JPH06109472A - Estimate calculation processor - Google Patents

Estimate calculation processor

Info

Publication number
JPH06109472A
JPH06109472A JP28523192A JP28523192A JPH06109472A JP H06109472 A JPH06109472 A JP H06109472A JP 28523192 A JP28523192 A JP 28523192A JP 28523192 A JP28523192 A JP 28523192A JP H06109472 A JPH06109472 A JP H06109472A
Authority
JP
Japan
Prior art keywords
incident
calculation
unit
propagation loss
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28523192A
Other languages
Japanese (ja)
Other versions
JP2845689B2 (en
Inventor
Masahiro Hatakeyama
正広 畠山
Masaru Ozawa
賢 小沢
Tamotsu Fujiwara
保 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
NEC Engineering Ltd
Original Assignee
NEC Corp
NEC Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, NEC Engineering Ltd filed Critical NEC Corp
Priority to JP28523192A priority Critical patent/JP2845689B2/en
Publication of JPH06109472A publication Critical patent/JPH06109472A/en
Application granted granted Critical
Publication of JP2845689B2 publication Critical patent/JP2845689B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To calculate the detection distance in a sea bottom reverberation control area at every depth by one calculation in a estimate calculation processor for the estimate calculation of the detection distance of a sonar device. CONSTITUTION:A transmission loss and incident supplement calculation part 2 calculates transmission losses and incident supplements at every sampling points of a definite distance intervals along the sound rays set at every dips of a definite interval from the transmitter of a sonar device on the basis of the sonar various data, environmental conditions and calculation range inputted in an input part 1 and a transmission loss average calculation part 3 calculates the average value of transmission losses in respective lattice units obtained when an indicated sea area is divided in a horizontal direction and a depth direction and an incident dip average calculation part 4 calculates the average value of incident supplements in respective lattice units. A signal excess calculation part 5 calculates signal excess values in respective lattice units on the basis of the data inputted in an input part 1, the average value of transmission losses and the sea bottom scattering intensity value in a sea bottom scattering intensity register part 6 corresponding to the average value of incident supplements and a detection distance calculation part 7 calculates the detection distance in the sea bottom reverberation control area at every lattice depths on the basis of the calculated signal excess values of every lattices to display the same on a display part 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、目標の探知を行うソー
ナー装置の探知距離を予測計算する予察計算処理器に関
し、特に海底残響支配領域の予察計算処理器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a prediction calculation processor for predicting and calculating a detection distance of a sonar device for detecting a target, and more particularly to a prediction calculation processor for a seabed reverberation control area.

【0002】[0002]

【従来の技術】従来、この種の予察計算処理器において
は、図6に示すような構成を採用し、或る1つの海底深
度毎に海底残響支配領域における探知距離を計算してい
た。以下、図6を参照して従来の予察計算処理器を説明
する。
2. Description of the Related Art Conventionally, in this type of prediction calculation processor, a configuration as shown in FIG. 6 is adopted to calculate a detection distance in a seafloor reverberation control area for each one seafloor depth. Hereinafter, a conventional prediction calculation processor will be described with reference to FIG.

【0003】図6において、入力部11は、図示しない
キーボード等の入力装置から、送波レベル,周波数,音
源深度,ビーム幅等のソーナー諸元情報と、水深に対す
る水温分布データ等の環境条件と、水平距離および水深
についての計算範囲の情報に加え、今回計算する海底深
度,目標深度を入力する。
In FIG. 6, an input unit 11 is provided with an input device such as a keyboard (not shown), sonar specifications information such as transmission level, frequency, sound source depth, and beam width, and environmental conditions such as water temperature distribution data with respect to water depth. , In addition to the information on the calculation range for horizontal distance and water depth, enter the seafloor depth and target depth to be calculated this time.

【0004】次に伝搬損失算出部12は、ソーナー装置
の送波器から一定間隔の俯角毎に設定した音線に沿って
一定距離間隔のサンプリング点毎に伝搬損失を算出す
る。そして、音線深度が海底深度に達したサンプリング
点において入射補角算出部13は、音線と水平面とが為
す角である入射補角を算出する。
Next, the propagation loss calculating unit 12 calculates the propagation loss at every sampling point at a constant distance along the sound ray set for each depression angle at a constant interval from the transmitter of the sonar device. Then, at the sampling point where the sound ray depth reaches the seabed depth, the incident supplementary angle calculation unit 13 calculates the incident supplementary angle, which is the angle formed by the acoustic ray and the horizontal plane.

【0005】以上のような処理を全ての音線について実
行した後、伝搬損失平均算出部14は、計算範囲に相当
する指定海域を例えば水平方向にm分割,深度方向にn
分割して得られるm×n個の各格子毎に、その各格子内
に含まれる音線のサンプリング点で計算された上記伝搬
損失の平均値を算出する。
After performing the above-described processing for all sound rays, the propagation loss average calculation unit 14 divides the designated sea area corresponding to the calculation range into, for example, m horizontal parts and n depth parts.
For each m × n grid obtained by division, the average value of the above-mentioned propagation loss calculated at the sampling points of the sound rays included in each grid is calculated.

【0006】また、入射補角平均算出部15は、今回の
海底深度に相当する深度の各格子に含まれる音線のサン
プリング点で計算された上記入射補角の平均値を算出す
る。
Further, the incident supplementary angle average calculation unit 15 calculates the average value of the incident supplementary angles calculated at the sampling points of the sound rays included in each lattice of the depth corresponding to the current seabed depth.

【0007】次にシグナルエクセス算出部16は、入力
部11で入力されたソーナー諸元情報と、伝搬損失平均
算出部14で算出された各格子の伝搬損失平均値と、入
射補角平均算出部15で算出された今回の海底深度にお
ける入射補角の平均値に対応して海底散乱強度登録部1
7に登録されている海底散乱強度データ(海底残響レベ
ルデータ)を用いて、今回の海底深度に相当する深度の
各格子における海底残響支配領域のシグナルエクセス値
を算出する。
Next, the signal excess calculating unit 16 includes the sonar parameter information input by the input unit 11, the propagation loss average value of each grating calculated by the propagation loss average calculating unit 14, and the incident supplementary angle average calculating unit. Corresponding to the average value of the incident angle of incidence at this seafloor depth calculated in 15, the seabed scattering intensity registration unit 1
Using the seabed scattering intensity data (seabed reverberation level data) registered in No. 7, the signal excess value of the seabed reverberation dominated region in each grid having a depth corresponding to the current seabed depth is calculated.

【0008】そして、探知距離算出部18は上記算出さ
れた各格子のシグナルエクセス値に基づき探知距離を算
出し、表示部19に、例えば図7に示すように、音源深
度Zs,目標深度Zt,海底深度Zb(以上は入力部1
1で入力された値)と共にその条件の下で算出した探知
距離Rbを表示する。
Then, the detection distance calculation unit 18 calculates the detection distance based on the calculated signal excess value of each lattice, and the display unit 19 displays the sound source depth Zs, the target depth Zt, and the target depth Zt, as shown in FIG. Seafloor depth Zb (above is input unit 1
The detection distance Rb calculated under the condition is displayed together with the value input at 1).

【0009】以上で、或る1つの海底深度について海底
残響支配領域における探知距離が計算されたことにな
り、この計算を必要な海底深度毎に実行することによ
り、各海底深度毎の海底残響支配領域における探知距離
を求めていた。
As described above, the detection distance in the seafloor reverberation control region is calculated for a certain seafloor depth. By executing this calculation for each required seafloor depth, the seafloor reverberation control for each seafloor depth is performed. I was seeking the detection distance in the area.

【0010】[0010]

【発明が解決しようとする課題】このように従来の予察
計算処理器では、海底深度を固定して海底残響支配領域
における探知距離の計算を行うため、海底深度が連続的
に変化する海域においては、計算を何度も繰り返す必要
があった。即ち、N通りの海底深度について探知距離を
求める場合、図6で説明した計算をN回繰り返す必要が
あった。
As described above, in the conventional prediction calculation processor, the detection distance in the seafloor reverberation control area is calculated while the seafloor depth is fixed. Therefore, in the sea area where the seafloor depth continuously changes, , I had to repeat the calculation many times. That is, in order to obtain the detection distance for N seafloor depths, it was necessary to repeat the calculation described in FIG. 6 N times.

【0011】本発明はこのような従来の問題点を解決し
たもので、その目的は、1度の計算で各深度毎の海底残
響支配領域における探知距離の計算が行えるようにする
ことにある。
The present invention has solved such a conventional problem, and an object thereof is to enable calculation of a detection distance in a seafloor reverberation control area for each depth by one calculation.

【0012】[0012]

【課題を解決するための手段】本発明は上記の目的を達
成するために、水中目標の探知を行うソーナー装置の探
知距離を予測計算する予察計算処理器において、ソーナ
ー諸元情報,環境条件,計算範囲を入力する入力部と、
ソーナー装置の送波器から一定間隔の俯角毎に設定した
音線に沿って一定距離間隔のサンプリング点毎に伝搬損
失および入射補角を算出する伝搬損失・入射補角算出部
と、該伝搬損失・入射補角算出部で算出された伝搬損失
を入力し、指定海域を水平方向と深度方向に分割したと
きに得られる各格子単位に、伝搬損失の平均値を算出す
る伝搬損失平均算出部と、前記伝搬損失・入射補角算出
部で算出された入射補角を入力し、前記各格子単位に入
射補角の平均値を算出する入射補角平均算出部と、入射
補角別の海底散乱強度値を登録した海底散乱強度登録部
と、前記入力部で入力された情報と、前記伝搬損失平均
算出部で算出された伝搬損失の平均値と、前記入射補角
平均算出部で算出された入射補角の平均値に対応して前
記海底散乱強度登録部に登録された海底散乱強度値とに
基づいて、前記各格子単位にシグナルエクセス値を算出
するシグナルエクセス算出部と、該シグナルエクセス算
出部で算出された各格子のシグナルエクセス値に基づ
き、格子深度毎に海底残響支配領域における探知距離を
算出する探知距離算出部と、該探知距離算出部で算出さ
れた各格子深度毎の探知距離を表示する表示部とを備え
ている。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a prediction calculation processor for predicting and calculating a detection distance of a sonar device for detecting an underwater target, sonar specification information, environmental conditions, An input section for inputting the calculation range,
A propagation loss / incidence supplementary angle calculation unit that calculates a propagation loss and an incident supplementary angle at each sampling point at a constant distance along a sound ray set for each depression angle from the transmitter of the sonar device, and the propagation loss.・ A propagation loss average calculation unit that inputs the propagation loss calculated by the incident supplementary angle calculation unit and calculates the average value of the propagation loss for each grid unit obtained when the designated sea area is divided into the horizontal direction and the depth direction. , An incident supplementary angle average calculation unit that inputs the incident supplementary angle calculated by the propagation loss / incident supplementary angle calculation unit and calculates an average value of the incident supplementary angle for each of the grating units, and sea bottom scattering for each incident supplementary angle The sea bottom scattering intensity registration unit that registered the intensity value, the information input by the input unit, the average value of the propagation loss calculated by the propagation loss average calculation unit, and the incident supplemental angle average calculation unit Corresponding to the average value of the incident angle of incidence, Based on the seabed scattering intensity value registered in the section, the signal excess calculating unit for calculating the signal excess value in each of the lattice units, and the signal excess value of each lattice calculated by the signal excess calculating unit, the lattice A detection distance calculation unit that calculates a detection distance in the seafloor reverberation control area for each depth, and a display unit that displays the detection distance for each grid depth calculated by the detection distance calculation unit are provided.

【0013】また、前記探知距離算出部は、前記シグナ
ルエクセス算出部で算出された各格子のシグナルエクセ
ス値に基づいて探知可能範囲を求め、深度,水平距離を
各々軸として前記求めた探知可能範囲を描いたグラフを
前記表示部に表示する構成を有している。
The detection distance calculation unit obtains a detection range based on the signal excess value of each lattice calculated by the signal excess calculation unit, and the detection range obtained with the depth and the horizontal distance as axes. Is configured to be displayed on the display unit.

【0014】[0014]

【作用】本発明の予察計算処理器においては、入力部
が、ソーナー諸元情報,環境条件,計算範囲を入力し、
伝搬損失・入射補角算出部がこの入力された情報に従っ
て、ソーナー装置の送波器から一定間隔の俯角毎に設定
した音線に沿って一定距離間隔のサンプリング点毎に伝
搬損失および入射補角を算出し、次いで、伝搬損失平均
算出部が伝搬損失・入射補角算出部で算出された伝搬損
失を入力して指定海域を水平方向と深度方向に分割した
ときに得られる各格子単位に、伝搬損失の平均値を算出
し、更に入射補角平均算出部が伝搬損失・入射補角算出
部で算出された入射補角を入力し、各格子単位に入射補
角の平均値を算出する。そして、シグナルエクセス算出
部が、入力部で入力された情報と、伝搬損失平均算出部
で算出された伝搬損失の平均値と、入射補角平均算出部
で算出された入射補角の平均値に対応して海底散乱強度
登録部に登録された海底散乱強度値とに基づいて、各格
子単位にシグナルエクセス値を算出し、探知距離算出部
がシグナルエクセス算出部で算出された各格子のシグナ
ルエクセス値に基づき、格子深度毎に海底残響支配領域
における探知距離を算出して表示部に表示する。また、
探知距離算出部は、シグナルエクセス算出部で算出され
た各格子のシグナルエクセス値に基づいて探知可能範囲
を求め、深度,水平距離を各々軸として、その探知可能
範囲を描いたグラフを表示部に表示する。
In the prediction calculation processor of the present invention, the input section inputs sonar specification information, environmental conditions, and calculation range,
According to this input information, the propagation loss / incident compensation angle calculation unit follows the input information from the transmitter of the sonar device along the sound ray set for each depression angle at a certain distance, and at each sampling point at a certain distance, the propagation loss and incident compensation angle. Then, the propagation loss average calculation unit inputs the propagation loss calculated by the propagation loss / incident angle of incidence calculation unit into each grid unit obtained when the designated sea area is divided into the horizontal direction and the depth direction, The average value of the propagation loss is calculated, and the incident supplementary angle average calculation unit inputs the incident supplementary angle calculated by the propagation loss / incident complementary angle calculation unit, and calculates the average value of the incident supplementary angle for each grating. Then, the signal excess calculation unit, the information input by the input unit, the average value of the propagation loss calculated by the propagation loss average calculation unit, and the average value of the incident supplementary angle calculated by the incident supplemental angle average calculation unit. Correspondingly, based on the seabed scattering intensity value registered in the seabed scattering intensity registration unit, the signal excess value is calculated for each lattice unit, and the detection distance calculation unit calculates the signal excess of each lattice calculated by the signal excess calculation unit. Based on the value, the detection distance in the seabed reverberation control area is calculated for each grid depth and displayed on the display unit. Also,
The detection distance calculation unit obtains a detectable range based on the signal excess value of each lattice calculated by the signal excess calculation unit, and displays a graph showing the detectable range on the display unit with the depth and horizontal distance as axes. indicate.

【0015】[0015]

【実施例】次に本発明の実施例について図面を参照して
詳細に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0016】図1を参照すると、本発明の予察計算処理
器の一実施例は、予察対象となるソーナー装置の送波レ
ベル,周波数,音源深度,ビーム幅等のソーナー諸元情
報,水深に対する水温分布等の環境条件,水平距離およ
び水深についての計算範囲を外部から入力する入力部1
と、予察対象となるソーナー装置の送波器から一定間隔
の俯角毎に設定した音線に沿って一定距離間隔のサンプ
リング点毎に伝搬損失および入射補角を算出する伝搬損
失・入射補角算出部2と、指定海域を水平方向と深度方
向に格子状に分割したときに得られる各格子単位に伝搬
損失の平均値を算出する伝搬損失平均算出部3と、同じ
く全ての格子毎に入射補角の平均値を算出する入射補角
平均算出部4と、入射補角および海底質別の海底散乱強
度値を登録した海底散乱強度登録部6と、各格子単位に
海底残響支配領域のシグナルエクセス(信号余剰レベ
ル)値を算出するシグナルエクセス算出部5と、格子深
度毎に海底残響支配領域の探知距離を算出すると共に水
平距離,深度を各々軸として海底残響支配領域における
探知可能範囲をグラフ化した図形を作成する探知距離算
出部7と、算出された探知距離および作成されたグラフ
を表示する表示部8と、処理途中の結果を保持するテー
ブルT1〜T5とを備えている。
Referring to FIG. 1, one embodiment of the prediction calculation processor of the present invention is sonar specification information such as transmission level, frequency, sound source depth and beam width of a sonar device to be predicted, and water temperature with respect to water depth. Input unit 1 to input environmental conditions such as distribution, horizontal distance and calculation range for water depth from the outside
And the propagation loss and incident supplementary angle are calculated from the transmitter of the sonar device to be inspected at each sampling point at regular intervals along the sound ray set for each depression angle at regular intervals. The unit 2 and the propagation loss average calculation unit 3 that calculates the average value of the propagation loss for each grid unit obtained when the designated sea area is divided in the horizontal direction and the depth direction into a grid shape. Incident supplemental angle average calculation unit 4 for calculating the average value of the angles, seabed scattering intensity registration unit 6 for registering the incident supplemental angle and the seafloor scattering intensity value for each seafloor quality, and the signal excess of the seafloor reverberation control region for each lattice The signal excess calculating unit 5 for calculating the (signal surplus level) value, the detection distance of the seafloor reverberation control area for each grid depth, and the detection range of the seafloor reverberation control area with the horizontal distance and depth as axes. A detection distance calculating unit 7 for creating a phased graphic, a display unit 8 for displaying the calculated detection range and the created graph, and a table T1~T5 to hold the result of being processed.

【0017】このように構成された本実施例の予察計算
処理器は以下のように動作する。
The prediction calculation processor of the present embodiment configured as described above operates as follows.

【0018】先ず、入力部1は図示しないキーボード等
から、予察対象となるソーナー装置の送波レベル,周波
数,音源深度,ビーム幅等のソーナー諸元情報,水深に
対する水温分布等の環境条件,水平距離および水深につ
いての計算範囲を入力する。
First, the input unit 1 is operated from a keyboard (not shown) or the like, sonar specifications information such as the transmission level, frequency, sound source depth, and beam width of the sonar device to be inspected, environmental conditions such as water temperature distribution with respect to water depth, horizontal Enter the calculation range for distance and water depth.

【0019】次に伝搬損失・入射補角算出部2は、入力
部1で入力された水平距離および水深についての計算範
囲に相当する指定海域を例えば水平方向に64分割,深
度方向に32分割して、合計32×64個の格子Ki,j
(i=1〜64,j=1〜32)を想定し、各格子単位
に以下の処理を行う。
Next, the propagation loss / incident incident angle calculation unit 2 divides the designated sea area corresponding to the calculation range for the horizontal distance and the water depth input by the input unit 1 into, for example, 64 in the horizontal direction and 32 in the depth direction. And a total of 32 × 64 grids Ki, j
Assuming (i = 1 to 64, j = 1 to 32), the following processing is performed for each lattice unit.

【0020】予測対象となるソーナー装置の送波器から
一定間隔の俯角毎に設定した音線に沿って一定距離間隔
のサンプリング点毎に伝搬損失および音線と水平面が為
す角である入射補角を算出する。
From the transmitter of the sonar device to be predicted, along the sound ray set for each depression angle at a constant interval, the propagation loss and the incident supplemental angle, which is the angle formed by the sound ray and the horizontal plane, at each sampling point at a constant distance To calculate.

【0021】例えば、図2に示す格子Ki,j の場合、音
線1に沿う一定距離間隔のサンプリング点としてP1〜
P3が含まれるので、各サンプリング点P1〜P3にお
ける伝搬損失および入射補角θ1n-1,θ1n, θ1n+1を算
出し、同様に他の音線2,…,mに沿う一定距離間隔の
サンプリング点のうち格子Ki,j に含まれる各サンプリ
ング点における伝搬損失および入射補角を算出する。そ
して、これら算出した全ての伝搬損失を格子Ki,j にか
かる伝搬損失としてテーブルT1に格納し、同様に算出
した全ての入射補角を格子Ki,j にかかる入射補角とし
てテーブルT2に格納する。
For example, in the case of the grid Ki, j shown in FIG. 2, P1 to P1 are set as sampling points along the sound ray 1 at regular intervals.
Since P3 is included, the propagation loss and the incident complementary angles θ1n-1, θ1n, θ1n + 1 at each sampling point P1 to P3 are calculated, and similarly, sampling is performed at regular intervals along the other sound rays 2, ..., M. The propagation loss and the incident incident angle at each sampling point included in the grid Ki, j among the points are calculated. Then, all of these calculated propagation losses are stored in the table T1 as the propagation loss applied to the grating Ki, j, and all the similarly calculated incident complementary angles are stored in the table T2 as the incident complementary angle applied to the grating Ki, j. .

【0022】次に伝搬損失平均算出部3および入射補角
平均算出部4が動作する。
Next, the propagation loss average calculator 3 and the incident supplemental angle average calculator 4 operate.

【0023】伝搬損失平均算出部3は、テーブルT1に
格納された各格子にかかる伝搬損失を入力し、各格子毎
に伝搬損失の平均値を算出し、これをテーブルT3に格
納する。
The propagation loss average calculator 3 inputs the propagation loss of each lattice stored in the table T1, calculates the average value of the propagation loss for each lattice, and stores this in the table T3.

【0024】他方、入射補角平均算出部4は、テーブル
T2に格納された各格子にかかる入射補角を入力し、各
格子毎に入射補角の平均値を算出し、これをテーブルT
4に格納する。
On the other hand, the incident supplementary angle average calculation unit 4 inputs the incident supplementary angle applied to each grating stored in the table T2, calculates the average value of the incident supplementary angle for each grating, and calculates the average value.
Store in 4.

【0025】次にシグナルエクセス算出部5が動作し、
音線が通過する格子(すなわち、テーブルT3,T4に
伝搬損失および入射補角の平均値が格納されている格
子)全てについて、海底残響支配領域のシグナルエクセ
ス値を算出する。
Next, the signal excess calculator 5 operates,
The signal excess value of the seafloor reverberation dominant region is calculated for all the gratings through which the sound rays pass (that is, the gratings in which the average values of the propagation loss and the incident complementary angle are stored in the tables T3 and T4).

【0026】ここで、海底残響支配領域のシグナルエク
セス値は、入力部1で入力されたソーナー諸元情報と、
テーブルT3に格納されている伝搬損失平均値と、テー
ブルT4に格納されている入射補角平均値に対応して海
底散乱強度登録部6に登録された海底散乱強度データと
を用いて算出する。なお、入射補角平均値そのものに対
応する海底散乱強度データが海底散乱強度登録部6に登
録されていない場合は、その入射補角平均値に近い海底
散乱強度データを補間計算して該当する海底散乱強度デ
ータを求める。
Here, the signal excess value of the seafloor reverberation control area is the sonar specification information input by the input unit 1,
It is calculated using the propagation loss average value stored in the table T3 and the seabed scattering intensity data registered in the seabed scattering intensity registration unit 6 corresponding to the incident supplementary angle average value stored in the table T4. If the sea bottom scattering intensity data corresponding to the incident supplementary angle average value itself is not registered in the sea bottom scattering intensity registration unit 6, the sea bottom scattering intensity data close to the incident supplementary angle average value is interpolated and the corresponding sea bottom scattering intensity data is calculated. Obtain scattering intensity data.

【0027】そして、シグナルエクセス算出部5は、算
出した結果を各格子単位にテーブルT5に図3に示すよ
うに格納する。即ち、シグナルエクセス値が正の格子に
ついては+を、負の格子については−を格納する。な
お、音線が存在しない格子にはNを格納する。
Then, the signal excess calculating unit 5 stores the calculated result in the table T5 for each lattice unit as shown in FIG. That is, + is stored for a lattice having a positive signal excess value, and − is stored for a lattice having a negative signal excess value. It should be noted that N is stored in the lattice where no sound ray exists.

【0028】次に、探知距離算出部7がテーブルT5の
内容に従って探知距離を算出する。この探知距離の算出
は、シグナルエクセス値が正(+)となる領域が目標探
知可能な領域となる特性から、シグナルエクセス値が正
の格子について、各格子深度毎に探知距離(直距離)を
算出する。即ち、本実施例では深度方向に32個の格子
が存在するので、先ずK1,1 〜K64,1の格子のうちシグ
ナルエクセス値が正になっている水平方向の距離が最も
長い格子を求め、この格子の水平距離とソーナー位置
(音源深度)とに基づき、三平方の定理から探知距離
(直距離)を求める。次に、K1,2 〜K64,2の格子等、
残りの各格子深度の探知距離を同様に算出する。従っ
て、全部で32通りの格子深度について探知距離が求め
られる。
Next, the detection distance calculation unit 7 calculates the detection distance according to the contents of the table T5. The calculation of the detection distance is based on the characteristic that the region where the signal excess value is positive (+) is the region where the target detection is possible. calculate. That is, in this embodiment, since 32 grids exist in the depth direction, first of all the grids of K1,1 to K64,1 having the longest distance in the horizontal direction in which the signal excess value is positive, Based on the horizontal distance of this grid and the sonar position (sound source depth), the detection distance (direct distance) is obtained from the Pythagorean theorem. Next, the grid of K1,2 to K64,2, etc.
The detection distance of each remaining grid depth is calculated similarly. Therefore, the detection distance is obtained for a total of 32 grid depths.

【0029】探知距離算出部7は、この求めた各格子深
度毎の探知距離を例えば図4に示すような形式で表示部
8に表示する。
The detection distance calculation unit 7 displays the calculated detection distance for each grid depth on the display unit 8 in a format as shown in FIG. 4, for example.

【0030】また、探知距離算出部7は、テーブルT5
中のシグナルエクセス値が正となる格子の境界を折線で
接続することにより探知可能範囲を定め、この求めた探
知可能範囲を、縦軸に深度を、横軸に水平距離を目盛っ
た例えば図5に示すようなグラフで表示部8に表示す
る。この図5の折線グラフ50の内側が探知可能範囲で
あり、図4のような表示だけでは判明しない最小の探知
距離も読み取ることが可能である。
Further, the detection distance calculation unit 7 uses the table T5.
The detectable range is defined by connecting the boundaries of the lattice where the signal excess value inside is positive with a polygonal line, and the obtained detectable range is graduated on the vertical axis and the horizontal distance on the horizontal axis. A graph as shown in FIG. 5 is displayed on the display unit 8. The inside of the polygonal line graph 50 in FIG. 5 is the detectable range, and it is possible to read the minimum detection distance which cannot be found only by the display as shown in FIG.

【0031】[0031]

【発明の効果】以上説明したように、本発明の予察計算
処理器は、特定の深度の格子だけでなく全ての格子毎に
入射補角を算出すると共に同様に全ての格子のシグナル
エクセス値を算出し、この全格子のシグナルエクセス値
から各格子深度毎の探知距離を求めるようにしたので、
1回の計算で全格子深度毎の探知距離を求めることがで
きる。
As described above, the prediction calculation processor of the present invention calculates the incident supplementary angle not only for the gratings of a specific depth but also for all the gratings, and similarly the signal excess values of all the gratings. Since it was calculated and the detection distance for each grid depth was obtained from the signal excess value of all grids,
It is possible to obtain the detection distance for each total grid depth with one calculation.

【0032】また、海底残響支配領域における探知可能
範囲を、深度と水平距離とを軸としてグラフ化して表示
するので、探知可能範囲を容易に把握することができ
る。
Further, since the detectable range in the submarine reverberation controlled area is displayed as a graph with the depth and the horizontal distance as axes, the detectable range can be easily grasped.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の予察計算処理器の一実施例の構成図で
ある。
FIG. 1 is a configuration diagram of an embodiment of a prediction calculation processor of the present invention.

【図2】伝搬損失・入射補角算出部の動作説明図であ
る。
FIG. 2 is an explanatory diagram of an operation of a propagation loss / incidence supplementary angle calculation unit.

【図3】算出された各格子のシグナルエクセス値の格納
例を示す図である。
FIG. 3 is a diagram showing an example of storage of calculated signal excess values of each lattice.

【図4】本発明の探知距離表示例を示す図である。FIG. 4 is a diagram showing a detection distance display example of the present invention.

【図5】本発明の探知可能範囲表示グラフの例を示す図
である。
FIG. 5 is a diagram showing an example of a detectable range display graph of the present invention.

【図6】従来の予察計算処理器の構成図である。FIG. 6 is a configuration diagram of a conventional prediction calculation processor.

【図7】従来の探知距離表示例を示す図である。FIG. 7 is a diagram showing a conventional detection distance display example.

【符号の説明】[Explanation of symbols]

1…入力部 2…伝搬損失・入射補角算出部 3…伝搬損失平均算出部 4…入射補角平均算出部 5…シグナルエクセス算出部 6…海底散乱強度登録部 7…探知距離算出部 8…表示部 T1〜T5…テーブル DESCRIPTION OF SYMBOLS 1 ... Input part 2 ... Propagation loss / incidence supplementary angle calculation part 3 ... Propagation loss average calculation part 4 ... Incidence supplementary angle average calculation part 5 ... Signal excess calculation part 6 ... Submarine scattering intensity registration part 7 ... Detection distance calculation part 8 ... Display T1-T5 ... Table

フロントページの続き (72)発明者 藤原 保 東京都港区西新橋三丁目20番4号 日本電 気エンジニアリング株式会社内Front page continuation (72) Inventor Tamotsu Fujiwara 3-20-4 Nishishimbashi, Minato-ku, Tokyo Inside NEC Engineering Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水中目標の探知を行うソーナー装置の探
知距離を予測計算する予察計算処理器において、 ソーナー諸元情報,環境条件,計算範囲を入力する入力
部と、 ソーナー装置の送波器から一定間隔の俯角毎に設定した
音線に沿って一定距離間隔のサンプリング点毎に伝搬損
失および入射補角を算出する伝搬損失・入射補角算出部
と、 該伝搬損失・入射補角算出部で算出された伝搬損失を入
力し、指定海域を水平方向と深度方向に分割したときに
得られる各格子単位に、伝搬損失の平均値を算出する伝
搬損失平均算出部と、 前記伝搬損失・入射補角算出部で算出された入射補角を
入力し、前記各格子単位に入射補角の平均値を算出する
入射補角平均算出部と、 入射補角別の海底散乱強度値を登録した海底散乱強度登
録部と、 前記入力部で入力された情報と、前記伝搬損失平均算出
部で算出された伝搬損失の平均値と、前記入射補角平均
算出部で算出された入射補角の平均値に対応して前記海
底散乱強度登録部に登録された海底散乱強度値とに基づ
いて、前記各格子単位にシグナルエクセス値を算出する
シグナルエクセス算出部と、 該シグナルエクセス算出部で算出された各格子のシグナ
ルエクセス値に基づき、格子深度毎に海底残響支配領域
における探知距離を算出する探知距離算出部と、 該探知距離算出部で算出された各格子深度毎の探知距離
を表示する表示部とを具備したことを特徴とする予察計
算処理器。
1. A prediction calculation processor for predictively calculating a detection distance of a sonar device for detecting an underwater target, comprising: an input unit for inputting sonar specification information, environmental conditions, and a calculation range; and a transmitter of the sonar device. A propagation loss and incident supplementary angle calculation unit that calculates a propagation loss and an incident supplementary angle for each sampling point at a constant distance along a sound ray set for each depression angle at a constant interval, and the propagation loss and incident supplementary angle calculation unit. A propagation loss average calculator that calculates the average value of the propagation loss for each grid unit obtained by inputting the calculated propagation loss and dividing the designated sea area in the horizontal direction and the depth direction; The incident supplementary angle calculated by the angle calculator is input, and the incident supplementary angle average calculator calculates the average value of the incident supplementary angle for each of the above-mentioned lattice units, and the sea bottom scatter that registers the sea bottom scattering intensity value for each incident supplementary angle. Strength registration unit, the input unit The information entered in, the average value of the propagation loss calculated by the propagation loss average calculation unit, and the seabed scattering intensity registration corresponding to the average value of the incident supplementary angle calculated by the incident supplementary angle average calculation unit Based on the seabed scattering intensity value registered in the section, a signal excess calculating unit that calculates a signal excess value for each lattice unit, and a signal excess value for each lattice calculated by the signal excess calculating unit. Prediction characterized by comprising a detection distance calculation unit for calculating the detection distance in the seafloor reverberation controlled area for each depth, and a display unit for displaying the detection distance for each grid depth calculated by the detection distance calculation unit Calculation processor.
【請求項2】 前記探知距離算出部は、前記シグナルエ
クセス算出部で算出された各格子のシグナルエクセス値
に基づいて探知可能範囲を求め、深度,水平距離を各々
軸として前記求めた探知可能範囲を描いたグラフを前記
表示部に表示する構成を有する請求項1記載の予察計算
処理器。
2. The detection distance calculation unit obtains a detection range based on the signal excess value of each lattice calculated by the signal excess calculation unit, and the detection range obtained with the depth and horizontal distance as axes. The prediction calculation processor according to claim 1, wherein the prediction calculation processor has a configuration for displaying a graph depicting the above on the display unit.
JP28523192A 1992-09-30 1992-09-30 Forecast calculation processor Expired - Lifetime JP2845689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28523192A JP2845689B2 (en) 1992-09-30 1992-09-30 Forecast calculation processor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28523192A JP2845689B2 (en) 1992-09-30 1992-09-30 Forecast calculation processor

Publications (2)

Publication Number Publication Date
JPH06109472A true JPH06109472A (en) 1994-04-19
JP2845689B2 JP2845689B2 (en) 1999-01-13

Family

ID=17688813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28523192A Expired - Lifetime JP2845689B2 (en) 1992-09-30 1992-09-30 Forecast calculation processor

Country Status (1)

Country Link
JP (1) JP2845689B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002168937A (en) * 2000-12-05 2002-06-14 Nec Corp Device and method for detecting position of submerged target
JP2014074689A (en) * 2012-10-05 2014-04-24 Nec Soft Ltd Display device, display method, and program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002168937A (en) * 2000-12-05 2002-06-14 Nec Corp Device and method for detecting position of submerged target
JP2014074689A (en) * 2012-10-05 2014-04-24 Nec Soft Ltd Display device, display method, and program

Also Published As

Publication number Publication date
JP2845689B2 (en) 1999-01-13

Similar Documents

Publication Publication Date Title
Jensen et al. Computational ocean acoustics
KR101835796B1 (en) System for Supporting Tactics Using Realtime 3D Ocean Spatial Data
EP3170019B1 (en) Depth display using sonar data
CN106054137A (en) Ship information display device and ship information display method
Dettmer et al. Sequential trans-dimensional Monte Carlo for range-dependent geoacoustic inversion
Camargo Rodríguez et al. Seismo-acoustic ray model benchmarking against experimental tank data
Saksela et al. Optimization of absorption placement using geometrical acoustic models and least squares
JPH06109472A (en) Estimate calculation processor
Barros et al. A computational Bayesian approach for localizing an acoustic scatterer in a stratified ocean environment
JP4877744B2 (en) Building sound simulation system
US7187619B2 (en) Method and apparatus for high-frequency passive sonar performance prediction
JP5072401B2 (en) Scanning sonar
L'Her et al. Canonical correlation analysis as a statistical method to relate underwater acoustic propagation and ocean fluctuations
AU2020309309A1 (en) Method for determining the spatial coverage of a detection system
JPH05174074A (en) Page-turning device
Lamelas et al. Laboratory demonstration of acoustic source localization in two dimensions
Skarsoulis et al. Two-hydrophone localization of a click source in the presence of refraction
Park et al. Acoustic source localization in an anisotropic plate without knowing its material properties: a new approach
JP2836171B2 (en) Ship maneuvering simulator
Haines et al. Prediction system for acoustic returns from ocean bathymetry
JP2696591B2 (en) Sound diagram creation device
JPH03170813A (en) Display apparatus for assistance in manoeuvering ship
Smith et al. Three-dimensional propagation effects near the mid-Atlantic Bight shelf break (L)
AU2015203514B2 (en) Linear and circular downscan imaging sonar
JPS622184A (en) Doppler underwater speed measuring instrument

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071030

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081030

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20081030

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20081030

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091030

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091030

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101030

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111030

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 14

EXPY Cancellation because of completion of term