動させる手段と、少なくとも1本の
参照マイクと、各マイクからの音源の音圧データを入力
して第1の走査マイクの音圧データを再生点方向から来
たと仮定して第2の走査マイクの位置における音圧デー
タに変換すると共にこの変換した音圧データと該第2の
走査マイクの音圧データとの差分に重み付けを行って該
第2の走査マイクの音圧データと合成し、これを該第1
の走査マイクの計測面全体に対して行うことにより音源
の位置を探索する演算手段と、を備えている。
In order to achieve the above object, in the sound source search method according to the present invention, at least two scanning microphones arranged in front of and behind the sound source and both scanning microphones are moved in parallel at the same time. Means, at least one reference microphone, and sound pressure data of the sound source from each microphone are input to assume that the sound pressure data of the first scanning microphone comes from the reproduction point direction. The sound pressure data at the position is converted, and the difference between the converted sound pressure data and the sound pressure data of the second scanning microphone is weighted to be combined with the sound pressure data of the second scanning microphone. The first
The calculation means for searching the position of the sound source by performing the measurement on the entire measurement surface of the scanning microphone.

【0021】[0021]

【作用】図1及び図2は本発明に係る音源探索方式を分
かり易く説明するための概念図であり、音源Sが属する
面、即ち再生面に対して少なくとも2本の走査マイクM
1及びM2を前後方向に配列し、これらの走査マイクM
1及びM2を同時に平行移動させ、各点におけるマイク
出力を演算手段に与える。
1 and 2 are conceptual diagrams for explaining the sound source search method according to the present invention in an easy-to-understand manner. At least two scanning microphones M are provided on the surface to which the sound source S belongs, that is, the reproduction surface.
1 and M2 are arranged in the front-back direction, and these scanning microphones M
1 and M2 are moved in parallel at the same time, and the microphone output at each point is given to the computing means.

【0022】演算手段では、例えば後方計測面MR上の
マイクM2の出力である複素音圧P2を再生面RFの方
向から来たと仮定して前方計測面MF上のマイクM1位
置における複素音圧P2’を例えば下記の式(3) に従っ
て換算する。
In the calculation means, for example, assuming that the complex sound pressure P2, which is the output of the microphone M2 on the rear measurement surface MR, comes from the direction of the reproduction surface RF, the complex sound pressure P2 at the position of the microphone M1 on the front measurement surface MF. 'Is converted, for example, according to the following equation (3).

【0023】[0023]

【数3】 [Equation 3]

【0024】尚、r1及びr2はそれぞれマイクM1及
びマイクM2から再生面RF上の再生点R迄の距離を示
しており、これらは予め分かっている前方計測面MFと
再生面RFとの距離Zoと両計測面間距離ΔZとから求
めることができる。また、前方計測面MFと後方計測面
MRは上記と逆の関係でもよい。
It should be noted that r1 and r2 indicate the distances from the microphones M1 and M2 to the reproduction point R on the reproduction surface RF, respectively, and these are the distance Zo between the front measurement surface MF and the reproduction surface RF which is known in advance. And the distance ΔZ between both measurement surfaces can be obtained. Further, the front measurement plane MF and the rear measurement plane MR may have a relationship opposite to the above.

【0025】この様にして換算された複素音圧P2’に
ついては、再生点Rが音源点でない場合は、実際のマイ
クM1で計測される複素音圧P1とは一致しないことと
なる。
The complex sound pressure P2 'thus converted does not match the complex sound pressure P1 actually measured by the microphone M1 when the reproduction point R is not the sound source point.

【0026】そこで、次の式(3) に示す様に二つの音圧
P1,P2’は複素数であるので、図3の如く表せると
ころから、この複素音圧P1とP2’よりマイクM1と
M2の合成複素音圧P3を例えば次の式(4) により計算
する。
Therefore, since the two sound pressures P1 and P2 'are complex numbers as shown in the following equation (3), since they can be expressed as shown in FIG. 3, the microphones M1 and M2 are derived from the complex sound pressures P1 and P2'. The composite complex sound pressure P3 of is calculated by, for example, the following equation (4).

【0027】[0027]

【数4】 [Equation 4]

【0028】この様にして得られた複素音圧P3を上記
の再生式(2) のP(x,y,zo)に適用することによ
り従来の音響ホログラフィ法と同様にして、図7(a)
及び(b)に示す様な合成ベクトルが得られ、最も大き
な合成ベクトルの再生点が音源点となる。
By applying the complex sound pressure P3 thus obtained to P (x, y, zo) of the above-mentioned reproduction equation (2), as in the conventional acoustic holography method, as shown in FIG. )
And a composite vector as shown in (b) is obtained, and the reproduction point of the largest composite vector becomes the sound source point.

【0029】この時、上記の式(4) において係数α(例
えば6〜60)を計測データの差分(P1−P2’)に
対して掛けることにより重み付けを行っているので、複
素音圧P1とP2’が一致していないときには、複素音
圧P3は図7(c)に示すように位相のずれが一層大き
くなるため、その合成ベクトルは同図(b)に示した従
来の音響ホログラフィ法による合成ベクトルより小さな
値を示すこととなるので、音源点の検出精度が向上する
こととなる。またこの係数αは例えば再生点Rの位置に
応じた変数となることも考えられる。
At this time, since the coefficient α (for example, 6 to 60) is multiplied by the difference (P1−P2 ′) of the measurement data in the above equation (4) to perform weighting, the complex sound pressure P1 and When P2 'does not match, the complex sound pressure P3 has a larger phase shift as shown in FIG. 7 (c), and thus the composite vector is obtained by the conventional acoustic holography method shown in FIG. 7 (b). Since the value is smaller than the combined vector, the accuracy of detecting the sound source point is improved. It is also conceivable that the coefficient α becomes a variable depending on the position of the reproduction point R, for example.

【0030】尚、第1及び第2の走査マイクはそれぞれ
前方又は後方計測面のいずれに対応してもよい。
The first and second scanning microphones may correspond to either the front or rear measurement surface.

【0031】[0031]

【実施例】図4は本発明に係る音源探索方式の実施例を
示したもので、この実施例では二つの走査マイクM1,
M2と、固定の参照マイクM3とが用いられ、これらの
走査マイクM1,M2は音源Sに対して前後に配列され
ており、それぞれ前方計測面MF及び後方計測面MR上
をマイクロホントラバース装置TVSにより水平移動さ
れる様に支持棒B1,B2に取り付けられている。尚、
この支持棒B1は支持棒B2上を移動出来るようになっ
ている為、結局、走査マイクM1,M2はそれぞれ前方
計測面MF及び後方計測面MR上を水平及び垂直方向に
おいて走査されることとなる。
FIG. 4 shows an embodiment of a sound source search system according to the present invention. In this embodiment, two scanning microphones M1,
An M2 and a fixed reference microphone M3 are used, and these scanning microphones M1 and M2 are arranged in front of and behind the sound source S, respectively, on the front measurement plane MF and the rear measurement plane MR by the microphone traverse device TVS. The support rods B1 and B2 are attached so as to be horizontally moved. still,
Since the support rod B1 can move on the support rod B2, the scanning microphones M1 and M2 are eventually scanned on the front measurement plane MF and the rear measurement plane MR in the horizontal and vertical directions, respectively. .

【0032】走査マイクM1,M2及び参照マイクM3
の各音圧出力はそれぞれアンプA1〜A3で増幅された
後、フロントプロセッサーFPにおけるA/Dコンバー
タC1〜C3でデータに変換されたのち、同じくフロン
トプロセッサFP内の高速フーリエ変換器FFT1〜F
FT3によって周波数領域に変換(これは相関を求める
ため)されたのち、パソコン又はワークステーション等
のコンピュータPCにおけるホログラフィ演算部HCで
上記のような音響ホログラフィ演算を行ってCRTまた
はプロッター等の表示器Dにその音源分布図を表示する
こととなる。
Scan microphones M1 and M2 and reference microphone M3
After being amplified by amplifiers A1 to A3, the respective sound pressure outputs are converted into data by A / D converters C1 to C3 in the front processor FP, and similarly, fast Fourier transformers FFT1 to FFT in the front processor FP.
After being converted to the frequency domain by the FT3 (this is for obtaining the correlation), the above-mentioned acoustic holography calculation is performed by the holography calculation unit HC in the computer PC such as a personal computer or a workstation to display the display D such as a CRT or plotter. The sound source distribution map will be displayed on.

【0033】尚、マイクロホントラバース装置TVSを
制御するコントローラCNTはやはりコンピュータPC
内に設けた制御ソフト部CSによって制御されるように
なっており、このコントローラCNTにより制御される
マイクロホントラバース装置TVSの移動速度は、マイ
クM1〜M3の出力をサンプリングする速度と予め調整
されている。
The controller CNT for controlling the microphone traverse device TVS is also a computer PC.
The moving speed of the microphone traverse device TVS controlled by the controller CNT is adjusted in advance to the speed at which the outputs of the microphones M1 to M3 are sampled. .

【0034】[0034]

【発明の効果】以上説明したように本発明に係る音源探
索方式によれば、少なくとも2本の走査マイクを音源に
対して前後に配列して同時に平行移動させることによ
り、一方の走査マイクの音圧データを再生点方向から来
たと仮定して他方の走査マイクの位置における音圧デー
タに換算することにより両者の差分に重み付けを行って
合成音圧データを得ることにより、これを計測面全体に
対して行って音源の位置を探索するように構成したの
で、計測面の大きさや計測面と音源面との距離の制約を
受けずに精度の高い音源位置の検出を行うことが出来
る。
As described above, according to the sound source search method according to the present invention, at least two scanning microphones are arranged in front of and behind the sound source and are moved in parallel at the same time, so that the sound of one scanning microphone is generated. By assuming that the pressure data came from the reproduction point direction and converting it to sound pressure data at the position of the other scanning microphone, the difference between the two is weighted to obtain the synthesized sound pressure data, which is applied to the entire measurement surface. Since it is configured to search for the position of the sound source by performing the search for the sound source position, it is possible to detect the sound source position with high accuracy without being restricted by the size of the measurement surface or the distance between the measurement surface and the sound source surface.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る音源探索方式の作用原理を説明す
るため図である。
FIG. 1 is a diagram for explaining the operation principle of a sound source search system according to the present invention.

【図2】本発明に係る音源探索方式の音源と計測面とを
示した斜視図である。
FIG. 2 is a perspective view showing a sound source and a measurement surface of a sound source search system according to the present invention.

【図3】本発明に係る音源探索方式により計算される複
素音圧を示したベクトル図である。
FIG. 3 is a vector diagram showing a complex sound pressure calculated by a sound source search method according to the present invention.

【図4】本発明に係る音源探索方式の一実施例を示した
図である。
FIG. 4 is a diagram showing an embodiment of a sound source search system according to the present invention.

【図5】従来の音響ホログラフィ法による音圧再生を説
明するための図である。
FIG. 5 is a diagram for explaining sound pressure reproduction by a conventional acoustic holography method.

【図6】従来の音響ホログラフィ法により音源を再生す
る状態を示した図である。
FIG. 6 is a diagram showing a state in which a sound source is reproduced by a conventional acoustic holography method.

【図7】本発明及び従来例によって得られる再生面上の
合成ベクトルを示した図である。
FIG. 7 is a diagram showing a combined vector on a reproduction surface obtained by the present invention and a conventional example.

【符号の説明】[Explanation of symbols]

M1,M2 走査マイク M3 参照マイク S 音源 MF 前方計測面 MR 後方計測面 TVS マイクロホントラバース装置 FP フロントプロセッサー PC コンピュータ 図中、同一符号は同一又は相当部分を示す。 M1, M2 Scanning microphone M3 Reference microphone S Sound source MF Front measuring surface MR Rear measuring surface TVS Microphone traverse device FP front processor PC computer In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 音源に対して前後に配列された少なくと
も2本の走査マイクと、両走査マイクを同時に平行移動
させる手段と、少なくとも1本の参照マイクと、各マイ
クからの音源の音圧データを入力して第1の走査マイク
の音圧データを再生点方向から来たと仮定して第2の走
査マイクの位置における音圧データに変換すると共にこ
の変換した音圧データと該第2の走査マイクの音圧デー
タとの差分に重み付けを行って該第2の走査マイクの音
圧データと合成し、これを該第1の走査マイクの計測面
全体に対して行うことにより音源の位置を探索する演算
手段と、を備えたことを特徴とする音源探索方式。
1. At least two scanning microphones arranged in front of and behind the sound source, a means for moving both scanning microphones in parallel at the same time, at least one reference microphone, and sound pressure data of the sound source from each microphone. Is input to convert the sound pressure data of the first scanning microphone into sound pressure data at the position of the second scanning microphone on the assumption that the sound pressure data comes from the reproduction point direction, and the converted sound pressure data and the second scanning The position of the sound source is searched by weighting the difference with the sound pressure data of the microphone and synthesizing it with the sound pressure data of the second scanning microphone, and performing this for the entire measurement surface of the first scanning microphone. A sound source search method, comprising:
JP25603992A 1992-09-25 1992-09-25 Sound source search method Expired - Fee Related JP3144442B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25603992A JP3144442B2 (en) 1992-09-25 1992-09-25 Sound source search method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25603992A JP3144442B2 (en) 1992-09-25 1992-09-25 Sound source search method

Publications (2)

Publication Number Publication Date
JPH06109528A true JPH06109528A (en) 1994-04-19
JP3144442B2 JP3144442B2 (en) 2001-03-12

Family

ID=17287067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25603992A Expired - Fee Related JP3144442B2 (en) 1992-09-25 1992-09-25 Sound source search method

Country Status (1)

Country Link
JP (1) JP3144442B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08233931A (en) * 1995-02-24 1996-09-13 Isuzu Motors Ltd Sound source searching system
JP2004240698A (en) * 2003-02-06 2004-08-26 Matsushita Electric Ind Co Ltd Robot travel path teaching method and robot with travel path teaching function
JP2007093251A (en) * 2005-09-27 2007-04-12 Chubu Electric Power Co Inc Simulation method for noise countermeasure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08233931A (en) * 1995-02-24 1996-09-13 Isuzu Motors Ltd Sound source searching system
JP2004240698A (en) * 2003-02-06 2004-08-26 Matsushita Electric Ind Co Ltd Robot travel path teaching method and robot with travel path teaching function
JP2007093251A (en) * 2005-09-27 2007-04-12 Chubu Electric Power Co Inc Simulation method for noise countermeasure
JP4629544B2 (en) * 2005-09-27 2011-02-09 中部電力株式会社 Noise suppression simulation method

Also Published As

Publication number Publication date
JP3144442B2 (en) 2001-03-12

Similar Documents

Publication Publication Date Title
Jacobsen et al. Near field acoustic holography with particle velocity transducers
JPH0643886A (en) Noise control system
Braikia et al. Evaluation of a separation method for source identification in small spaces
JP2011053062A (en) Device for estimating direct/indirect ratio, device for measuring distance to sound source, noise eliminating device, method for the same and device program
Ju et al. Near-field characteristics of the parametric loudspeaker using ultrasonic transducers
Lim et al. Multi-domain active sound control and noise shielding
Kemp et al. Time domain wave separation using multiple microphones
Langrenne et al. Measurement of confined acoustic sources using near-field acoustic holography
Cigada et al. Moving microphone arrays to reduce spatial aliasing in the beamforming technique: Theoretical background and numerical investigation
CN114485917B (en) Sound field reconstruction method based on planar array scanning
JP2017227489A (en) Test system, waveform simulator device, test method and program
JP2000304859A (en) Active sonar and its target detection method
Li et al. Low-frequency acoustic source localization based on the cross-spectral time reversal method corrected in wavenumber domain
JPH06109528A (en) Sound sorece searching system
JP3489282B2 (en) Sound source search method
US6615143B2 (en) Method and apparatus for reconstructing and acoustic field
JP3389726B2 (en) Sound source search method
Bi et al. Separation of non-stationary sound fields with single layer pressure-velocity measurements
Akamine et al. Experimental study on effects of plate angle on acoustic waves from supersonic impinging jets
Noh et al. Identification of low-frequency noise sources in high-speed train via resolution improvement
JPH09113248A (en) Near sound field holography device
Luo et al. A free field recovery technique based on the boundary element method and three-dimensional scanning measurements
Gao et al. Flexible wide-field high-resolution scanning camera for continuous-wave acoustic holography
Bai et al. Particle velocity estimation based on a two-microphone array and Kalman filter
Walker et al. Modal Doppler theory of an arbitrarily accelerating continuous-wave source applied to mode extraction in the oceanic waveguide

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001129

LAPS Cancellation because of no payment of annual fees